GRUPO 1. Introducción. La trigonometría es la rama de las

Anuncio
GRUPO 1. Introducción. La trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos, siendo su significado etimológico “medida de triángulos”. Se divide en dos ramas fundamentales: • Trigonometría plana: Se ocupa de las figuras bidimensionales, o sea, las contenidas en un plano. • Trigonometría esférica: Se ocupa de los triángulos que forman parte de la superficie de una esfera. El estudio de la trigonometría es muy interesante ya que permite resolver una gran cantidad de situaciones y problemas en el mundo real, resultando fundamental, especialmente en cualquier tipo de aplicación basada en geometrías y distancias. De hecho sus primeras aplicaciones fueron en el ámbito de la astronomía, la navegación y la geodesia (La geodesia es la
ciencia que estudia la forma y dimensiones de la Tierra.); casos en los que no es posible hacer mediciones de manera directa o donde las distancias son inaccesibles, como la distancia de la Tierra a la Luna o la medida del radio del Sol. Otras aplicaciones interesantes de la trigonometría se realizan en Física, o en Ingeniería en casi todas sus ramas, siendo muy importante en el estudio de fenómenos periódicos, por ejemplo en el flujo de corriente alterna para la ingeniería eléctrica. Durante el bachillerato se estudian conceptos como ángulos, rectas, mediatriz, bisectriz, relaciones angulares, ángulos en polígonos, simetrías en figuras planas, triángulos, cuadriláteros, polígonos regulares, circunferencia, teorema de Pitágoras, teorema de Thales, poliedros, áreas, volúmenes, etc, todas estas temáticas aportan a la trigonometría. Pronto descubrirán la utilidad de la misma para todo tipo de cálculos geométricos como la obtención de áreas, medidas de lados y ángulos en figuras geométricas, hallar tamaños de manera indirecta, etc. GRUPO 2. Historia de la Trigonometría. Los comienzos de la trigonometría se remontan a las matemáticas de la antigüedad. Vamos a ir viendo su evolución por los distintos pueblos y culturas donde se ha ido desarrollando. 2.1 Babilonia y Egipto. Hace más de 3.000 años los babilonios y los egipcios ya empleaban los ángulos de un triángulo y las razones trigonométricas para realizar medidas en agricultura los primeros, y nada más y nada menos que en la construcción de las pirámides por los segundos. También se aplicaron en los primeros estudios de astronomía para el cálculo de la posición de cuerpos celestes y la predicción de sus órbitas, en los calendarios y el cálculo del tiempo, y por supuesto en navegación para mejorar la exactitud de la posición y de las rutas. Fueron los egipcios quienes establecieron la medida de los ángulos en grados, minutos y segundos, criterio que se ha mantenido hasta hoy en día. Babilonia es un antiguo reino localizado en la región de Mesopotamia, en torno al actual Iraq, fundada
aproximadamente en el año 2500 a.C .y que tuvo su final alrededor del
año 550 a.C.
Antiguo Egipto, el periodo comienza aproximadamente sobre el año
2700 a.C. hasta el 2200 a.C.
GRUPO 3. 2.2 Grecia antigua. Los conocimientos de los pueblos anteriores pasaron a Grecia, donde destacó el matemático y astrónomo Hiparco de Nicea en el S.II a.C, siendo uno de los principales desarrolladores de la trigonometría. Hiparco construyó las tablas de “cuerdas” para la resolución de triángulos planos, que fueron las precursoras de las tablas de las funciones trigonométricas de la actualidad. En ellas iba relacionando las medidas angulares con las lineales. Para confeccionar dichas tablas fue recorriendo una circunferencia de radio r desde los 0º hasta los 180º e iba apuntando en la tabla la longitud de la cuerda delimitada por los lados del ángulo central y la circunferencia a la que corta. Esa tabla es similar a la moderna tabla del seno. No se sabe con certeza el valor que usó Hiparco para el radio r de esa circunferencia, pero sí se conoce que 300 años más tarde el astrónomo alejandrino Tolomeo utilizó r = 60, ya que los griegos adoptaron el sistema numérico sexagesimal (base 60) de los babilonios. Tolomeo incorporó también en su gran libro de astronomía “El Almagesto” una tabla de cuerdas con un error menor que 1/3.600 de unidad. Junto a ella explicaba su método para compilarla, y a lo largo del libro daba bastantes ejemplos de cómo utilizar la tabla para calcular los elementos desconocidos de un triángulo a partir de los conocidos. Además de eso Tolomeo enunció el llamado “teorema de Menelao”, utilizado para resolver triángulos esféricos, y aplicó sus teorías trigonométricas en la construcción de astrolabios y relojes de sol. La trigonometría de Tolomeo se empleó durante muchos siglos como introducción básica para los astrónomos. GRUPO 4 2.3 India. Al mismo tiempo que los griegos, los astrónomos de la India desarrollaron también un sistema trigonométrico, pero basado en la función seno en vez de en cuerdas. Aunque, al contrario que el seno utilizado en la actualidad, esta función no era una proporción, sino la longitud del lado opuesto a un ángulo en un triangulo rectángulo de hipotenusa dada. Los matemáticos indios utilizaron diversos valores para esa función seno en sus tablas. 2.4 Arabia. A finales del siglo VIII los astrónomos árabes continuaron con los estudios de trigonometría heredados de los pueblos de Grecia y de la India, pero prefirieron trabajar con la función seno. De esta forma, a finales del siglo X ya habían completado tanto la función seno como las otras cinco funciones trigonométricas: coseno tangente, cotangente, secante y cosecante. También descubrieron y demostraron teoremas fundamentales de la trigonometría, tanto para triángulos planos como esféricos, donde incorporaron el triángulo polar. Estos matemáticos árabes fueron quienes sugirieron el uso del valor r = 1 en vez de r = 60, lo que dio lugar a los valores modernos de las funciones trigonométricas. Todos estos descubrimientos los fueron aplicando a la astronomía, logrando medir el tiempo astronómico, e incluso los utilizaron para encontrar la dirección de la Meca, tan fundamental a la hora de realizar las cinco oraciones diarias requeridas por la ley islámica orientados en esa dirección. Los científicos árabes también compilaron tablas de gran exactitud. Por ejemplo, las tablas del seno y de la tangente, construidas con intervalos de 1/60 de grado (1 minuto) tenían un error menor que 1 dividido por 700 millones. Además, el primer estudio de las trigonometría plana y esférica como ciencias matemáticas independientes lo realizó el gran astronómo Nasir al-­‐Din al-­‐Tusi en su obra “Libro de la figura transversal”. GRUPO 5 2.5 Occidente.
La trigonometría se introdujo en occidente sobre el siglo XII a través de traducciones de libros de astronomía arábigos. En Europa fue el matemático y astrónomo alemán Johann Müller, más conocido como Regiomontano, quien realizó el primer trabajo importante en esta materia, llamado “De Triangulus”. Durante el siguiente siglo otro astrónomo alemán, Georges Joachim, conocido como Retico, introdujo el concepto moderno de funciones trigonométricas como proporciones en vez de como longitudes de ciertas líneas. Ya en el S.XVI el matemático francés François Viete incorporó en su libro “Canon matemáticas” el triangulo polar en la trigonometría esférica, y encontró formulas para expresar las funciones de ángulos múltiples en función de potencias de las funciones de los ángulos simples. Desde entonces, la 2.6 Trigonometría en tiempos modernos.
A principios del S.XVII se produjo un gran avance en los cálculos trigonométricos gracias al matemático escocés John Napier, que fue el inventor de los logaritmos. También encontró reglas mnemotécnicas para resolver triángulos esféricos, y algunas proporciones para resolver triángulos esféricos oblicuos, llamadas analogías de Napier. Medio siglo después, el genial Isaac Newton inventó el cálculo diferencial e integral, logrando así representar muchas funciones matemáticas mediante el uso de series infinitas de potencias de la variable x. En la rama de trigonometría, Newton encontró la serie para el sen x, y series similares para el cos x y la tg x. Con la invención del Cálculo, las funciones trigonométricas fueron incorporadas al Análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas. Por último, en el siglo XVIII, el matemático suizo Leonhard Euler fue quien verdaderamente fundó la trigonometría moderna, definiendo las funciones trigonométricas mediante expresiones con exponenciales de números complejos. Esto convirtió a la trigonometría en sólo una de las muchas aplicaciones de los números complejos. De hecho, Euler demostró que las propiedades básicas de la trigonometría eran simplemente producto de la aritmética de los números complejos. 
Descargar