8 Soluciones a las actividades de cada epígrafe PÁGINA 183 Pág. 1 ^ ^ ^ 2 En el triángulo ABC, A = 33° y C = 90°. En el triángulo A'B'C', B' = 57° y ^ C ' = 90°. Explica por qué son semejantes. ^ Los ángulos de un triángulo suman 180°, por lo que, en el triángulo ABC, B = 57°. Así, ABC y A'B'C' tienen un ángulo agudo igual y otro recto, y, por tanto, son semejantes. 3 Demuestra que los triángulos ABC, AHB y BHC son semejantes, comprobando que sus lados son proporcionales. B 136 A 64 120 H 255 225 C ABC – ABH 8 AB = 2,125 = AC = BC AH AB BH ) ABC – BHC 8 AB = 1,13 = AC = BC BH BC HC Como la semejanza es una relación de equivalencia y ABH es semejante a ABC, que es semejante a BHC, entonces ABH es semejante a BHC. 4 Explica por qué dos triángulos rectángulos isósceles son semejantes. Si es rectángulo e isósceles, sus catetos son iguales y, por tanto, son triángulos semejantes. 5 Explica por qué los triángulos adjuntos son semejantes. 28,8 cm 12 cm 12 cm 5 cm Porque sus catetos son proporcionales: 28,8 = 12 = 2,4 12 5 Unidad 8. Teorema de Pitágoras. Semejanza