กก 1 1. sin 214π cos( 34π π) + cos 214π sin( 34π π) ! ก ก !!" A = 214π , B = 34π π #$%% & sin A ⋅ cos B + cos A ⋅ sin B '()!#ก% sin (A + B) *+ sin 214π cos ( 34π π) + cos 214π sin ( 34π π) = sin ( 214π + 34π π) = sin (6π π) = sin 5π = 0 2. cot ( π4 2π) ⋅ sec ( 23π π2 ) ⋅ tan (arctan 1) ! -)ก cot ( π4 2π) ⋅ sec ( 23π π2 ) ⋅ tan (arctan 1) = cot (2π π4 ) ⋅ sec π6 = cot π4 ⋅sec π6 = 1⋅ 2 = 2 3. ' #)ก% 18.84 (ก23 π ≈ 3.14) ! ก% sin 18.84 -)ก sin 18.84 = sin (6 ⋅ 3.14) = sin 6π = 0 "# ก. "# ก. 4. 4 56ก7 f(x) = 3 sin x2 + 4 cos x2 37 0 < x ≤ π d du (ก23 dud (cos u) = sin u ⋅ du dx $ du (sin u) = cos u ⋅ dx ) ! 68#37!-)4*9 56ก7!7$ก $ก 4*9%() f′(x) = 23 cos x2 2 sin x2 3 f′(x) = 0 23 cos x2 2 sin x2 = 0 3 cos x2 4 sin x2 = 0 tan x2 = 43 = tan 37° x = 37° 2 x = 74° $ x ก3 f(x) f(74°) = 3 sin 37° + 4 cos 37° = 3 ⋅ 35 + 4 ⋅ 45 = 95 + 165 = 5 5. "# %. ; θ ∈ (0, π2 ] $ sin θ cos θ = 15 tan θ ⋅ sec θ ! #&ก<= ก$ก!ก#ก=!""!7- กก<=#ก=!"" 23 ก"&%%!ก# sin θ cos θ = 15 -----(1) sin2θ + cos2θ = 1 -----(2) *"=!ก (1) ? sin θ = cos θ + 15 -----(3) $ก!ก (3) 3!ก (2) (cos θ + 15 )2 + cos2θ = 1 cos2θ + 25 cos θ + 251 + cos2θ = 1 2 cos2θ + 25 cos θ 24 25 = 0 50 cos2θ + 10 cos θ 24 = 0 2 2 !ก 25 cos2θ + 5 cos θ 12 = 0 (5 cos θ + 4)(5 cos θ 3) = 0 cos θ = 45 , 35 $ θ ∈ (0, π2 ] *+#)&!#*##- cos θ = 35 2#)# !#)!!4!+ก# 5 θ 3 ก tan θ = 43 $ sec θ = 53 *+ tan θ ⋅ sec θ = 43 ⋅ 53 = 209 6. tan 380° !-) tan 20° ! -)ก tan 380° = = = = 0.3640 tan (360° + 20°) tan 20° 0.3640 "# ก. "# %. 7. ; A $ B 37 [ π2 , π] cos2B + sin2A !#!ก#)4 ! #B! $3?'!"ก กกBก %ก π % 2 (0, 1) A, B 37# π ( 1, 0) *"= ?7 ; A, B 37 ( π2 , π) !!##)23 cos2B + sin2A !#4 $#)23 cos2B + sin2A !#4- π2 - π *"=ก=## ก=##) 1 ; A = B = π2 cos2 π2 + sin2 π2 = 1 ก=##) 2 ; A = π2 , B = π cos2π + sin2 π2 = 2 ก=##) 3 ; A = π, B = π2 cos2 π2 + sin2π = 0 ก=##) 4 ; A = B = π cos2π + sin2π = 1 ?4 cos2B + sin2A = 2 "# %. 8. ;$%ก!()ก& 6 ก $#ก'ก ;#%'ก() *-#) 'กก ! -)กก!()!#*-#)ก% π !-)$%ก!#ก& 6 ก $(!#*-#)ก% π6 "# ก. 9. ก23 f(x) = cos2 x2 sin2 x2 , g(x) = x + c $ 0 < x ≤ π, c &2"%ก3 ; fog(c) = 1 $ 3&!%" 56ก7 g ก ! ก cos2 x2 sin2 x2 = cos x f(x) = cos x -)ก fog(x) = f(g(x)) = f(x + c) = = = = = *+ fog(c) $ก2fog(c) cos 2c )- c cos(x + c) cos (c + c) = cos 2c 1 1 = cos π π 2 $ g(x) = x + π2 *"=-ก$ ก ก. !-)$ y = 0 x = π2 )-4$ก X - ( π2 , 0) !37 ( π2 , 0) $ ก. B" ก . ก5# A x=2 C B y = x + π2 ? AB ก% 2 + π2 $ BC ก% 2 + π2 7ก *+*-#)G!ก5 56ก7 g, x = 2 $$ก X !#ก% = 12 ⋅ (2 + π2 )(2 + π2 ) = 12 ⋅ (2 + π2 )2 $ . ;ก "# ". 10. H ก()!##2!4! 45° $ 60° ก%$%!2% ;# ()'()2!4! 60° ก% 45 ! ! ##ก() ! ! !#)3!# A 45 ! 60° D 45° B C *"=!#)! ADB ? AB = 45 ⋅ sin 60° = 452 3 *"=#)!#)! ABC ก??7#ก AC = AB cosec 45° *+ AC = 452 3 ⋅ 2 = 452 6 "# %. 2 1. ก$BB()ก$ก %; !7 '() กกก 7 #ก! $%ก% 15 ! $-)ก ก()ก#กก()ก% 5 ! ก$ # %;&ก#)!#)!23ก"4%"4ก3(ก (ก23 tan 18.20 = 0.3288, tan 18.30 = 0.3307, sin 18.20 = 0.3123, sin 18.30 = 0.3140) ! ! !#)3! 5 ! θ 15 ! ?!4!#)$%#)4#)23*-)!3ก!#ก% arctan(0.33) $ก!4! θ ก#%%88" tan #) (0.3307 0.3288) = 0.0019 !4!#) 0.10 tan #) (0.3307 0.33) = 0.0007 !4!#) (0.10)(0.0007) = 0.037 0.0019 !4! θ #)กก% 18.20 + 0.037 = 18.237 *"=ก *%#)- sin 18.237 37"9##ก%ก tan -ก#%%88" # !4!#) 18.30 18.20 = 0.10 sin #) 0.3140 0.3123 = 0.0017 = 0.001 !4!#) 18.30 18.237 = 0.063 sin #) (0.0017)(0.063) 0.10 sin 18.237 = 0.3123 + 0.001 = 0.3133 #)#)4#) %;3 !7 $!ก"4%"4ก 5 = sin18.237 = 15.96 ! "# ก *-)!?3ก$ก68 # %37"9# Iกก?'()ก?B*9 3ก#ก (B!2=!= 15.81 !) 2. - A ก- B 90 ! ก4#)- A ก-!;!? #)"! !4! 60° $ก4#)- B !;!? #ก#!4! 30° กก*-ก3 ! ก$ก #;ก?!?687") ( C h ! 60° D y ! A 30° 90 ! B !!" # (CD) h ! $ DA y ! *"=#)!#)! CDA h = y tan 60° = y 3 -----(1) *"=#)!#)! CDB h = (y + 90) tan 30° = 1 (y + 90) -----(2) 3 ? (1) = (2_ )- 1 (y + 90) = y 3 3 y = 45 DA 45 ! $3!ก (1) ก? #ก*-" ก% 45 3 ! 3. ก %; (" $()'()2!4! 10° ก%$% !-);-) x ! กJ" 2!4! 15° ก%$% !-) % 60 !ก?;(44 " = 4ก %ก*- 150 ! x (ก23 sin 10° = 0.174, sin 15° = 0.259) ! H**-)2;ก=!#)ก23# D 60 ! 150 ! 15° E C x ! 10° F A B *"=!#)! DEC *% DE = 60 sin 15° = 60 × 0.259 = 15.54 *+ EF = DF DE = 150 15.54 = 134.46 = CA *"=#)!#)! CAB *% CA = x sin 10° x = CA = 134.46 0.174 = 772.76 ! sin10