Unit 7 Common Core Mathematical Practices (MP) Domains • Operations and Algebraic Thinking (OA) • Number and Operations in Base Ten (NBT) • Number and Operations – Fractions (NF) How Many People? How Many Teams? INVESTIG ATION 1 Equivalence in Multiplication and Division Day 1 1.1 2 1.2 Session Assessment: Equivalence in Multiplication Tripling and Thirding SESSION FOLLOW-UP Daily Practice and Homework 3 1.3 Daily Practice and Homework CC152 1.4 Daily Practice: In addition to Student Activity Book page 4, students complete Student Activity Book page 6 or C98 (Powers of 10 and Division) for ongoing review. Finding Many Equivalents SESSION FOLLOW-UP 4 Common Core Adaptation Equivalence in Division Daily Practice: In addition to Student Activity Book page 8, students complete Student Activity Book page 10 or C99 (Decimal Division) for ongoing review. Common Core Standards MP8 5.OA.2, 5.NF.2 MP8 5.OA.2 MP3, MP8 5.OA.2, 5.NF.2 MP8 5.OA.2 UNIT 7 How Many People? How Many Teams? INV12_TE05_U07.indd 152 6/27/11 2:50 PM INVESTIG ATION 2 Reviewing Multiplication Strategies Day 5 2.1­ 6 2.2 Session Multiplication Review Multiplication Practice SESSION FOLLOW-UP Daily Practice and Homework 7 2.3 8 2.4 Common Core Adaptation U.S. Algorithm for Multiplication Assessment: 253 ∙ 46 Daily Practice: In addition to Student Activity Book page 18, students complete Student Activity Book page 20 or C100 (Animal Robots) for ongoing review. Common Core Standards MP8 5.NBT.5 MP8 5.NBT.5 MP8 5.NBT.5 MP8 5.NBT.5 Instructional Plan INV12_TE05_U07.indd 153 CC153 6/27/11 2:50 PM INVESTIG ATION 3 Division Strategies and Notation Day 9 3.1 10 3.2 Session Representing a Division Problem Division Notation SESSION FOLLOW-UP Daily Practice and Homework 11 3.3 Daily Practice and Homework 13 3.5 14 3.6 15 3.7 CC154 Daily Practice: In addition to Student Activity Book page 30, students complete Student Activity Book page 32 or C101 (Long and Tall) for ongoing review. First Steps SESSION FOLLOW-UP 12 3.4 Common Core Adaptation Refining Division Strategies Refining Division Strategies, continued Division: How Did I Solve It? Assessment: 701 ∙ 27 Daily Practice: In addition to Student Activity Book page 34, students complete Student Activity Book page 36 or C102 (Finding Equivalent Measures) for ongoing review. Common Core Standards MP5, MP6 5.NBT.5, 5.NBT.6 MP6 5.NBT.5, 5.NBT.6 MP3, MP6 5.NBT.5, 5.NBT.6 MP3, MP6 5.NBT.5, 5.NBT.6 MP3, MP6 5.NBT.5, 5.NBT.6 MP3, MP6 5.NBT.5, 5.NBT.6 MP6 5.NBT.6 UNIT 7 How Many People? How Many Teams? INV12_TE05_U07.indd 154 6/27/11 2:51 PM INVESTIG ATION 4 Using the Operations Day 16 4.1 Session Field Day Refreshments SESSION FOLLOW-UP Daily Practice and Homework 17 4.2 Field Day Activities 18 4.3 Field Day Problems 19 4.4 20 4.5 Field Day Problems, continued End-of-Unit Assessment Common Core Adaptation Daily Practice: In addition to Student Activity Book page 54, students complete Student Activity Book page 57A or C103 (Following the Order of Operations) for ongoing review. Common Core Standards MP1 5.NBT.5, 5.NBT.6 MP1 5.NBT.5, 5.NBT.6 MP1 5.NBT.5, 5.NBT.6 MP1 5.NBT.5, 5.NBT.6 MP1, MP2 5.NBT.5, 5.NBT.6 Instructional Plan INV12_TE05_U07.indd 155 CC155 6/27/11 2:51 PM Name Date How Many People? How Many Teams? Daily Practice Powers of 10 and Division In Problems 1 and 2, write a division equation. Then solve the problem. note Students solve division problems involving powers of 10. 1. a. How many dimes are in $5? b. How many pennies are in $5? 2. a. How many dimes are in $68? b. How many pennies are in $68? Solve the following problems. 3. 4 ÷ 100 = 5. 51 ÷ 0.01 = 8. 675 ÷ 10 = 9. 192 ÷ 100 = 13. 409 ÷ 0.1 = 6. 81 ÷ 0.1 = 7. 38 ÷ 1 = 11. 7 ÷ 0.1 = 4. 7 ÷ 10 = 12. 325 ÷ 0.01 = Unit 7 Session 1.2 INV12_BLM05_U7.indd 98 10. 2 ÷ 0.01 = 14. 650 ÷ 0.01 = C98 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/24/11 1:27 PM Name Date How Many People? How Many Teams? Daily Practice Decimal Division note Students use reasoning about division and decimals to determine the correct quotient. Circle the correct answer, and explain your thinking. 1. 81.6 ÷ 16 = 5.1 51 5100 2. 7.2∙288 4 40 400 3. 66 ÷ 0.06 = 11 110 1,100 0.95 9.5 95 4. 4.2∙39.9 Solve Problems 5–8 and show your work. Use estimation and number sense to determine the size of the answer. 5. 7∙42.7 6. 87.5 ÷ 3.5 = 7. 180 ÷ 4.5 = 8. 0.9∙31.68 Unit 7 Session 1.3 INV12_BLM05_U7.indd 99 C99 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/22/11 8:26 AM Name Date How Many People? How Many Teams? Daily Practice Animal Robots An inventor invented toy animal robots that jump exactly the same distance each time they jump. Animal Robot note Students solve multiplication and division problems involving decimal numbers. Length of Jump Bionic Bunny 9.2 cm Bouncing Bug 0.88 cm Kicking Kangaroo 24.2 cm Leaping Lizard 4.7 cm Solve the following problems about the animal robots’ jumps. Write an equation and show how you solved each problem. 1. How far does the Leaping Lizard jump if it makes 12 jumps? 2. The Bouncing Bug jumped a total distance of 6.16 cm. How many jumps did it make? 3. How far does the Kicking Kangaroo jump if it makes 41 jumps? Unit 7 Session 2.2 INV12_BLM05_U7.indd 100 C100 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/24/11 1:28 PM Name Date How Many People? How Many Teams? Daily Practice Long and Tall note Students convert lengths. 1. Complete the table of bridge lengths. (Note: 1 kilometer = 1,000 meters) Bridge Length in kilometers Golden Gate Bridge (California) Length in meters 2,737.4 m Jubilee Parkway (Alabama) 12.1 km Lake Pontchartrain Causeway (Louisiana) 38.422 km Royal Gorge Bridge (Colorado) 384 m Seven-Mile Bridge (Florida) 10,931 m 2. Complete the table of basketball players’ heights. (Note: 1 foot = 12 inches) Basketball Player Height in feet and inches Kareem Abdul-Jabbar 7 ft 2 in. Kobe Bryant 79 in. Wilt Chamberlain 7 ft 1 in. Allen Iverson 72 in. Oscar Robertson 6 ft 5 in. Unit 7 Session 3.2 INV12_BLM05_U7.indd 101 Height in inches C101 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/24/11 1:28 PM Name Date How Many People? How Many Teams? Daily Practice Finding Equivalent Measures note Students convert capacities. Circle the larger measure. 1. 18 gal 78 qt 2. 102 fl oz 13 c 3. 28 pt 48 c 4. 6 qt 10 pt Capacity Equivalents U.S. Standard Units 1 cup (c) = 8 fluid ounces (fl oz) 1 pint (pt) = 2 cups (c) 1 quart (qt) = 2 pints (pt) 1 gallon (gal) = 4 quarts (qt) Rewrite the fruit punch recipe so all of the ingredients are measured in the same unit of capacity. Fruit Punch 2 gal apple juice 2 qt cranberry juice 1 pt orange juice 3 c pomegranate juice 48 fl oz sparkling water Unit 7 Session 3.3 INV12_BLM05_U7.indd 102 C102 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/24/11 1:29 PM Name Date How Many People? How Many Teams? Daily Practice Following the Order of Operations note Students use the order of operations to solve problems. In Problems 1–4, use the order of operations to solve the problem. Show your work. 1. 20 – 4 × 9 ÷ 3 = 2. (22 – 12 + 2) ÷ (9 – 6) = 3. 10 – [(4 + 12) ÷ 8] = 4. {50 ÷ [(9 – 4) × 2]} × 7 = In Problems 5–8, insert parentheses, brackets, and/or braces to make each equation true. 5. 9 – 8 – 2 ÷ 2 = 6 6. 5 × 4 + 8 = 60 7. 18 ÷ 2 × 5 – 2 = 3 8. 10 – 6 – 2 + 1 ÷ 7 = 1 In Problem 9, use grouping symbols to write an equation that represents the situation. Then solve the problem. 9.There are 237 students at Coolidge Elementary School. The principal wants to give each student a new pencil. In the storeroom, there are 5 packages of 12 pencils and 10 packages of 15 pencils. How many more pencils does the principal need to buy? Unit 7 Session 4.1 INV12_BLM05_U7.indd 103 C103 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/24/11 1:27 PM Unit 7 INV12_BLM05_U7.indd 104 C104 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/20/11 12:33 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria Potencias de 10 y división En los Problemas 1 y 2, escribe una ecuación de división. Luego resuelve el problema. notA Los estudiantes resuelven problemas de división que incluyen potencias de 10. 1. a. ¿Cuántas monedas de 10¢ hay en $5? b. ¿Cuántas monedas de 1¢ hay en $5? 2. a. ¿Cuántas monedas de 10¢ hay en $68? b. ¿Cuántas monedas de 1¢ hay en $68? Resuelve los siguientes problemas. 3. 4 ÷ 100 = 4. 7 ÷ 10 = 5. 51 ÷ 0.01 = 7. 38 ÷ 1 = 6. 81 ÷ 0.1 = 8. 675 ÷ 10 = 9. 192 ÷ 100 = 11. 7 ÷ 0.1 = 12. 325 ÷ 0.01 = 13. 409 ÷ 0.1 = Unidad 7 Sesión 1.2 INV12_SP_BLM05_U7.indd 98 10. 2 ÷ 0.01 = 14. 650 ÷ 0.01 = C98 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/30/11 3:23 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria División decimal notA Los estudiantes usan el razonamiento sobre la división y los decimales para determinar el cociente correcto. Encierra en un círculo la respuesta correcta y explica tu razonamiento. 1. 81.6 ÷ 16 = 5.1 51 5,100 2. 7.2∙288 4 40 400 3. 66 ÷ 0.06 = 11 110 1,100 0.95 9.5 95 4. 4.2∙39.9 Resuelve los Problemas 5 a 8 y muestra tu trabajo. Usa la estimación y el sentido numérico para determinar el tamaño de la respuesta. 5. 7∙42.7 6. 87.5 ÷ 3.5 = 7. 180 ÷ 4.5 = 8. 0.9∙31.68 Unidad 7 Sesión 1.3 INV12_SP_BLM05_U7.indd 99 C99 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 7/25/11 7:26 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria Animales robots Un inventor inventó animales robots de juguete que saltan exactamente la misma distancia cada vez que saltan. Animal Robot notA Los estudiantes resuelven problemas de multiplicación y división que incluyen números decimales. Longitud del salto Conejo biónico 9.2 cm Insecto botador 0.88 cm Canguro pateador 24.2 cm Lagarto saltarín 4.7 cm Resuelve los siguientes problemas sobre los saltos de los animales robots. Escribe una ecuación y muestra cómo resolviste cada problema. 1. ¿Qué distancia salta el lagarto saltarín si da 12 saltos? 2. El insecto botador saltó una distancia total de 6.16 cm. ¿Cuántos saltos dio? 3. ¿Qué distancia salta el canguro pateador si da 41 saltos? Unidad 7 Sesión 2.2 INV12_SP_BLM05_U7.indd 100 C100 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 7/18/11 8:15 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria Largo y alto notA Los estudiantes convierten longitudes. 1. Completa la tabla de longitudes de puentes. (Nota: 1 kilómetro = 1,000 metros) Puente Longitud en kilómetros Longitud en metros Puente Golden Gate (California) 2,737.4 m Jubilee Parkway (Alabama) 12.1 km Carretera elevada del lago Pontchartrain (Louisiana) 38.422 km Puente Royal Gorge (Colorado) 384 m Puente Seven-Mile (Florida) 10,931 m 2. Completa la tabla de alturas de jugadores de básquetbol. (Nota: 1 pie = 12 pulgadas) Jugador de básquetbol Altura en pies y pulgadas Kareem Abdul-Jabbar 7 pies 2 pulgs. Kobe Bryant 79 pulgs. Wilt Chamberlain 7 pies 1 pulgs. Allen Iverson 72 pulgs. Oscar Robertson 6 pies 5 pulgs. Unidad 7 Sesión 3.2 INV12_SP_BLM05_U7.indd 101 Altura en pulgadas C101 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/30/11 3:26 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria Hallar medidas equivalentes notA Los estudiantes convierten capacidades. Encierra en un círculo la medida más grande. 1. 18 gal 78 cto. 2. 102 oz líq. 13 t 3. 28 pt 48 t 4. 6 cto. 10 pt Equivalencias de capacidad Unidades estándar de los EE. UU. 1 taza (t) = 8 onzas líquidas (oz líq.) 1 pinta (pt) = 2 tazas (t) 1 cuarto (cto.) = 2 pintas (pt) 1 galón (gal.) = 4 cuartos (cto.) Vuelve a escribir la receta del refresco de frutas para que todos los ingredientes estén medidos en la misma unidad de capacidad. Refresco de frutas 2 gal de jugo de manzana 2 cto. de jugo de arándano rojo 1 pt de jugo de naranja 3 t de jugo de granada 48 oz líq. de agua mineral Unidad 7 Sesión 3.3 INV12_SP_BLM05_U7.indd 102 C102 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 7/1/11 1:12 PM Nombre Fecha ¿Cuántas personas? ¿Cuántos equipos? Práctica diaria Seguir el orden de las operaciones notA Los estudiantes usan el orden de las operaciones para resolver problemas. En los Problemas 1 a 4 usa el orden de las operaciones para resolver el problema. Muestra tu trabajo. 1. 20 – 4 × 9 ÷ 3 = 2. (22 – 12 + 2) ÷ (9 – 6) = 3. 10 – [(4 + 12) ÷ 8] = 4. {50 ÷ [(9 – 4) × 2]} × 7 = En los Problemas 5 a 8 pon paréntesis, corchetes y/o llaves para hacer verdadera cada ecuación. 5. 9 – 8 – 2 ÷ 2 = 6 6. 5 × 4 + 8 = 60 7. 18 ÷ 2 × 5 – 2 = 3 8. 10 – 6 – 2 + 1 ÷ 7 = 1 En el Problema 9 usa los símbolos de agrupación para escribir una ecuación que represente la situación. Luego resuelve el problema. 9.En la Escuela primaria Coolidge hay 237 estudiantes. El director quiere darle a cada estudiante un lápiz. En el almacén hay 5 paquetes con 12 lápices y 10 paquetes con 15 lápices. ¿Cuántos lápices más necesita comprar el director? Unidad 7 Sesión 4.1 INV12_SP_BLM05_U7.indd 103 C103 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 7/18/11 8:15 PM Unidad 7 INV12_SP_BLM05_U7.indd 104 C104 © Pearson Education, Inc., or its affiliates. All Rights Reserved. 5 6/17/11 1:43 PM