321 1. & Fourier (1) ; (3) sinxax (a > 0) (2)e−|x| (1)sgnx; 2 iλ ; π, a > |λ| π (3) 2 , a = |λ| 0, a < |λ| 2 (2) 1+λ 2; & Fourier -'+. (1) f (x) = e (β > 0), - 2. −β|x| Z +∞ cos ̟x π −β|x| d̟ = e 2 2 β +̟ 2β 0 (2) f (x) = ( sin t, |t| ≤ π 0, |t| > π Z 0 (1)F [f (x)] = 3. 1 2β β 2 +λ2 ; 2 F −1 [e−a ( 0, x < 0; ex , x ≥ 0. √ ( ( π2 ) sin t, |t| ≤ π 0, |t| > π sin λπ (2)F [f (t)] = − 2i1−λ 2 . λ2 t ,f2 (x) = f1 (x) ∗ f2 (x) = 5. - sin λπ sin λt dλ = 1 − λ2 - f (x) = -: 4. +∞ , ]= ( x2 1 √ e− 4a2 t 2a πt sin x, 0 ≤ x ≤ x ∈ (−∞, 0) ∪ ( π2 , ∞) 0, 0, 1 2 (sin x − cos x x 1 −x (1 + e 2 ), 2e 1 2 2πe− 2 x = Z +∞ −∞ 1 π 2 +e −x x≤0 ), 0 ≤ x ≤ x> e−|x−τ |ϕ(τ )dτ π 2 π 2 ϕ(x) = p 6. π 2 (2 2 1 − x2 )e− 2 x . .%" ( ut − a2 uxx = 0 , −∞ < x < ∞, t > 0 u|t=0 = cos x, u(x, t) = 7. 1 − a12 t 2e cos x ,Æ$ Fourier /%" ( ut − a2 (uxx + uyy ) = 0 u|t=0 = ϕ(x, y), u(x, y, t) = 8. RR +∞ 1 4πa2 t −∞ (x−ξ)2 +(y−η)2 4a2 t dξdη & Laplace (2)e−at sin kt; (1) sin kt; (1) k p2 +k2 (Re(p) > 0); (3) (p22kp +k2 )2 (Re(p) > 0); 9. ϕ(ξ, η)e− , −∞ < x < ∞, t > 0 e2t ; (4) √ . t (3)t sin kt k (2) 2 2 (Re(p) > −a); q (p+a) +k π (4) p−2 (Re(p) > 2) , Laplace !&* (1) Z +∞ te −2t (2) dt; 0 (1) 10. 1 4; Z +∞ 0 1 (2) p+1 − 1 p+2 (Re(p) e−t − e−2t dt t (3) π2 > −1); L[f (t)] = F (p), -( #)0 L[tn f (t)] = (−1)n 11. ; (3) ,&%" ∂2 u ∂x∂y dn F (p) , n = 1, 2, · · · dpn = 1, x > 0, y > 0, u|x=0 = y + 1, u| y=0 = 1. 2 Z 0 +∞ sin2 t dt t2 u(x, y) = xy + y + 1 12. ,&%" u(x, t) = 3e 2 , 0 < x < l, t > 0 ut − a uxx = 0 u(0, t) = u(1, t) = 0, u(x, 0) = 3 sin 2πx. −4π 2 a2 t sin 2πx 3