INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS LA ENSEÑANZA Y APLICACIÓN DE LAS CIENCIAS BÁSICAS Bosquejo de funciones con apoyo de calculadoras graficadoras M. en C. JOSÉ LUIS HERNÁNDEZ GONZÁLEZ Alumno (a): ________________________________________________ www.itapizaco.edu.mx/~joseluis joseluis@itapizaco.edu.mx Apizaco Tlax., 25, 26 y 27 de octubre de 2006 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 1 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas ÍNDICE BOSQUEJO DE FUNCIONES............................................................................................................ 3 Introducción ..................................................................................................................................... 3 Función............................................................................................................................................. 3 Representación ................................................................................................................................. 3 Listas ................................................................................................................................................ 4 Operaciones.......................................................................................................................................... 5 Tipos de gráficos .................................................................................................................................. 5 Tipos de marcas................................................................................................................................ 6 Gráfica de nube de puntos, editor de ecuaciones ............................................................................. 7 Evaluación de funciones (home) ...................................................................................................... 9 La ecuación de la recta que une dos puntos. ........................................................................................ 9 Gráfica de una función, editor de ecuaciones ................................................................................ 10 Definición de la función que pasa por dos puntos ......................................................................... 11 Transformaciones de funciones.......................................................................................................... 18 Desplazamientos............................................................................................................................. 18 Estiramientos y compresiones verticales........................................................................................ 19 Estiramientos y compresiones horizontales ................................................................................... 19 Reflexiones..................................................................................................................................... 19 Dominio y recorrido ........................................................................................................................... 20 Otras funciones básicas ...................................................................................................................... 21 Funciones trigonométricas ................................................................................................................. 22 Combinación de funciones ................................................................................................................. 30 Bibliografía......................................................................................................................................... 33 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 2 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas BOSQUEJO DE FUNCIONES Introducción Aunque en la actualidad es fácil graficar una función o un conjunto de puntos por medio de software o una calculadora graficadora, es importante que los alumnos de nivel licenciatura puedan bosquejar una función a mano basados en algunos puntos o una serie de transformaciones de la función básica. Función Una función f es una regla que asigna a cada elemento x de un conjunto A exactamente un elemento, llamado f(x), de un conjunto B. • y = f(x) • f(a) x• a• • • f A B Una función es {(x, y)| x ∈ A} Representación La representación de una función puede ser: a) b) c) d) Verbal Tabular Gráfica Analítica x -3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9 Tabular ”Bosquejo de funciones con apoyo de calculadoras graficadoras” y = x2 Gráfica Análitica M. en C. José Luis Hernández González 3 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Generalmente, se acostumbra bosquejar una gráfica elaborando una tabla, para lo cual se da una serie de valores para x, con la función f(x) se procede a calcular el valor de la y, de manera tal, que y = f(x), aunque esto ya no es necesario con un programa de computo o una calculadora graficadora. Ejemplo. Sea la función y = x2 + 1 Es decir f(x) = (x)2 +1 Si x = -3 f(-3) = (-3)2 +1= 10 f(-2) = (-2)2 +1= 5 f(-1) = (-1)2 +1= 2 f( 0) = ( 0)2 +1= 1 f( 1) = ( 1)2 +1= 2 f( 2) = ( 2)2 +1= 5 f( 3) = ( 3)2 +1= 10 x -3 -2 -1 0 1 2 3 Y 10 5 2 1 2 5 10 Ese conjunto de valores lo podemos manejar de manera más apropiada mediante una lista. Listas Una lista es un conjunto de valores separado por comas entre llaves. {-3} {-3,-2,-1,0,1,2,3} {2,1} {a,b,c,e,d} Podemos almacenar una lista una variable mediante la tecla § Ejemplo. Los siguientes datos corresponden a la función y = x2+1 En home introduzca los datos en las variables listax, listay. {-3,-2,-1,0,1,2,3}§listax¸ {10,5,2,1,2,5,10}§listay¸ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 4 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas También es posible efectuar operaciones con las listas, tal y como se hace en aritmética o álgebra. Operaciones Suma + Listax+Listay Resta – Listax-Listay Multiplicación * Listax*Listay División Listax/Listay / Raíz cuadrada √ √( Listax) Valor absoluto | | abs(Listax) Se pueden hacer las siguientes gráficas en la calculadora: Tipos de gráficos Nube de puntos Líneas y puntos ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 5 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Tipos de marcas Caja Cruz Signo Más Cuadro Punto ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 6 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Gráfica de nube de puntos, editor de ecuaciones Presione ¹#, mueva el cursor hasta Plot 1: y presione ¸ Seleccione Plot Type …Scatter Mark………..Box Y escriba en x, y x…………….listax y…………….listay Se muestra el tipo de gráfico y el valor de las listas a graficar Del menú seleccione F2:Zoom, 9:ZoomData y presione ¸ La gráfica será ajustada al conjunto de valores de las listas. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 7 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas La función más sencilla corresponde a una constante. Dibuje la función de una constante y elabore una tabla xy x y x y x y y = ____ Otra función sencilla corresponde a: y=x Elabore la gráfica de: y = x2 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 8 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Evaluación de funciones (home) A estas funciones les denominaremos funciones básicas, y también las podemos almacenar en alguna variable para poder evaluarlas tal y como se hace a mano. Sea la función f(x) = x2, almacenarla en la variable f(x) x^2§f(x) Si se quiere evaluar cuando x = 2, entonces debemos escribir f(2) ¸ Si x = c f(c) ¸ Si x = c + 1 f(c+1) ¸ Si el valor de x es una lista entonces f(listax) ¸ Actividad: Definir algunas funciones y evaluarlas. Se pueden definir funciones más complicadas tales como f(x1, x2, … xn), donde x1, x2, …, xn se denominan parámetros. Ejemplo. Defina como una función llamada fuerza con la fórmula F = ma y evalúe cuando m = 3 y a = 2 m*a§fuerza(m,a)¸ fuerza(3,2)¸ La ecuación de la recta que une dos puntos. y B • (x2, y2) A • (x1, y1) m = tan( θ ) x Encontrar la ecuación de la recta que pasa por los puntos (0, 0) y (1, 1) ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 9 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Gráfica de una función, editor de ecuaciones Antes que nada, es necesario ajustar la ventana donde se visualizarán las gráficas, presionado ¹$ En el editor de ecuaciones, grafique la función y = x. Presione ¹# Mueva el cursor hasta y1 = Presione ¸ y escriba x Presione ¹% Ajuste la ventana de forma que x y y sean del mismo tamaño presionando F2 Zoom, 5:Zoomsqr El resultado es: Actividad: Graficar algunas funciones. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 10 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Puede hacer una gráfica de puntos escribiendo en home la función newplot n,tipo,listax,listay Donde Corresponde al número de gráfico (del 1 al 10) tipo Es un número de 1 al 4 listax Es la lista con los valores de x listay Es la lista con los valores de y n tipo: 1 = Nube de puntos 2 = Gráfica de líneas xy 3 = Gráfica de cajas (estadística) 4 = Histograma (estadística) Primero defina el conjunto de puntos a graficar y almacénelos en listax, listay. {0,1}§listax¸ {0,1}§listay¸ Newplot 1,1,listax,listay¸ Después presione ¹% Nota: Recuerde que si el punto A(0, 0) equivale a A(x1, y1) y B(1, 1) es B(x2, y2), las listas para almacenar los valores de x corresponde a {x1,x2}§listax y para {y1,y2}§listay, esto es {0,1}§listax y {0,1}§listay Definición de la función que pasa por dos puntos ¿Se podrá definir una función que encuentre la ecuación de la recta que pasa por dos puntos y que los puntos (x1, y1) y (x2, y2) sean los parámetros? ______________________________ Defina la función como: e2puntos(px1,py1,px2,py2) y use la función de la calculadora drawfunc, para mostrarla. Pruébela con (2,2), (4,8) para obtener y = __________ Lo que indica que la ecuación de la recta la podemos escribir como: ________________ y Donde: b = pendiente a = El valor donde la ecuación corta con el eje y. b = La pendiente de la recta. a x ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 11 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Si pudo definir su función, úsela para resolver los siguientes problemas. Si no, hágalos a mano. (1, 1), (2,2) y = __________ (0, 1), (1,2) y = __________ (0, 2), (1,3) y = __________ (0,-1),(1,0) y = __________ (0,-2)(2,0) y = __________ Significa que si deseo _____________ la gráfica ______________una _______________, es decir __________ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” hacia _______________, debo M. en C. José Luis Hernández González 12 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Observe que sucede si trabajamos con la misma modificación en f(x) = x2, grafique las funciones: y = x2 + 1 y = x2 + 2 y = x2 – 1 y = x2 – 2 Entonces, si deseamos _______________ la gráfica ______________una _______________, es decir _________ hacia _______________, debo ¿Qué otro movimiento podré hacer? __________________________________________________ ________________________________________________________________________________ ________________________________________________________________________________ ¿Cómo deberé modificar la función original? ___________________________________________ ________________________________________________________________________________ ________________________________________________________________________________ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 13 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Trabajemos nuevamente con f(x) = x2, a partir de la gráfica, construya la tabla de valores y observe que sucede. f(x ) = ( f(x ) = ( f(x ) = ( )2 = ______ )2 = ______ )2 = ______ x -3 -2 -1 0 1 2 3 y x -3 -2 -1 0 1 2 3 y x -3 -2 -1 0 1 2 3 4 y Nota: Tome el cero como punto de referencia, además del primer punto a evaluar. Entonces, si deseamos _______________ la gráfica ______________una _______________, es decir _________ hacia _______________, debo Y si deseamos _______________ la gráfica hacia _______________, debo ______________una _______________, es decir _________ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 14 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Encuentre las ecuaciones de las siguientes rectas y observe qué sucede con ellas graficando las función correspondiente, con respecto a función base y = x. (describa lo que sucede) (0,0), (1,2) y = __________ (0,0), (1,3) y = __________ (0,0), (2,1) y = __________ (0,0), (3,1) y = __________ ¿Qué se puede concluir? ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 15 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Observe que sucede si trabajamos con la misma modificación para la función base f(x) = x2, grafique las funciones y describa que sucede. y = 2x2 y = 3x2 y= 1 2 x 2 y= 1 2 x 3 ¿Qué se puede concluir? ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 16 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Encuentre la ecuación de las siguientes rectas y observe qué sucede con ellas graficando las funciones correspondientes, con respecto a la función base y = x, y descríbalo. (-1,1), (0,0) y = __________ (-1,2), (0,0) y = __________ (-1,3), (0,0) y = __________ (-3,1), (0,0) y = __________ Haga lo mismo para y = -x2 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 17 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Transformaciones de funciones Las transformaciones que sufre una función básica son las siguientes: Desplazamientos Estiramiento Reflexiones A partir de las funciones básicas, podemos obtener otras gráficas de funciones relacionadas, permitiéndonos trazar gráficas de numerosas funciones rápido (sin necesidad de utilizar la calculadora). Desplazamientos Los desplazamientos pueden ser sobre el eje x o sobre el eje y. Translación hacia arriba f(x) + c f(x) f(x + c) f(x – c) Translación a la Izquierda f(x) – c Translación a la derecha Translación hacia abajo ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 18 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Si c es un número positivo, entonces tenemos los siguientes desplazamientos y = f (x) + c, se desplaza la gráfica de y = f (x) una distancia de c unidades hacia y = f (x) – c, se desplaza la gráfica de y = f (x) una distancia de c unidades hacia y = f (x – c), se desplaza la gráfica de y = f (x) una distancia de c unidades hacia y = f (x + c), se desplaza la gráfica de y = f (x) una distancia de c unidades hacia arriba abajo derecha izquierda Estiramientos y compresiones verticales f(x) cf(x) 1 f(x) c Estiramiento vertical Compresión vertical y = cf(x), estírese la gráfica de y = f(x) verticalmente en su factor de c 1 y = f(x), comprímase la gráfica de y = f (x) verticalmente en su factor de c c Estiramientos y compresiones horizontales f(x) f(cx) ⎛1 ⎞ f⎜ x⎟ ⎝c ⎠ Compresión horizontal Estiramiento horizontal y = f(cx), comprímase la gráfica de y = f (x) horizontalmente en su factor de c 1 y = f( x), estírese la gráfica de y = f (x) horizontalmente en su factor de c c Reflexiones f(x) -f(x) Reflexión en x f(-x) Reflexión en y y = –f (x), refléjese la gráfica de y = f (x) respecto al eje x y = f(-x), refléjese la gráfica de y = f (x) respecto al eje y ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 19 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Dominio y recorrido El dominio de f es el conjunto A, y su recorrido o imagen es f(x) y y = f(x) • Recorrido • x Dominio En realidad, una función nueva parte de la función básica y = x, es decir, si consideramos por ejemplo a y = x2, es una modificación de la básica x, es decir si realizamos la tabla de valores para algunos puntos podemos ver que: x -3 -2 -1 0 1 2 3 f(x) = x -3 -2 -1 0 1 2 3 f(x) = x2 (-3)2 = 9 (-2)2 = 4 (-1)2 = 1 (0)2 = 0 (1)2 = 1 (2)2 = 4 (3)2 = 9 Observe cómo los valores que toma el recorrido nunca serán negativos, es decir, se puede observar cómo la parte de las x, en la función f (x) = x devuelve valores positivos; imagine si es posible proyectar la información de la variable x a la nueva función x2. NOTA: A partir de este momento, ya no usar la calculadora para hacer la gráfica de las funciones, sólo para evaluar algunos puntos. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 20 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Otras funciones básicas Otras funciones que podemos considerar básicas son las siguientes: 1 y = |x| y = x2 = x Dominio Dominio Recorrido Recorrido y= 1 x y = ex Dominio Dominio Recorrido Recorrido ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 21 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas y = ln(x) Evalúa algunos puntos cercanos a cero, tanto positivos como negativos, describe que observas. Dominio Recorrido Funciones trigonométricas Considérese un círculo de radio r = 1 y ángulo θ, por trigonometría sabemos que: senθ = y x ; cos θ = 1 1 entonces x = cosθ y = senθ θ y x x Si medimos el ángulo θ en radianes tenemos ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 22 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas y = sen(x) y = cos(x) Dominio Dominio Recorrido Recorrido Cómo se comportan las funciones de la forma y = f(x) + c donde f(x) es una de las funciones anteriores y c es una constante Propón una función y una constante y realiza lo que describiste. y = __________ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” y = __________ M. en C. José Luis Hernández González 23 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Cómo se comportan las funciones de la forma y = f(x-b) donde f(x) es una de las funciones anteriores y b es una constante. y = __________ y = __________ ¿Qué efecto produce en cualquiera de las funciones anteriores el multiplicarlas por un número a? esto es, cuál es el comportamiento de funciones de la forma: y = a f(x) donde f(x) es una de las funciones anteriores y a es una constante, en cualquiera de los siguientes casos: i) a > 1 ii) 0 < a < 1 iii) a < 0 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 24 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas y = ___________ y = ___________ a>1 0<a<1 y = ___________ a<0 En general, cómo se comportan las funciones de la forma y = af(x-b) + c donde f(x) es una de las funciones anteriores y a, b y c son constantes. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 25 / 33 INSTITUTO TECNOLOGICO DE APIZACO y = ____________ Ciencias Básicas y =____________ En cada una de las siguientes funciones determinen cuál es la función básica y describan el efecto que le producen cada uno de los parámetros. Luego bosquejen las gráfica correspondiente. y=x–3 y= 2 x −3 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 26 / 33 INSTITUTO TECNOLOGICO DE APIZACO y =1− y= Ciencias Básicas 2 x −3 1 ( x + 3) 2 − 1 2 y = 4 − 2 ln(x + 3) ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 27 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Bosqueje las funciones, si cree que es necesario evalúe algunos puntos. y= − x y= y= − 2 − x 1 − x ”Bosquejo de funciones con apoyo de calculadoras graficadoras” y= x−2 y = 1− x y= 4 − 2 1 − x M. en C. José Luis Hernández González 28 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Sabiendo que la gráfica de la figura corresponde a la función y = f(x), bosqueje la gráfica de cada una de las siguientes funciones: (use algunos puntos para hacerlo) y = f(x) – 5 y = f(x – 2) ”Bosquejo de funciones con apoyo de calculadoras graficadoras” y= 1 f(x) 2 y = 10 – f(x) M. en C. José Luis Hernández González 29 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas y = f(x) y = 5 − f ( x + 3) Combinación de funciones Estos primeros problemas deben haberle permitido precisar el efecto que sobre una función cualesquiera y = f(x), tienen los parámetros a, b y c (constantes) que aparecen en funciones de la forma y = af(x – b) + c Tales efectos, pueden explicarse fácilmente teniendo claro que en la expresión y = f(x), f(x) representa los valores de la variable y, que se obtienen a partir de los valores de la variable x al efectuar sobre ellos las operaciones representadas por la regla f; ya que, en ese caso, en una expresión de la forma y = f(x) + c f(x) + c representa los valores de la y de la nueva función y, por tanto, es evidente que éstos se obtienen, en cada caso, al sumarle c unidades a los valores de la y de la función inicial. Una consecuencia inmediata de esto, es el hecho de que para cualquier valor dado de la x, los valores correspondientes de las y de las dos funciones, y = f(x) y y = f(x) + c, difieren en el valor constante, c. Geométricamente, esto hace que la gráfica de y= f(x)+c sea igual a la gráfica de y = f(x), sólo que está c unidades más arriba o más abajo según que c sea un número positivo o negativo. De igual forma, en funciones de la forma y = af(x), los valores de la y se obtienen multiplicando por a los valores de la y de la función y = f(x), de tal manera que, si a>1, los valores de la y, de la función y = af(x) tendrán un valor absoluto mayor que los correspondientes valores de la y de la función y = f(x), excepto cuando y = 0, en cuyo caso serán iguales. En el caso de que a sea una fracción entre cero y uno, es decir, en el caso de que 0 < a < 1, resultará que los valores de la y, de la función y = af(x) tendrán un valor absoluto menor que los correspondientes valores de la y de la función y = f(x), excepto, como en el caso anterior, cuando y = 0. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 30 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Gráficamente, lo anterior se refleja en el hecho de que las gráficas de y=f(x) y y=af(x), coinciden cuando y = 0 y cuando y ≠ 0 se separan más o menos dependiendo del valor de y de la función y=f(x) y del valor de a (mientras mayores son los valores absolutos de y, la separación de las gráficas es mayor; lo mismo sucede para los valores de a, cuando son mayores que uno y lo contrario cuando son menores que uno). Por último, si a < 0, af(x) y f(x) tendrán signos diferentes, esto es, cuando f(x) > 0, af(x) < 0 y viceversa. Consideremos ahora el caso en el que a y/o c fueran también variables dependientes de x; esto es consideremos a = A(x) y c = C(x) de tal manera que tendremos ahora funciones de la forma i) y = f(x) + C(x) ii) y = A(x)f(x) o la combinación de ambos, que dan lugar a funciones de la forma y = A(x)f(x) + C(x) (desde luego que los casos anteriores son ahora casos particulares de esta nueva forma y corresponden, precisamente, a los casos en los cuales A(x) y C(x) son funciones constantes). Entonces, se pueden combinar dos funciones f y g para formar nuevas funciones f+g, f-g, fg, f/g de manera semejante a las operaciones básicas con los números reales. Si definimos la suma f + g por la ecuación (f+g)(x) = f(x) + g(x) Entonces, el segundo miembro de la ecuación tiene sentido si tanto f(x) como g(x) están definidas; es decir, si x pertenece al dominio de f y también al de g. Si el dominio de f es A y el de g es B, entonces el dominio de f+g es la intersección de ambos, es decir A B. Sean f y g funciones con dominios A y B. Entonces las funciones se definen como sigue: (f + g)(x) = f(x) + g(x) dominio = A ∩ B (f – g)(x) = f(x) – g (x) dominio = A ∩ B (fg)(x) = f(x)g(x) dominio = A ∩ B ⎛f ⎞ f (x ) ⎜⎜ ⎟⎟( x ) = dominio = {x ∈A ∩ B | g(x) ≠ 0} g( x ) ⎝g⎠ ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 31 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Si f ( x ) = x y g ( x ) = 4 − x 2 , la suma de f(x) y g(x) es Dominio A = {x | x ≥ 0} Dominio B = {x | -2 ≤ x ≤ 2} El nuevo dominio es A ∩ B = { x | 0 ≤ x ≤ 2} Seleccione algunos puntos para bosquejar la función resultante, por ejemplo los extremos del nuevo dominio, así como algún o algunos puntos interiores de ese dominio. Como la operación que se realiza es la suma, Para el primer extremo se tienen que: 0 + 2 = 2, para el siguiente punto x = 1, entonces y2 = 4 – 1, y = 3 3 + 1 =2.73 Para el otro extremo 2 +0= 2 ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 32 / 33 INSTITUTO TECNOLOGICO DE APIZACO Ciencias Básicas Bosqueje las funciones resultantes de: f(x) * g(x) f(x) – g(x) f (x) g( x ) Bibliografía Curso de Cálculo, MEEC2, Ciidet, mayo 2005 Cálculo de una variable, James Stewart, Edit. Thomson. 2001 Manual de la calculadora Voyage 200, Texas Instruments. 2006 Las gráficas fueron generadas en Winplot, Parris Richard, Peanut software, tomado de http://math.exeter.edu/rparris octubre de 2006. ”Bosquejo de funciones con apoyo de calculadoras graficadoras” M. en C. José Luis Hernández González 33 / 33