Practice Differentiation cont. 112. f (x) = π x 3 x2 138. f (x) = x sin−1 x + 2 113. f (x) = e(−x 114. f (x) = e(e 137. h(x) = sin−1 x /2) 139. f (x) = ) 140. f (x) = (ln x)2 141. f (x) = earctan(ln x) 116. r(x) = xe−x 142. f (x) = (ln x) 117. f (x) = 2πe ln x 163+cos √ 2π 118. f (y) = ln(cos y) 143. p(x) = ln(ln x) 144. g(u) = 119. f (x) = 2x (x3 3x + 2)4 120. g(x) = eu eu +1 145. f (x) = x arctan x − 1 2 ln x 2 4 3 −πx 3 πx e 146. h(x) = (2x − 5)(4 − x)−1 147. f (x) = 12 x2 csc x2 121. f (x) = arcsin x 122. f (t) = tt 148. f (θ) = csc−1 (sec θ) √ 123. β(x) = x x 149. f (z) = sin 3z cos 4z h 150. f (x) = (x3 + 2)99 + 1/ ln x 124. f (x) = x 125. f (x) = arctan x 126. f (x) = x(e x 127. f (x) = tan 2/5 128. f (x) = x Find dy/dx. ) −1 √ 151. x2 y 2 = 1 x 4 x2 +x 2 (x + 3) e 129. f (x) = ln(arccos x) 2 130. f (x) = (arcsin x) 152. x2 − xy + y 3 = 8 √ √ 153. x + y + xy = 6 154. y x−y = x2 + 1 155. cos(x − y) = y sin x 131. r(t) = (1 + t2 ) arctan t 156. x cos y + y cos x = 1 132. g(x) = arcsin ex 157. x = tan y 2 133. f (x) = 2(x +x+1) 158. x + sin y = exy −x 134. f (x) = ln (3xe 135. α(x) = 1 − x2 1 arcsin(2x) 115. f (x) = sin ex + x5 + sec x √ √ arctan x 1+x2 136. f (x) = 2sin 3x ) 159. x2/3 + y 2/3 = 1 √ 160. xy = 2 sin(x4 ) (x2 −1)3 i7