Integral Definida

Anuncio
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
3
3.1 DEFINICIÓN
3.2 TEOREMA DE INTEGRABILIDAD
3.3 TEOREMA FUNDAMENTAL DEL CÁLCULO
3.4 PROPIEDADES DE LA INTEGRAL DEFINIDA
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
PROPIEDAD
PROPIEDAD
PROPIEDAD
PROPIEDAD
PROPIEDAD
PROPIEDAD
PROPIEDAD
PROPIEDAD
INTEGRAL
DE
DE
DE
DE
DE
DE
DE
DE
LINEALIDAD
ADITIVIDAD
COMPARACIÓN
ACOTAMIENTO
SUSTITUCIÓN
SIMETRÍA
PERIODICIDAD
LA DERIVADA DE UNA
Objetivo:
Se pretende que el estudiante calcule integrales
definidas aplicando teoremas y propiedades
43
MOISES VILLENA MUÑOZ
Cap 3 La Integral Definida
3.1 DEFINICIÓN
Ya se ha mencionado que un problema a resolver es la determinación
del área bajo una curva y = f (x ) .
El cálculo integral proporciona las herramientas para dar solución a
esta problemática.
Dividiendo la región en " n " rectángulos. Observe la figura:
Las bases de los rectángulos son de dimensión no necesariamente
igual. Las alturas de cada rectángulo estarían dadas por el respectivo valor
que se obtiene en la función f con el punto (observe la figura) que se ha
denotado como x . El área del primer rectángulo sería A1 = f ( x1 ) ∆x1 , el
área del segundo rectángulo sería A2 = f ( x 2 )∆x2 ; y así , el área del
n-ésimo rectángulo sería An = f ( x n ) ∆xn .
xn
44
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Observe que si tomamos x1 = x1 , x 2 = x2 , x 3 = x3 , …, x i = xi , se
tienen rectángulos circunscritos; en cambio si se toma x1 = x0 , x 2 = x1 ,
x 3 = x2 , …, x i = xi −1 se tendrían rectángulos inscritos.
La suma de las áreas de los n rectángulos sería:
( )
( )
( )
( )
f x1 ∆x1 + f x 2 ∆x2 + f x 3 ∆x3 + K + f x n ∆xn
Que de manera abreviada tenemos:
∑ f (x )∆x
n
i
i
i =1
Bien, lo que se quiere es el área de la región, por tanto se debería
considerar una suma de una cantidad muy, pero muy grande de
rectángulos, es decir una suma infinita. Por tanto, el área de la región
estaría dada por:
∑ ( )
⎡ n
⎤
A = lím ⎢
f x i ∆xi ⎥
n →∞
⎣ i =1
⎦
De aquí surge la definición de Integral Definida.
Sea f una función que está definida en el intervalo [a, b] .
⎡ f (x i )∆x ⎤ se le denomina la integral definida (o
Al lím
∑
i
n →∞ ⎢
⎥⎦
⎣ i =1
integral de Riemann) de f de " a " a " b " y se denota de la
n
b
siguiente manera: ∫ f ( x)dx .
a
Además, si existe este límite decimos que f es integrable
en [a, b] .
Ahora, con el siguiente teorema dejamos sentado el hecho de cuando
una función es integrable.
45
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
3.2 TEOREMA DE INTEGRABILIDAD
Si f es acotada en [a, b] y si f es continua a excepción de
un número finito de puntos, entonces f es integrable [a, b] .
En particular si f es continua en todo [a, b] entonces es
integrable en [a, b]
Ejemplo
Hallar el área bajo la curva f ( x ) = x en
2
[1,3]
SOLUCIÓN:
Aplicando la definición (Suma de Riemann) se tiene:
n
A = lím
n →∞
∑ f ( x )∆x = lím [ f ( x )∆x + f ( x )∆x
i
i =1
i
n→∞
1
2
1
2
+ f ( x 3 ) ∆x3 + K + f ( x n )∆xn ]
PRIMER MÉTODO. RECTANGULOS CIRCUNSCRITOS.
Escogemos x 1 = x1 , x 2 = x 2 , x 3 = x3 , …, x i = xi
Representando la región, tenemos:
y = x2
x 0 x1 x 2
{{
∆x
∆x
xn
{
∆x
Ahora bien, observe que si tomamos a todas las particiones de igual dimensión, tendríamos
∆x =
y
46
b − a 3 −1 2
=
=
n
n
n
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
x0 = a = 1
x1 = x 0 + ∆x = 1 +
2
n
4
⎛2⎞
x 2 = x1 + ∆x = x 0 + 2∆x = 1 + 2⎜ ⎟ = 1 + ,
n
n
⎝ ⎠
6
⎛2⎞
x 3 = x 2 + ∆x = x 0 + 3∆x = 1 + 3⎜ ⎟ = 1 +
n
⎝n⎠
M
⎛2⎞
x i = x 0 + i∆x = 1 + i∆x = 1 + i ⎜ ⎟
⎝n⎠
Entonces:
A = lím [ f (x1 )∆x + f (x 2 )∆x + f (x 3 )∆x + L f (x n )∆x ]
n →∞
n
= lím
n →∞
= lím
n →∞
∑ f ( x )∆x
i
i =1
n
∑
i =1
2
n →∞ n
= lím
2
2⎞ 2
⎛
⎜1 + i ⎟
n⎠ n
⎝
n
∑ ⎛⎜⎝1 + i n4 + i
2
i =1
4 ⎞
⎟
n2 ⎠
n
n
n
⎤
2 ⎡⎢
4
4
i+ 2
i2 ⎥
1+
n →∞ n ⎢
⎥
n
n
i =1
i =1
⎣ i =1
⎦
2⎡
4 n(n + 1) 4 n(n + 1)(2n + 1) ⎤
= lím ⎢n +
+ 2
⎥
n →∞ n ⎣
n
2
6
n
⎦
= lím
∑ ∑
∑
2(n + 1)(2n + 1) ⎤
2⎡
n + 2(n + 1) +
⎢
⎥
n →∞ n ⎣
3n
⎦
= lím
2⎡
4n 2 + 6n + 2 ⎤
+
+
n
3
2
⎢
⎥
n →∞ n ⎢
3n
⎣
⎦⎥
= lím
= lím
n →∞
2⎡
4n
2⎤
3n + 2 +
+2+ ⎥
3
3n ⎦
n ⎢⎣
4 ⎤
⎡ 8 8
= lím ⎢6 + + + 2 ⎥
n →∞ ⎣
n 3 3n ⎦
26
A=
3
SEGUNDO MÉTODO. RECTANGULOS INSCRITOS.
Escogemos x 1 = x 0 , x 2 = x1 , x 3 = x 2 , …, x i = x i −1
Representando la región, tenemos:
47
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
y = x2
x 0 x1 x 2
{{
∆x
∆x
xn −1 x n
{
∆x
Ahora, igual que el método anterior:
∆x =
Entonces:
2
n
⎛2⎞
x i = 1 + i⎜ ⎟
⎝n⎠
y
A = lím [ f (x0 )∆x + f (x1 )∆x + f (x2 )∆x + L f (xn −1 )∆x ]
n →∞
n −1
= lím
n →∞
= lím
n →∞
= lím
n →∞
∑
f ( xi )∆x
∑
2⎞ 2
⎛
⎜1 + i ⎟
n⎠ n
⎝
i =0
n −1
i =0
n −1
2
n
∑
i =0
⎡
2
= lím ⎢
n →∞ n ⎢
⎣⎢
2
4 2 4 ⎞
⎛
⎜⎜1 + i n + i 2 ⎟⎟
n ⎠
⎝
n −1
n
i =0
4
n
⎤
n
∑ ∑ ∑
1+
i+
i =1
4
n2
i =1
i
2⎥
⎥
⎦⎥
2⎡
(n − 1) + 4 (n − 1)(n) + 42 (n − 1)(n)[2(n − 1) + 1]⎤⎥
2
6
n ⎢⎣
n
n
⎦
2⎡
2(n − 1)(2n − 1) ⎤
= lím ⎢n − 1 + 2(n − 1) +
⎥
3n
n →∞ n ⎣
⎦
= lím
n →∞
2⎡
4n 2 − 6n + 2 ⎤
⎢3n − 3 +
⎥
n →∞ n ⎢
3n
⎣
⎦⎥
= lím
2⎡
4n
2⎤
−2+ ⎥
3n − 3 +
⎢
n →∞ n ⎣
3
3n ⎦
= lím
4 ⎤
⎡ 10 8
= lím ⎢6 − + + 2 ⎥
n →∞ ⎣
n 3 3n ⎦
26
A=
3
48
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Note que el asunto no es tan sencillo. Se podría volver aún más
engorroso si la función f tuviese regla de correspondencia compleja.
El teorema siguiente nos permitirá evaluar integrales definidas de
una manera muy rápida y sencilla, liberándonos de la ideas de calcular
integrales definidas empleando su definición.
3.3 TEOREMA FUNDAMENTAL DEL CÁLCULO
Sea f continua en [a, b] y sea F cualquier
antiderivada de f en [a, b] entonces:
b
∫ f ( x)dx = F (b) − F (a)
a
Demostración:
En la expresión F (b) − F ( a ) , haciendo b = x n y a = x0 tenemos:
F (b) − F (a) = F ( x n ) − F ( x0 )
Restando y sumando términos, resulta:
F (b) − F (a ) = F ( x n ) − F ( x0 )
= [F ( x n ) − F ( x n −1 )] + [F ( x n −1 ) − F ( x n − 2 )] + F ( x n − 2 ) − K − F ( x1 ) + [F ( x1 ) − F ( x 0 )]
∑[
n
=
F ( xi ) − F ( xi −1 )]
i =1
Aplicando el teorema del valor medio para derivadas a F en el intervalo [xi −1 , xi ]
Como F es continua y diferenciable en [xi −1 , xi ] entonces ∃x i tal que F ´(x i ) =
Como F ´(x i ) = f ( x i ) y xi − xi −1 = ∆xi entonces:
f (xi ) =
Despejando resulta: F ( x i ) − F (x i −1 ) = f ( x i ) ∆x i .
F ( xi ) − F (xi −1 )
xi − xi −1
F ( xi ) − F (xi −1 )
∆xi
49
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
∑[
n
Reemplazando en F (b) − F (a ) =
∑
n
F ( xi ) − F ( xi −1 )] tenemos: F (b) − F (a) =
i =1
f ( x i )∆xi
i =1
Tomando límite queda:
lím [F (b) − F (a )] = lím
n →∞
n →∞
n
∑ f ( x ) ∆x
i
i
i =1
b
n
F (b) − F (a ) = lím
n →∞
∑
f ( xi )∆xi =
i =1
∫ f ( x)dx
a
La parte derecha de la última igualdad, por definición es la integral definida de f en
[a, b] .
b
Por tanto F (b) − F (a ) =
∫
L.Q.Q.D.
f ( x)dx
a
Ejemplo
Hallar el área bajo la curva y = x en
SOLUCIÓN:
2
[1,3]
3
El área bajo la curva estará dada por A =
∫
x 2 dx , aplicando el teorema fundamental del calculo
1
3
A=
∫
1
3
⎛ x3
⎞
⎛ 33
⎞ 27 1 26
13
x 2 dx = ⎜⎜
+ C ⎟⎟ = ⎜⎜ + C − − C ⎟⎟ =
− =
3
3
⎝ 3
⎠1 ⎝ 3
⎠ 3 3
Hemos dado solución a una gran problemática.
Observe que
50
a
b
a
a
a
b
∫ f ( x)dx = 0 y ∫ f ( x)dx = −∫ f ( x)dx ¿Porqué?
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
3.4 PROPIEDADES DE LA INTEGRAL DEFINIDA
3.4.1 PROPIEDAD DE LINEALIDAD
Suponga que f y g son integrables en el intervalo
[a, b] y sea k ∈ R , entonces:
b
b
b
a
a
1. ∫ [ f ( x) ± g ( x)]dx = ∫ [ f ( x)]dx ± ∫ [g ( x)]dx
a
b
b
a
a
2. ∫ kf ( x)dx = k ∫ f ( x)dx
3.4.2 PROPIEDAD DE ADITIVIDAD
Si f es integrable en un intervalo que contiene a los
puntos a, b y c (no importar su orden), entonces:
b
∫
c
f ( x)dx =
a
∫
b
f ( x)dx +
a
∫
f ( x)dx
c
Demostración:
Por el teorema fundamental del cálculo:
c
∫
a
b
f ( x)dx +
∫
b
f ( x)dx = F (c) − F (a ) + F (b) − F (c) = F (b) − F (a ) =
c
∫
f ( x)dx
a
PREGUNTA: ¿Verdadero o falso?
3
∫
1
5
x 2 dx =
∫
1
3
∫
x 2 dx + x 2 dx
5
51
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Ejemplo 1
5
Calcular
∫
1
;x ≥ 3
⎧2 x − 1
f ( x)dx donde f ( x) = ⎨ 2
⎩ x − 3x + 1 ; x < 3
SOLUCIÓN:
Como f tiene dos reglas de correspondencia, es decir:
Entonces aplicando la propiedad de aditividad, tenemos:
5
∫
3
f ( x)dx =
1
∫(
5
)
x − 3 x + 1 dx +
2
1
∫(
2 x − 1)dx
3
3
5
⎛ x 3 3x 2
⎞
⎛ 2x 2
⎞
= ⎜⎜
−
+ x ⎟⎟ + ⎜⎜
− x ⎟⎟
2
⎝ 3
⎠1 ⎝ 2
⎠3
⎡⎛
27
⎞ ⎛ 1 3 ⎞⎤
= ⎢⎜ 9 −
+ 3 ⎟ − ⎜ − + 1⎟⎥ + [(25 − 5) − (9 − 3)]
2
⎠ ⎝ 3 2 ⎠⎦
⎣⎝
38
=
3
Ejemplo 2
4
Calcular
∫
x − 1 − 2 dx
−2
SOLUCIÓN:
Para obtener las reglas de correspondencia que definen a
y = x −1 − 2
Entonces:
52
f , obtenemos la gráfica de
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
−1
4
∫
x − 1 − 2 dx =
−2
∫
1
(− x − 1)dx +
−2
∫
3
(x + 1)dx +
−1
−1
∫
4
(− x + 3)dx +
1
∫
(x − 3)dx
3
1
3
4
⎛ x
⎛ x
⎞
⎞
⎛ x2
⎞
⎞
= ⎜−
− x⎟
+ 3x ⎟ + ⎜
+⎜
+ x⎟ + ⎜−
− 3x ⎟
⎜ 2
⎜ 2
⎟
⎟
⎜ 2
⎜ 2
⎟
⎟
⎝
⎠ −2 ⎝
⎠1 ⎝
⎠ −1 ⎝
⎠3
⎡⎛ 1
⎤ ⎡⎛ 1
⎞
⎞⎤ ⎡
⎛9
⎞⎤
⎞ ⎤ ⎡⎛ 9
⎞ ⎛ 1
⎞ ⎛1
= ⎢⎜ − + 1⎟ − (− 2 + 2)⎥ + ⎢⎜ + 1⎟ − ⎜ − 1⎟ ⎥ + ⎢⎜ − + 9 ⎟ − ⎜ − + 3 ⎟⎥ + ⎢(8 − 12) − ⎜ − 9 ⎟ ⎥
⎠
⎠⎦ ⎣
⎝2
⎠⎦
⎠ ⎦ ⎣⎝ 2
⎠ ⎝ 2
⎠ ⎝2
⎣⎝ 2
⎦ ⎣⎝ 2
=5
2
⎛ x2
2
3.4.3 PROPIEDAD DE COMPARACIÓN
Si f y g son integrables en [a, b] y si f ( x) ≤ g ( x) ,
∀x ∈ [a, b] ;
b
b
a
a
entonces: ∫ f ( x)dx ≤ ∫ g ( x)dx
3.4.4 PROPIEDAD DE ACOTAMIENTO
Si
es integrable en
f ( x) ≤ M , ∀x ∈ [a, b] ; entonces:
f
m≤
[a, b]
y
si
b
m(b − a ) ≤ ∫ f ( x)dx ≤ M (b − a )
a
3.4.5 PROPIEDAD DE SUSTITUCIÓN
Supóngase que g tiene una derivada continua en [a, b]
y sea f continua en el rango de g . Entonces:
x =b
t = g (b )
x=a
t=g (a)
∫ f ( g ( x))g´(x)dx = ∫ f (t )dt donde t = g (x)
Ejemplo
π2 4
Calcular
∫
π2 9
cos x
dx
x
SOLUCIÓN:
53
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Tomando el cambio de variable t =
⎧⎪ x = π
2
⎪⎩ x = π
2
integración ⎨
4
⇒ t = π2
9
⇒ t = π3
por tanto la integral en términos de t sería:
π2
∫
x entonces tenemos dx = 2 x dt , y para los límites de
π2
cos t
x
2 x dt = 2
π3
∫
π2
cos tdt = 2 sen t π 3 = 2 sen π2 − 2 sen π3
π3
= 2(1) − 2
3
= 2− 3
2
Note que para resolver la integral anterior no es necesario aplicar la
propiedad de sustitución; la integral puede ser resulta como en el caso de
las integrales indefinidas y luego ser evaluada para x. ¿cómo sería?.
3.4.6 PROPIEDAD DE SIMETRÍA
1. Si
f
es una función PAR entonces:
a
a
−a
0
∫ f (x)dx = 2∫ f (x)dx
2. Si
f
es una función IMPAR entonces:
a
∫
f ( x)dx = 0
−a
Demostraremos sólo la primera parte, la segunda es de forma
análoga y se recomienda al lector que la realice.
DEMOSTRACIÓN
0
a
Aplicando la propiedad de aditividad
∫
f ( x)dx =
−a
∫
a
f ( x)dx +
−a
∫
f ( x)dx
0
Para la primera integral aplicando la propiedad de sustitución:
Si tomamos el cambio de variable t = − x entonces dt = − dx y para los límites de integración
0
⎧x = 0 ⇒ t = 0
. Sustituyendo resulta
⎨
⎩ x = −a ⇒ t = a
∫
a
54
0
f (−t )[− dt ] = −
∫
a
f (−t )dt
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Por hipótesis f es una función par, por tanto se cumple que f (−t ) = f (t ) y además si
0
invertimos los límites de integración, tenemos: −
∫
∫
Finalmente
f ( x)dx =
−a
∫
f (t )dt
f ( x )dx
0
a
∫
∫
0
∫
f (−t )[− dt ] =
a
a
f (−t )dt =
a
a
0
la última integral si t = x queda
a
a
f ( x )dx +
0
∫
a
f ( x )dx = 2
0
∫
f ( x)dx L.Q.Q.D.
0
Ejemplo
5
Calcular
∫
−5
x5
dx
x2 + 4
SOLUCIÓN:
Obtengamos primero f ( − x ) para f ( x ) =
f (− x) =
x5
x2 + 4
.
(− x) 5
(− x) + 4
2
=−
x5
x +4
2
Observe f (− x ) = − f ( x) , por tanto f es una función impar y por la propiedad de simetría,
rápidamente concluimos que:
5
∫
x5
x2 + 4
dx = 0
−5
3.4.7 PROPIEDAD DE PERIODICIDAD
Si f es periódica con período T , entonces:
b +T
∫
a +T
b
f ( x)dx = ∫ f ( x )dx
a
DEMOSTRACIÓN
b +T
En la integral
∫
f ( x)dx , haciendo cambio de variable t = x − T .
a +T
55
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Del cambio de variable se obtiene x = t + T , dx = dt y los límites para la nueva variable son:
⎧x = b + T ⇒ t = b
⎨
⎩x = a + T ⇒ t = a
b +T
Reemplazando, resulta:
∫
b
f ( x)dx =
a +T
∫
f (t + T )dt y como, por hipótesis, f es una función
a
b
periódica se cumple que f (t + T ) = f (t ) , entonces
∫
b
f (t + T )dt =
a
b +T
Que finalmente, si t = x quedaría
∫
∫
f (t )dt
a
b
f ( x)dx =
a +T
∫
f ( x)dx L.Q.Q.D.
a
3.4.8 PROPIEDAD DE LA DERIVADA DE UNA INTEGRAL
Algunos autores le llaman Segundo Teorema fundamental del
Cálculo.
Sea f continua en [a, b] y sea " x " un punto variable
de (a, b) . Entonces:
d ⎡x
⎤
f (t )dt ⎥ = f ( x)
∫
⎢
dx ⎣ a
⎦
Ejemplo 1
⎡x
Calcular D x ⎢
⎢
⎣2
∫
⎤
dt ⎥
2
t + 17 ⎥
⎦
t
3
2
SOLUCIÓN:
Aplicando la propiedad anterior, rápidamente concluimos que:
⎡x
⎢
Dx ⎢
⎢
⎣2
∫
56
⎤
⎥
dt ⎥ =
2
t + 17 ⎥
⎦
t
3
2
x
3
2
x + 17
2
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Ejemplo 2
⎡2
Calcular D x ⎢
⎢
⎣x
∫
⎤
dt ⎥
2
t + 17 ⎥
⎦
t
3
2
SOLUCIÓN:
Invirtiendo los límites de integración y aplicando la propiedad, concluimos que:
⎡
⎢
D x ⎢−
⎢
⎣
x
∫
2
⎤
3
⎥
x 2
dt ⎥ = −
t 2 + 17 ⎥
x 2 + 17
⎦
t
3
2
La propiedad anterior puede ser generalizada de la siguiente manera:
⎡u ( x )
⎤
du
d ⎢
f (t )dt ⎥ = [ f (u )]
⎥
dx
dx ⎢
⎢⎣ a
⎥⎦
∫
Ejemplo 3
⎡x
⎢
Calcular D x
⎢
⎢⎣ 2
3
∫
⎤
dt ⎥
2
t + 17 ⎥
⎥⎦
t
3
2
SOLUCIÓN:
Aplicando la propiedad, concluimos que:
⎡ x3
⎢
Dx ⎢
⎢
⎢⎣ 2
∫
⎤
⎥
dt ⎥ =
t 2 + 17 ⎥
⎥⎦
t
3
2
(x ) (3x ) =
(x ) + 17
3
3
2
2
3 2
3x
13
2
x 6 + 17
Ejemplo 4
3
⎡x
⎤
t 2
⎢
Calcular D x
dt ⎥
2
⎢
t + 17 ⎥
⎣⎢ x 2
⎦⎥
3
∫
SOLUCIÓN:
Aplicando la propiedad de aditividad, tenemos que:
⎡ x3
⎢
Dx ⎢
⎢
⎣⎢ x 2
∫
⎡0
⎤
⎢
⎥
t
dt ⎥ = D x ⎢
2
⎢
t + 17 ⎥
⎢⎣ x 2
⎦⎥
3
2
∫
t
3
x3
2
t 2 + 17
dt +
∫
0
⎤
⎥
dt ⎥
2
t + 17 ⎥
⎦⎥
t
3
2
Derivando cada término y aplicando la propiedad, resulta:
57
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
⎡0
⎢
Dx ⎢
⎢
⎣⎢ x 2
∫
t
3
⎤
⎡0
⎥
⎢
t
dt ⎥ = D x ⎢
2
t + 17 ⎥
⎢
⎣ x2
⎦⎥
x3
2
t 2 + 17
dt +
∫
3
0
∫
2
⎡
⎢
= D x ⎢−
⎢
⎢⎣
∫
⎤
⎥
dt ⎥ =
t 2 + 17 ⎥
⎥⎦
t
3
2
∫
⎤
⎥
dt ⎥
t 2 + 17 ⎥
⎦⎥
x2
⎡ x3
⎤
⎢
⎥
t
dt ⎥ + D x ⎢
⎢
t 2 + 17 ⎥
⎢⎣ 0
⎥⎦
⎤
⎥
dt ⎥
t 2 + 17 ⎥
⎥⎦
∫
2
3
0
∫
2
3
2
3
2
2 2
3x
13
2
2
3 2
−
x 6 + 17
3
2x 4
x 4 + 17
Ejemplo 5
⎡x
⎤
⎢
Calcular D x
xtdt ⎥
⎢
⎥
⎣1
⎦
∫
SOLUCIÓN:
x
Observe que
∫
1
x
xtdt = x
∫
tdt por tanto:
1
⎡
⎡x
⎤
⎛
⎜
⎢
⎢
⎥
Dx ⎢ xtdt ⎥ = Dx ⎢(x ) • ⎜
⎜⎜
⎢
⎢
⎥
⎢⎣
⎣1
⎦
⎝
∫
⎛
⎜
= ( Dx x ) • ⎜
⎜⎜
⎝
x
∫
1
x
∫
1
⎞⎤
⎟⎥
tdt ⎟⎥
⎟⎟⎥
⎠⎥⎦
⎞
⎛
⎟
⎜
⎟
tdt + (x ) • ⎜ Dx
⎟⎟
⎜⎜
⎠
⎝
x
= 1•
=
2
t
2
2
∫
tdt
+
1
x
+ x2
1
x
1
− + x2
2 2
3 2 1
= x −
2
2
=
58
t
3
t
2
3
2
(x ) (2 x) + (x ) (3x
(x ) + 17
(x ) + 17
=−
⎡ x3
⎢
FINALMENTE: D x ⎢
⎢
⎢⎣ x 2
⎡ x3
⎤
⎢
⎥
t
dt ⎥ + D x ⎢
⎢
t 2 + 17 ⎥
⎦
⎣⎢ 0
3
x • (x )
x
∫
1
⎞
⎟
tdt ⎟
⎟⎟
⎠
2
)
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Ejemplo 6
x
∫
Calcular lím
1 − t 2 dt
0
x →0
x
SOLUCIÓN:
0
0
La expresión presenta una indeterminación de la forma:
Aplicando la regla de L´Hopital, tenemos:
⎡x
⎤
⎢
⎥
2
1 − t dt ⎥
Dx ⎢
⎢
⎥
1− x 2
1− 02
⎣0
⎦
lím
= lím
=
=1
x →0
x →0
1
1
D x [x ]
∫
Ejercicios Propuestos 3.1
1.
Calcular
3
∫
a.
1
10
f (x )dx , si
f.
−2
∫
g.
∫(
x−
5
[ x ])dx
l.
0
4
b.
π2
∫
x − 1 dx
h.
0
4
c.
∫
3 x − 1 dx
d.
∫(
)
3 x − 1 + 2 − x dx
j.
−2
5
e.
∫
∫
x
cos
m.
dx
x
∫(
)
x 2 − 2 x + 3 ln (x )dx
1
1
9
∫(
0
1
9 − x 2 dx
e
4
1
i.
−2
4
∫
0
∫
π2
∫ sen (2 π x )dx
0
0
4
⎧⎪2 x 2 , − 2 ≤ x ≤ 1
f (x ) = ⎨
⎪⎩1 − 2 x, 1 < x ≤ 3
k.
x dx
2
x+2
x2 + 4x + 1
n.
)
2
1+ x2
dx
[3 x + cos (3 x − 3 )]dx
∫(
x3
−1
100
o.
∫
)
4
dx
(
)
x 2 sen 97 x 3 − 3 x dx
− 100
0
x − 1 − 2 dx
−2
2.
Determine el valor de verdad de las siguientes proposiciones: Si es verdadera demuéstrela y en caso de ser
falsa de un contraejemplo.
b
[
]
Si f (x ) ≤ g (x ) en a , b ,
a.
∫
b
f (x )dx ≤
a
99
b.
∫(
)
ax 3 + bx 2 + cx dx = 2
− 99
∫
g (x )dx
a
99
∫
bx 2 dx
0
59
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
b +T
c.
b
∫
Si f es periódica con período T, entonces:
∫
f (x )dx =
a +T
∫
,
a
−a
b
d. ∀ f
f (− x )dx =
∫
f (x )dx
−b
a
a
e.
f (x )dx
Si f es una función par ∀x ∈ [− a , a ] , entonces
a
∫
f (x )dx = 2
−a
Si f (x ) ≤ g (x ) en [a, b ] , entonces
g.
h.
Si F ′(x ) = G ′(x ) ∀x ∈ a, b ,
[ ]
∫
f ( x ) dx
0
b
f.
∫
b
∫
f (x ) dx ≤
a
g (x ) dx
a
F (b ) − F (a ) = G(b ) − G(a )
Sea g una función derivable y supóngase que F es una antiderivada de f . Entonces
∫ f (g (x))g′(x)dx = F (g (x)) + C
3.
Encuentre f ′ si f toma las siguientes reglas de correspondencia:
x 3 + sen x
sen x ln x
∫
a.
1
dt
1− t
∫
d.
0
b.
x
1 − t dt
5
∫
(
e.
ln x tanx
ln x
ex3x
∫
c.
1
dt
2−t
6 log
x
2
+1
x
2
2
)
)
dt
1− t3
cos t − sen t
1 + sen t
1−
cos
dt
t
Determine:
x
a.
∫
lim
( )dt
sen t
0
x3
x→ 0
x
b.
∫
lim +
x→1
∫
2
c.
x
60
3
∫
f.
e ln x sec x
4.
t5 − 1
2
x 3 sen (tanx
2 x 3 sec x
3
∫
2t
4
sent dt
d.
1
x −1
lim
1 + e − t dt
1
x→ ∞
x
⎡ x2
d ⎢
dt
⎢
dx ⎢
1 − 5t 2
0
⎣
∫
⎤
⎥
⎥
⎥
⎦
2
dt
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
Misceláneos
1.
A cada una de las proposiciones siguientes, califíquelas como Verdadera o Falsa. En cada caso justifique su
respuesta.
a)
Si f ´ es una función continua en el intervalo [a , b ] entonces
b
∫
2 f ( x ) f ´( x ) dx =
[ f ( b ) ]2
[ f ( a ) ]2
−
a
b
∫
f ( x ) dx = 0 entonces f ( x ) = 0 para ∀ x ∈ [a , b ]
b)
Si
c)
Si f es una función continua en IR , entonces:
a
⎛ arctgx
⎜
d ⎜
f ( x ) dx
dx ⎜
⎜
2
⎝ x
∫
n +1
d)
∫[
⎞
⎟
⎟ = f (arctgx
⎟
x2 +1
⎟
⎠
)−
( )
f x2
n (n + 1 )
; n ∈ IN
2
]
x dx =
0
e)
Si f y g son funciones impares y continuas en IR , entonces
5
∫(
f o g
)(x )dx
= 0
−5
⎡x
⎢
Dx⎢
⎢
⎢ 4
⎣
2
f)
∫
4
1+ t
⎤
⎥
dt ⎥ = 2 x 1 + x 4
⎥
⎥
⎦
2
g)
∫
⎡
x2
4
− x3
⎢ 5 x + xe
⎣
⎤
1 + x 4 ⎥ dx = 64
⎦
−2
h)
Si f y g son funciones continuas en el intervalo [0 ,1 ] entonces
1
∫
1
f (x )g (1 − x )dx =
0
∫
f (1 − x )g (x )dx
0
b
i)
Si
∫
f ( x ) dx ≥ 0 entonces f ( x ) ≥ 0 para ∀ x ∈ [a , b ]
a
π
2π
j)
∫
senx dx = 4
2
2
∫
senxdx
0
3
k)
Si
∫
f ( x ) dx = 3 y
0
∫
0
∫
0
f ( x ) dx = 7
entonces
∫
f ( x ) dx = − 4
4
1
1
l)
3
4
xdx ≥
∫
1 + x 2 dx
0
61
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
m)
Si
es una función continua en
f
2 x1
∫
2 x1
f (t )dt =
−x
n)
IR tal que para cualquier número real x ,
∫
f (t )dt = 0 entonces f es una función impar.
x
Si F es una antiderivada de la dunción f , entonces F (2 x + 1) =
∫
f (2 x + 1)dx
5
o)
Si
es una función continua en el intervalo
f
[2,5]
y
∫
f ( x )dx = 7
entonces
2
−5
∫
f ( x )dx = −7
−2
x2
∫
p)
Si f es una función tal que 2 f ( x) + 3 cos t dt = 0 entonces f ´(x) = −3 x cos x
q)
Si
0
y g
f
son funciones tales que
f ( x ) = xe
x
y
f ( x ) ≥ g ( x ) para todo
1
x ∈ [0 ,1 ] entonces
∫
g (x )dx ≤ 1 .
0
2
r)
[ ]
Si ∀x ∈ 0,2 ,
0 ≤ f ( x) ≤ 1 entonces 0 ≤
∫
f ( x)dx ≤ 1
0
s)
Si f es una función continua en el intervalo [0,10 ]
x ∈ [0,10] entonces f ´(1) =
2π
t)
∫
senx dx =
w)
62
lim
n → +∞
lim
p →0
Si
3 3
e .
5
∫
cos x dx
2
∑
n
v)
∫
2π
2
u)
⎞
⎛ 3x 2
⎟
⎜
et
⎜
y f ( x ) = Dx ⎜
dt ⎟⎟ para
2
⎜⎜ t + 1 ⎟⎟
⎠
⎝ 0
i =1
n
∑
i =1
π
n
⎛ πi ⎞
cos⎜ ⎟ = π
⎝n⎠
cos 2 xi =
π
2
donde p = max.{∆xi } p es una partición del intervalo [0, π ] .
2
2
−1
−1
∫ (2 f (x) + x2 )dx = 1 , entonces ∫ f (x)dx = −1
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
x
x)
∫
0
lim
x→ 0
⎛ 3 ⎞
⎟
⎜
tg ⎜ x 2 ⎟
⎟
⎜
⎠
⎝
+
n
y)
lim
n →∞
( )
sen t 2 dt
∑
n
i =1
∫
∀a, b ∈ R,
b + 2π
senx dx =
a
2.
1
3
⎛ 2i ⎞
⎜⎜1+ ⎟⎟
2
e⎝ n ⎠ = e 2 − 1
a + 2π
z)
=
∫
cos xdx
b
Calcular
x
4
∫(
1 − cos t )dt
a.
0
lim
x→ 0
j.
∫(
1
)3 2
6 − x2
1
dx
π
∫
l.
2
∫
3
x
2
+ 2x + 2
e.
∫
∫
12
e
x→ 0
m.
( )
)
2 x − 1 − 3 dx
∫
2 x + 3 dx
∫
1 + cos x
dx
2
2
x2
∫
6
3
f.
∫(
2x −
[ x ])dx
n.
0
∫
(x x + 1 − x − 2 )dx
−2
5
h.
∫
lim
sen (t )
t2 +1
dt
0
x→ 0
x3
4
3
g.
dt
π
sen t 2 dt
x
+ 16
∫(
0
lim
2t
−2
2π
dx
1
x2
dx
−2
3
cos 2 xsen 3 xdx
0
d.
x − 4
x3 − x
ln 2
21
k.
2
c.
∫
2
ln 5
x3
2
b.
i.
o.
∫
1
p.
dx
− 2 x−3
dx
−3
2
2 + x −1
e
∫
−2
( )
⎛ sen x 3
x
⎜
+e
⎜ x2 + 1
⎝
⎞
⎟dx
⎟
⎠
1
63
Cap 3 La Integral Definida
MOISES VILLENA MUÑOZ
3
3.
)
∫(
9t 2 − 48t + 56 e −3t dt ,
Si f es una función tal que f ( x) =
x ∈ IR . Determine los intervalos donde el
x
gráfico de f es cóncava hacia arriba.
4
4.
Si f y g son funciones tales que
∫
1
1
el valor de
∫[
5 f ( x) + g ( x)]dx
7
64
7
f ( x ) dx = 3 ,
∫
4
7
f ( x)dx = −2 y
∫
1
3 g ( x ) dx = 6 , entonces calcule
Descargar