Una estación meteorológica es una instalación destinada a medir y registrar regularmente diversas variables meteorológicas. Estos datos se utilizan tanto para la elaboración de predicciones meteorológicas a partir de modelos numéricos como para estudios climáticos. Instrumentos y variables medidas Los instrumentos comunes y variables que se miden en una estación meteorológica incluyen: Los instrumentos comunes y variables que se miden en una estación meteorológica incluyen: Termómetro, medida de temperaturas, en diversas horas del día. Termómetros de subsuelo (geotermómetros), para medir la temperatura a 5, 10, 20, 50 y 100 cm de profundidad. Termómetro de mínima junto al suelo, mide la temperatura mínima a una distancia de 15 cm sobre el suelo. Termógrafo, mide la fluctuación de la temperatura. Barómetro, medida de presión atmosférica en superficie. Pluviómetro, medida de la cantidad de precipitación. Psicrómetro o higrómetro, medida de la humedad relativa del aire y la temperatura del punto de rocío. Piranómetro, medida de la radiación solar global (directa + difusa). Heliógrafo, medida de las horas de luz solar. Anemómetro, medida de la velocidad del viento y veleta para registrar su dirección. Veleta, que indica la dirección del viento. Nefobasímetro, medida de la altura de las nubes, pero sólo en el punto donde éste se encuentre colocado. La mayor parte de las estaciones meteorológicas están automatizadas (E.M.A.) requiriendo un mantenimiento ocasional. Además, existen observatorios meteorológicos sinópticos, que sí cuentan con personal (observadores de meteorología), de forma que además de los datos anteriormente señalados se pueden recoger aquellos relativos a nubes (cantidad, altura, tipo), visibilidad y tiempo presente y pasado. La recogida de estos datos se denomina observación sinóptica. Para la medida de variables en mares y océanos se utilizan sistemas especiales dispuestos en boyas meteorológicas. Otras instalaciones meteorológicas menos comunes disponen de instrumental de sondeo remoto como radar meteorológico para medir la turbulencia atmosférica y la actividad de tormentas, perfiladores de viento y sistemas acústicos de sondeo de la estructura vertical de temperaturas. Alternativamente, estas y otras variables pueden obtenerse mediante el uso de globos sonda. En todo caso la distribución irregular de estaciones meteorológicas y la falta de ellas en grandes regiones, como mares y desiertos, dificulta la introducción de los datos en modelos meteorológicos y complica las predicciones de mayor alcance temporal. Termómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Termómetro clínico de cristal. Termómetro clínico digital. El termómetro es un instrumento de medición de temperatura. Desde su invención ha evolucionado mucho, principalmente a partir del desarrollo de los termómetros electrónicos digitales. Inicialmente se fabricaron aprovechando el fenómeno de la dilatación, por lo que se prefería el uso de materiales con elevado coeficiente de dilatación, de modo que, al aumentar la temperatura, su estiramiento era fácilmente visible. El metal base que se utilizaba en este tipo de termómetros ha sido el mercurio, encerrado en un tubo de vidrio que incorporaba una escala graduada. El creador del primer termoscopio fue Galileo Galilei; éste podría considerarse el predecesor del termómetro. Consistía en un tubo de vidrio terminado en una esfera cerrada; el extremo abierto se sumergía boca abajo dentro de una mezcla de alcohol y agua, mientras la esfera quedaba en la parte superior. Al calentar el líquido, éste subía por el tubo. La incorporación, entre 1611 y 1613, de una escala numérica al instrumento de Galileo se atribuye tanto a Francesco Sagredo1 como a Santorio Santorio2 , aunque es aceptada la autoría de éste último en la aparición del termómetro. Barómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Dibujo esquemático de un barómetro. Un barómetro es un instrumento que mide la presión atmosférica. La presión atmosférica es el peso por unidad de superficie ejercida por la atmósfera. Los primeros barómetros estaban formados por una columna de líquido encerrada en un tubo cuya parte superior está cerrada. El peso de la columna de líquido compensa exactamente el peso de la atmósfera. Los primeros barómetros fueron realizados por el físico y matemático italiano Evangelista Torricelli en el siglo XVII. La presión atmosférica equivale a la altura de una columna de agua de unos 10 m de altura. En los barómetros de mercurio, cuya densidad es 13.6 veces mayor que la del agua, la columna de mercurio sostenida por la presión atmosférica al nivel del mar en un día despejado es de aproximadamente unos 760 mm. Los barómetros son instrumentos fundamentales para medir el estado de la atmósfera y realizar predicciones meteorológicas. Las altas presiones se corresponden con regiones sin precipitaciones, mientras que las bajas presiones son indicadores de regiones de tormentas y borrascas. La unidad de medida de la presión atmosférica que suelen marcar los barómetros se llama hectopascal, de abreviación (hPa). Esta unidad significa "cien (hecto) pascales (unidad de medida de presión) " [editar] Tipos de barómetros Barógrafo. El barómetro aneroide es un barómetro que no utiliza mercurio. Indica las variaciones de presión atmosférica por las deformaciones más o menos grandes que aquélla hace experimentar a una caja metálica de paredes muy elásticas en cuyo interior se ha hecho el vacío más absoluto. Se gradúa por comparación con un barómetro de mercurio pero sus indicaciones son cada vez más inexactas por causa de la variación de la elasticidad del resorte metálico. Fue inventado por Lucien Vidie en 1844.1 Los altímetros barométricos utilizados en aviación son esencialmente barómetros con la escala convertida a metros o pies de altitud. Del barómetro se deriva un instrumento llamado barógrafo, que registra las fluctuaciones de la presión atmosférica a lo largo de un periodo de tiempo mediante una técnica muy similar a la utilizada en los sismógrafos. Pluviómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Vista exterior de un pluviómetro. El pluviómetro es un instrumento que se emplea en las estaciones meteorológicas para la recogida y medición de la precipitación . La cantidad de agua caída se expresa en milímetros de altura. El diseño básico de un pluviómetro consiste en un recipiente de entrada, llamado balancín, por donde el agua ingresa a través de un embudo hacia un colector donde el agua se recoge y puede medirse visualmente con una regla graduada o mediante el peso del agua depositada. Asimismo, el balancín oscila a volumen constante de agua caída, permitiendo el registro mecánico o eléctrico de la intensidad de lluvia caída. El pluviómetro ha sido diseñado para también estar soportado sobre la superficie de la tierra... Normalmente la lectura se realiza cada 10 horas. Un litro caído en un metro cuadrado alcanzaría una altura de 1 milímetro. Para la medida de nieve se considera que el espesor de nieve equivale aproximadamente a diez veces el equivalente de agua. Psicrómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Psicrómetro de Asmann de circulación forzada. Un psicrómetro es un aparato utilizado en meteorología para medir la humedad o contenido de vapor de agua en el aire, distinto a los higrómetros corrientes. Los psicrómetros constan de un termómetro de bulbo húmedo y un termómetro de bulbo seco. La humedad puede medirse a partir de la diferencia de temperatura entre ambos aparatos. El húmedo medirá una temperatura inferior producida por la evaporación de agua. Es importante para su correcto funcionamiento que el psicrómetro se instale aislado de vientos fuertes y de la luz solar directa. Psicrómetro giratorio, también llamado de honda o de eslinga. Piranómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Fotografía de un piranómetro, mostrando sus componentes principales: cúpula de cristal, cuerpo metálico, sensor negro, nivel y cable. Dimensiones: diametro de la cúpula 20 mm. La foto muestra el modelo LP02. Fotografía de un piranómetro. Diametro de la cúpula 40 mm. La foto muestra el modelo SR11. Un piranómetro (también llamado solarímetro y actinómetro) es un instrumento meteorológico utilizado para medir de manera muy precisa la radiación solar incidente sobre la superficie de la tierra. Se trata de un sensor diseñado para medir la densidad del flujo de radiación solar (vatios por metro cuadrado) en un campo de 180 grados. Heliógrafo (meteorología) De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda El heliógrafo es un aparato meteorológico que mide la duración de la insolación diaria. La duración de la insolación se halla concentrando los rayos solares sobre una banda de cartulina teñida de azul que se quema en el punto en que se forma la imagen del sol. Se utiliza como focalizador una esfera de cristal, de forma que no es necesario mover este foco constantemente debido al movimiento aparente del sol a lo largo del día y del estacionario. La banda se fija por medio de ranuras a un soporte curvo y concéntrico con la esfera y tiene impresa una escala de 30 minutos. Si el sol luce durante todo el día sobre la banda se forma una traza carbonizada continua y la duración de la insolación se determina midiendo la longitud de la traza carbonizada. Si el sol brilla de forma discontinua, dicha traza es intermitente. En este caso, la insolación se determina sumando la longitud de las trazas resultantes. Bandas Según la época del año se utilizan tres tipos distintos de bandas, para el hemisferio norte: a) Desde comienzos de marzo hasta mediados de abril y desde comienzos de septiembre hasta mediados de octubre (alrededor de cada equinoccio) se utilizan bandas rectas. Son llamadas bandas equinocciales y se acoplan a las ranuras centrales del soporte. b) Desde octubre hasta fin de febrero se utilizan bandas curvadas cortas, que se colocan en las ranuras superiores. c) El resto del año, de abril hasta agosto, se usan bandas curvadas medianas, colocadas entre las ranuras inferiores. En el hemisferio sur se invierte el uso de las bandas en los períodos definidos arriba. Instalación Para que los rayos de sol alcancen el aparato sin impedimento alguno durante todo el día, éste se debe colocar orientado a mediodía. Se colocará con su base completamente firme y nivelada con una altura de un metro, sin alteración por influjo de temperatura, humedad, viento y trepidación. Se recomienda la sustentación de piedra fija, obras de fábrica fijas o metal. La esfera está montada concéntricamente dentro de un casquete esférico, sobre la que se coloca la cartulina. Las dimensiones del casquete y la esfera son tales que los rayos formen un foco muy intenso sobre la cartulina. La esfera se fija en un soporte cóncavo, hacia arriba, de forma esférica por medio de un par de tornillos. A la hora de colocar el aparato en su soporte hay que tener en cuenta dos ajustes: a) el casquete se debe colocar de forma que la línea media en sentido longitudinal de la banda equinoccial se halle en el plano del ecuador celeste. Para ello, haremos coincidir la latitud del lugar donde nos encontramos en la escala de latitudes de su montura con la marca situada a tal efecto. b) El plano vertical que contiene al centro de la esfera y a la señal de mediodía debe coincidir con el plano meridiano geográfico. Para comprobar este ajuste debemos comprobar que la imagen del sol al mediodía verdadero coincide con la marca de las 12 horas de la banda. Anemómetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Anemómetro de molinete. El anemómetro es un aparato meteorológico que se usa para la predicción del tiempo y, específicamente, para medir la velocidad del viento.(No siempre es exacto a menos que sea un anemómetro digital) En meteorología, se usan principalmente los anemómetros de cazoletas o de molinete, especie de diminuto molino cuyas tres aspas se hallan constituidas por cazoletas sobre las cuales actúa la fuerza del viento; el número de vueltas puede ser leído directamente en un contador o registrado sobre una banda de papel (anemograma), en cuyo caso el aparato se denomina anemógrafo. Aunque también los hay de tipo electrónicos. Para medir los cambios repentinos de la velocidad del viento, especialmente en las turbulencias, se recurre al anemómetro de filamento caliente, que consiste en un hilo de platino o níquel calentado eléctricamente: la acción del viento tiene por efecto enfriarlo y hace variar así su resistencia; por consiguiente, la corriente que atraviesa el hilo es proporcional a la velocidad del viento. [editar] Anemómetro Láser Doppler Este anemómetro digital usa un láser que es dividido y enviado al anemómetro. El retorno del rayo láser decae por la cantidad de moléculas de aire en el detector, donde la diferencia entre la radiación relativa del láser en el anemómetro y el retorno de radiación, son comparados para determinar la velocidad de las moléculas de aire.1 Dibujo de un anemómetro láser. El láser es emitido (1) a través de la lente frontal (6) del anemómetro y es sosegado por las moléculas de aire. La radiación retrodispersada (puntos) reentra y el efecto reflejado se dirige a ese detector (12). Veleta De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Para otros usos de este término, véase Veleta (desambiguación). Una imagen CGI representando una antigua estación meteo. Una veleta con forma de gallo. Una veleta es un dispositivo giratorio que consta de una placa plana vertical que gira libremente, un señalador que indica la dirección del viento y una cruz horizontal que indica los puntos cardinales. Se ubica generalmente en lugares elevados y su diseño puede ser muy variado (figuras de animales, antropomorfas, etc). De esta ingeniosa idea tomaron sin duda origen nuestras veletas o giraldillas en forma de cometa, de gallo, de matrona, etc. Antiguamente,era en forma de estatuas destinadas a conocer la dirección de los vientos giraldas o giraldillas porque giran al impulso de éstos. La más célebre de éstas es sin duda la de Sevilla de cuya figura tomó la torre sobre la que se hallaba el nombre de Giralda.1 Nefobasímetro De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda Cielómetro laser. Un nefobasímetro o proyector de techo de nubes1 (también llamado ceilómetro o cielómetro por influencia del inglés ceilometer) es un aparato que usa un láser u otra fuente luminosa para determinar la altura de la base de nubes. Los nefobasímetros también tienen aplicación para medir concentraciones de aerosoles dentro de la atmósfera tales como materias sólidas finas contaminanetes. Nefobasímetro laser Consiste en un láser apuntando verticalmente, y un receptor en el mismo lugar. Determina la altura nubosa midiendo el tiempo (δt) requerido para que un pulso de luz rebotado en los aerosoles dentro de la atmósfera, reingrese al aparato. donde c es la velocidad de la luz en el aire. Generalmente, el tamaño de las partículas en cuestión son similares en tamaño a la longitud de onda del láser. Esta situación opera con la teoría de Lorenz-Mie. Para propósitos de determinar la base nubosa, debe tenerse en cuenta que el nefobasímetro captura cualquier partícula en el aire (polvo, precipitaciones, humo, etc.), dando falsas lecturas ocasionales. Como ejemplo, dependiendo del umbral empleado, unos cristales de hielo en caída pueden causar que el nefobasímetro dé una altura de nube de cero, aunque el cielo esté despejado. Usando esas últimas propiedades, los nefobasímetros tienen otros usos. Así como el instrumento anota cualquier retorno, es posible localizar capas apenas perceptibles, adicionalmente a la base nubosa, por observación al patrón completo de la energía de retorno. Más aún, la tasa a la cual ocurre la difusión puede registrase en la parte de retorno disminuída al nefobasímetro en atmósfera diáfana, dando el coeficiente de extinción de la señal luminosa. Usándolo así puede obtenerse la visibilidad vertical y la posible concentración de polucionantes del aire. Esto ha sido desarrollado en investigaciones y ya se aplica operacionalmente. Satélites meteorológicos Artículo principal: Satélite meteorológico Los satélites meteorológicos son un tipo de satélite artificial utilizados para supervisar el tiempo atmosférico y el clima de la Tierra, aunque también son capaces de ver las luces de la ciudad, incendios forestales, contaminación, auroras, tormentas de arena y polvo, corrientes del océano, etc. Otros satélites pueden detectar cambios en la vegetación de la Tierra, el estado del mar, el color del océano y las zonas nevadas. El fenómeno de El Niño y sus efectos son registrados diariamente en imágenes satelitales. El agujero de ozono de la Antártida es dibujado a partir de los datos obtenidos por los satélites meteorológicos. De forma agrupada, los satélites meteorológicos de China, Estados Unidos, Europa, Canadá, India, Japón y Rusia proporcionan una observación casi continua del estado global de la atmósfera. La previsión del tiempo Mapa sinóptico de Estados Unidos para el 21 de octubre de 2006. Varias veces por día, a horas fijas, los datos procedentes de cada estación meteorológica, de los barcos y de los satélites llegan a los servicios regionales encargados de centralizarlos, analizarlos y explotarlos, tanto para hacer progresar a la meteorología como para establecer previsiones sobre el tiempo clave que hará en los días venideros. Como las observaciones se repiten cada 3 horas (según el horario sinóptico mundial) la sucesión de los mapas y diagramas permite apreciar la evolución sinóptica: se ve cómo las perturbaciones se forman o se resuelven, si están subiendo o bajando la presión y la temperatura, si aumenta o disminuye la fuerza del viento o si cambia éste de dirección, si las masas de aire que se dirigen hacia tal región son húmedas o secas, frías o cálidas, etc. Parece así bastante fácil prever la trayectoria que seguirán las perturbaciones y saber el tiempo que hará en determinado lugar al cabo de uno o varios días. En realidad, la atmósfera es una gigantesca masa gaseosa tridimensional, turbulenta y en cuya evolución influyen tantos factores que uno de éstos puede ejercer de modo imprevisible una acción preponderante que trastorne la evolución prevista en toda una región. Así, la previsión del tiempo es tanto menos insegura cuando menor es la anticipación y más reducido el espacio a que se refiere. Por ello la previsión es calificada de micrometeorológica, mesometeorológica o macrometeorológica, según se trate, respectivamente, de un espacio de 15 km, 15 a 200 km o más de 200 km. Las previsiones son formuladas en forma de boletines, algunos de los cuales se destinan a la ciudadanía en general y otros a determinados ramos de la actividad humana y navegación aérea y marítima, agricultura, construcción, turismo, deportes, regulación de los cursos de agua, ciertas industrias, prevención de desastres naturales, etc.