Unit 7

Anuncio
Unit 7
Common Core
Mathematical Practices (MP)
Domains
• Operations and Algebraic Thinking (OA)
• Number and Operations in Base Ten (NBT)
• Number and Operations – Fractions (NF)
How Many People?
How Many Teams?
INVESTIG ATION 1
Equivalence in Multiplication and Division Day
1 1.1
2
1.2
Session
Assessment: Equivalence
in Multiplication
Tripling and Thirding
SESSION FOLLOW-UP
Daily Practice and
Homework
3
1.3
Daily Practice and
Homework
CC152 1.4
Daily Practice: In addition to Student Activity Book page 4,
students complete Student Activity Book page 6 or C98
(Powers of 10 and Division) for ongoing review.
Finding Many Equivalents
SESSION FOLLOW-UP
4
Common Core Adaptation
Equivalence in Division
Daily Practice: In addition to Student Activity Book page 8,
students complete Student Activity Book page 10 or C99
(Decimal Division) for ongoing review.
Common Core Standards
MP8
5.OA.2, 5.NF.2
MP8
5.OA.2
MP3, MP8
5.OA.2, 5.NF.2
MP8
5.OA.2
UNIT 7 How Many People? How Many Teams?
INV12_TE05_U07.indd 152
6/27/11 2:50 PM
INVESTIG ATION 2
Reviewing Multiplication Strategies
Day
5 2.1­
6
2.2
Session
Multiplication Review
Multiplication Practice
SESSION FOLLOW-UP
Daily Practice and
Homework
7
2.3
8
2.4
Common Core Adaptation
U.S. Algorithm for
Multiplication
Assessment: 253 ∙ 46
Daily Practice: In addition to Student Activity Book page 18,
students complete Student Activity Book page 20 or C100
(Animal Robots) for ongoing review.
Common Core Standards
MP8
5.NBT.5
MP8
5.NBT.5
MP8
5.NBT.5
MP8
5.NBT.5
Instructional Plan INV12_TE05_U07.indd 153
CC153
6/27/11 2:50 PM
INVESTIG ATION 3
Division Strategies and Notation
Day
9 3.1
10 3.2
Session
Representing a
Division Problem
Division Notation
SESSION FOLLOW-UP
Daily Practice and
Homework
11 3.3
Daily Practice and
Homework
13 3.5
14 3.6
15 3.7
CC154 Daily Practice: In addition to Student Activity Book page 30,
students complete Student Activity Book page 32 or C101
(Long and Tall) for ongoing review.
First Steps
SESSION FOLLOW-UP
12 3.4
Common Core Adaptation
Refining Division
Strategies
Refining Division
Strategies, continued
Division: How Did I
Solve It?
Assessment: 701 ∙ 27
Daily Practice: In addition to Student Activity Book page 34,
students complete Student Activity Book page 36 or C102
(Finding Equivalent Measures) for ongoing review.
Common Core Standards
MP5, MP6
5.NBT.5, 5.NBT.6
MP6
5.NBT.5, 5.NBT.6
MP3, MP6
5.NBT.5, 5.NBT.6
MP3, MP6
5.NBT.5, 5.NBT.6
MP3, MP6
5.NBT.5, 5.NBT.6
MP3, MP6
5.NBT.5, 5.NBT.6
MP6
5.NBT.6
UNIT 7 How Many People? How Many Teams?
INV12_TE05_U07.indd 154
6/27/11 2:51 PM
INVESTIG ATION 4
Using the Operations
Day
16 4.1
Session
Field Day Refreshments
SESSION FOLLOW-UP
Daily Practice and
Homework
17 4.2
Field Day Activities
18 4.3
Field Day Problems
19 4.4
20 4.5
Field Day Problems,
continued
End-of-Unit Assessment
Common Core Adaptation
Daily Practice: In addition to Student Activity Book page 54,
students complete Student Activity Book page 57A or C103
(Following the Order of Operations) for ongoing review.
Common Core Standards
MP1
5.NBT.5, 5.NBT.6
MP1
5.NBT.5, 5.NBT.6
MP1
5.NBT.5, 5.NBT.6
MP1
5.NBT.5, 5.NBT.6
MP1, MP2
5.NBT.5, 5.NBT.6
Instructional Plan INV12_TE05_U07.indd 155
CC155
6/27/11 2:51 PM
Name
Date
How Many People? How Many Teams?
Daily Practice
Powers of 10 and Division
In Problems 1 and 2, write a division equation.
Then solve the problem.
note Students solve division
problems involving powers of 10.
1. a. How many dimes are in $5?
b. How many pennies are in $5?
2. a. How many dimes are in $68?
b. How many pennies are in $68?
Solve the following problems.
3. 4 ÷ 100 =
5. 51 ÷ 0.01 =
8. 675 ÷ 10 =
9. 192 ÷ 100 =
13. 409 ÷ 0.1 =
6. 81 ÷ 0.1 =
7. 38 ÷ 1 =
11. 7 ÷ 0.1 =
4. 7 ÷ 10 =
12. 325 ÷ 0.01 =
Unit 7 Session 1.2
INV12_BLM05_U7.indd 98
10. 2 ÷ 0.01 =
14. 650 ÷ 0.01 =
C98
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/24/11 1:27 PM
Name
Date
How Many People? How Many Teams?
Daily Practice
Decimal Division
note Students use reasoning about
division and decimals to determine the
correct quotient.
Circle the correct answer, and explain
your thinking.
1. 81.6 ÷ 16 = 5.1
51
5100
2. 7.2∙288
4
40
400
3. 66 ÷ 0.06 = 11
110
1,100
0.95
9.5
95
4. 4.2∙39.9
Solve Problems 5–8 and show your work. Use estimation and number
sense to determine the size of the answer.
5. 7∙42.7
6. 87.5 ÷ 3.5 =
7. 180 ÷ 4.5 =
8. 0.9∙31.68
Unit 7 Session 1.3
INV12_BLM05_U7.indd 99
C99
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/22/11 8:26 AM
Name
Date
How Many People? How Many Teams?
Daily Practice
Animal Robots
An inventor invented toy animal robots that
jump exactly the same distance each time
they jump.
Animal Robot
note Students solve multiplication
and division problems involving
decimal numbers.
Length of Jump
Bionic Bunny
9.2 cm
Bouncing Bug
0.88 cm
Kicking Kangaroo
24.2 cm
Leaping Lizard
4.7 cm
Solve the following problems about the animal robots’ jumps. Write an
equation and show how you solved each problem.
1. How far does the Leaping Lizard jump if it makes 12 jumps?
2. The Bouncing Bug jumped a total distance of 6.16 cm. How many
jumps did it make?
3. How far does the Kicking Kangaroo jump if it makes 41 jumps?
Unit 7 Session 2.2
INV12_BLM05_U7.indd 100
C100
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/24/11 1:28 PM
Name
Date
How Many People? How Many Teams?
Daily Practice
Long and Tall
note Students convert lengths.
1. Complete the table of bridge lengths.
(Note: 1 kilometer = 1,000 meters)
Bridge
Length in kilometers
Golden Gate Bridge
(California)
Length in meters
2,737.4 m
Jubilee Parkway
(Alabama)
12.1 km
Lake Pontchartrain
Causeway (Louisiana)
38.422 km
Royal Gorge Bridge
(Colorado)
384 m
Seven-Mile Bridge
(Florida)
10,931 m
2. Complete the table of basketball players’ heights.
(Note: 1 foot = 12 inches)
Basketball Player
Height in feet and
inches
Kareem Abdul-Jabbar
7 ft 2 in.
Kobe Bryant
79 in.
Wilt Chamberlain
7 ft 1 in.
Allen Iverson
72 in.
Oscar Robertson
6 ft 5 in.
Unit 7 Session 3.2
INV12_BLM05_U7.indd 101
Height in inches
C101
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/24/11 1:28 PM
Name
Date
How Many People? How Many Teams?
Daily Practice
Finding Equivalent
Measures
note Students convert capacities.
Circle the larger measure.
1. 18 gal
78 qt
2. 102 fl oz
13 c
3. 28 pt
48 c
4. 6 qt
10 pt
Capacity Equivalents
U.S. Standard Units
1 cup (c) = 8 fluid ounces (fl oz)
1 pint (pt) = 2 cups (c)
1 quart (qt) = 2 pints (pt)
1 gallon (gal) = 4 quarts (qt)
Rewrite the fruit punch recipe so all of the ingredients are measured
in the same unit of capacity.
Fruit Punch
2 gal apple juice 2 qt cranberry juice 1 pt orange juice 3 c pomegranate juice 48 fl oz sparkling water Unit 7 Session 3.3
INV12_BLM05_U7.indd 102
C102
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/24/11 1:29 PM
Name
Date
How Many People? How Many Teams?
Daily Practice
Following the Order of
Operations
note Students use the order of
operations to solve problems.
In Problems 1–4, use the order of operations to solve the problem.
Show your work.
1. 20 – 4 × 9 ÷ 3 =
2. (22 – 12 + 2) ÷ (9 – 6) =
3. 10 – [(4 + 12) ÷ 8] =
4. {50 ÷ [(9 – 4) × 2]} × 7 =
In Problems 5–8, insert parentheses, brackets, and/or braces to make
each equation true.
5. 9 – 8 – 2 ÷ 2 = 6
6. 5 × 4 + 8 = 60
7. 18 ÷ 2 × 5 – 2 = 3
8. 10 – 6 – 2 + 1 ÷ 7 = 1
In Problem 9, use grouping symbols to write an equation that represents
the situation. Then solve the problem.
9.There are 237 students at Coolidge Elementary School. The principal
wants to give each student a new pencil. In the storeroom, there are
5 packages of 12 pencils and 10 packages of 15 pencils. How
many more pencils does the principal need to buy?
Unit 7 Session 4.1
INV12_BLM05_U7.indd 103
C103
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/24/11 1:27 PM
Unit 7
INV12_BLM05_U7.indd 104
C104
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/20/11 12:33 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
Potencias de 10 y división
En los Problemas 1 y 2, escribe una ecuación de
división. Luego resuelve el problema.
notA Los estudiantes resuelven
problemas de división que incluyen
potencias de 10.
1. a. ¿Cuántas monedas de 10¢ hay en $5?
b. ¿Cuántas monedas de 1¢ hay en $5?
2. a. ¿Cuántas monedas de 10¢ hay en $68?
b. ¿Cuántas monedas de 1¢ hay en $68?
Resuelve los siguientes problemas.
3. 4 ÷ 100 =
4. 7 ÷ 10 =
5. 51 ÷ 0.01 =
7. 38 ÷ 1 =
6. 81 ÷ 0.1 =
8. 675 ÷ 10 =
9. 192 ÷ 100 =
11. 7 ÷ 0.1 =
12. 325 ÷ 0.01 =
13. 409 ÷ 0.1 =
Unidad 7 Sesión 1.2
INV12_SP_BLM05_U7.indd 98
10. 2 ÷ 0.01 =
14. 650 ÷ 0.01 =
C98
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/30/11 3:23 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
División decimal
notA Los estudiantes usan el
razonamiento sobre la división y
los decimales para determinar el
cociente correcto.
Encierra en un círculo la respuesta correcta y
explica tu razonamiento.
1. 81.6 ÷ 16 = 5.1
51
5,100
2. 7.2∙288
4
40
400
3. 66 ÷ 0.06 = 11
110
1,100
0.95
9.5
95
4. 4.2∙39.9
Resuelve los Problemas 5 a 8 y muestra tu trabajo. Usa la estimación y
el sentido numérico para determinar el tamaño de la respuesta.
5. 7∙42.7
6. 87.5 ÷ 3.5 =
7. 180 ÷ 4.5 =
8. 0.9∙31.68
Unidad 7 Sesión 1.3
INV12_SP_BLM05_U7.indd 99
C99
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
7/25/11 7:26 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
Animales robots
Un inventor inventó animales robots de juguete
que saltan exactamente la misma distancia
cada vez que saltan.
Animal Robot
notA Los estudiantes resuelven
problemas de multiplicación y división
que incluyen números decimales.
Longitud del salto
Conejo biónico
9.2 cm
Insecto botador
0.88 cm
Canguro pateador
24.2 cm
Lagarto saltarín
4.7 cm
Resuelve los siguientes problemas sobre los saltos de los animales
robots. Escribe una ecuación y muestra cómo resolviste cada problema.
1. ¿Qué distancia salta el lagarto saltarín si da 12 saltos?
2. El insecto botador saltó una distancia total de 6.16 cm. ¿Cuántos
saltos dio?
3. ¿Qué distancia salta el canguro pateador si da 41 saltos?
Unidad 7 Sesión 2.2
INV12_SP_BLM05_U7.indd 100
C100
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
7/18/11 8:15 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
Largo y alto
notA Los estudiantes convierten
longitudes.
1. Completa la tabla de longitudes de puentes.
(Nota: 1 kilómetro = 1,000 metros)
Puente
Longitud en
kilómetros
Longitud en metros
Puente Golden Gate
(California)
2,737.4 m
Jubilee Parkway
(Alabama)
12.1 km
Carretera elevada del
lago Pontchartrain
(Louisiana)
38.422 km
Puente Royal Gorge
(Colorado)
384 m
Puente Seven-Mile
(Florida)
10,931 m
2. Completa la tabla de alturas de jugadores de básquetbol.
(Nota: 1 pie = 12 pulgadas)
Jugador de básquetbol
Altura en pies y
pulgadas
Kareem Abdul-Jabbar
7 pies 2 pulgs.
Kobe Bryant
79 pulgs.
Wilt Chamberlain
7 pies 1 pulgs.
Allen Iverson
72 pulgs.
Oscar Robertson
6 pies 5 pulgs.
Unidad 7 Sesión 3.2
INV12_SP_BLM05_U7.indd 101
Altura en pulgadas
C101
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/30/11 3:26 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
Hallar medidas
equivalentes
notA Los estudiantes convierten
capacidades.
Encierra en un círculo la medida más grande.
1. 18 gal
78 cto.
2. 102 oz líq.
13 t
3. 28 pt
48 t
4. 6 cto.
10 pt
Equivalencias de capacidad
Unidades estándar de los EE. UU.
1 taza (t) = 8 onzas líquidas (oz líq.)
1 pinta (pt) = 2 tazas (t)
1 cuarto (cto.) = 2 pintas (pt)
1 galón (gal.) = 4 cuartos (cto.)
Vuelve a escribir la receta del refresco de frutas para que todos los
ingredientes estén medidos en la misma unidad de capacidad.
Refresco de frutas
2 gal de jugo de manzana 2 cto. de jugo de arándano rojo 1 pt de jugo de naranja 3 t de jugo de granada 48 oz líq. de agua mineral Unidad 7 Sesión 3.3
INV12_SP_BLM05_U7.indd 102
C102
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
7/1/11 1:12 PM
Nombre
Fecha
¿Cuántas personas? ¿Cuántos equipos?
Práctica diaria
Seguir el orden de las
operaciones
notA Los estudiantes usan el orden de
las operaciones para resolver problemas.
En los Problemas 1 a 4 usa el orden de las operaciones para resolver el
problema. Muestra tu trabajo.
1. 20 – 4 × 9 ÷ 3 =
2. (22 – 12 + 2) ÷ (9 – 6) =
3. 10 – [(4 + 12) ÷ 8] =
4. {50 ÷ [(9 – 4) × 2]} × 7 =
En los Problemas 5 a 8 pon paréntesis, corchetes y/o llaves para hacer
verdadera cada ecuación.
5. 9 – 8 – 2 ÷ 2 = 6
6. 5 × 4 + 8 = 60
7. 18 ÷ 2 × 5 – 2 = 3
8. 10 – 6 – 2 + 1 ÷ 7 = 1
En el Problema 9 usa los símbolos de agrupación para escribir una
ecuación que represente la situación. Luego resuelve el problema.
9.En la Escuela primaria Coolidge hay 237 estudiantes. El director quiere
darle a cada estudiante un lápiz. En el almacén hay 5 paquetes con
12 lápices y 10 paquetes con 15 lápices. ¿Cuántos lápices más
necesita comprar el director?
Unidad 7 Sesión 4.1
INV12_SP_BLM05_U7.indd 103
C103
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
7/18/11 8:15 PM
Unidad 7
INV12_SP_BLM05_U7.indd 104
C104
© Pearson Education, Inc., or its affiliates. All Rights Reserved. 5
6/17/11 1:43 PM
Descargar