Basic Formulas K d2 Ha 1. 2. 3. 4. 5. 6. 7. 14. 15. 17. 18. 20. 22. 23. 24. 1 x ln b ab sin ax dx = − cos ax a cos ax dx = sin ax a tan ax dx = ln|cos ax| a u dv = uv − v du 10. sin(2x) = 2 sin(x) cos(x) 11. cos(2x) = 2 cos2 (x) − 1 12. tan(x) = 1−cos(2x) sin(2x) 13. a sin(x) + b cos(x) = √ a2 + b2 sin(x + tan−1 ab ) Rational Functions x−a x x b dx 1 1 26. dx = − ln |ax + b| = + ln ax+b a a2 x2 (x2 −a2 ) a2 x 2a3 x+a x+a x2 2 2 2 x x 1 x bx 3b dx = − ln 27. dx = − − + 2 2 2 2 2 2 3 (x −a ) 2(a −x ) 4a x−a ax+b 2a a a dx 28. x2 +ax+b = b2 a3 ln |ax + b| ⎧ dx −1 2 2x+a ⎪ −1 √ √ ⎪ tan if 4b > a2 (ax+b)2 = a(ax+b) ⎪ 4b−a2 ⎨ 4b−a2 x −1 b 1 if 4b = a2 x+a/2 (ax+b)2 dx = a2 (ax+b) + a2 ln |ax + b| ⎪ ⎪ 2 2x+a−√ ⎪ 1 √a −4b if 4b < a2 √ ⎩ x2 ln 2 2 2 ax+b b a −4b 2x+a+ a −4b (ax+b)2 dx = a3 − a3 (ax+b) − 2 x 1 + 2b x 29. dx = ln + ax + b x2 +ax+b 2 a3 ln |ax + b| x dx ⎧ 1 a 2x+a = ln −1 √ √ ⎪ x(ax+b) b ax+b tan if 4b > a2 ⎪ 4b−a2 4b−a2 ⎨ ax+b 1 dx a a − if 4b = a2 = ln 2x+a x2 (ax+b) b2 x bx ⎪ √ ⎪ ⎩ √−a ln 2x+a−√a2 −4b if 4b < a2 ax+b dx 2a 2ax+b 2 a2 −4b 2x+a+ a2 −4b − b2 x(ax+b) x2 (ax+b)2 = b3 ln x 2 dx 2 1 x x2 a + = ln 2 2 2 2 2 30. dx = x − ln x + ax + b x(x +a ) 2a x +a x2 +ax+b 2 ⎧ dx −1 1 −1 x 2 = − tan 2x+a a −2b −1 ⎪ 2 2 2 2 3 √ √ x (x +a ) a x a a if 4b > a2 tan ⎪ ⎪ 4b−a2 4b−a2 ⎪ ⎨ x2 1 x −1 x −a2 − dx = tan if 4b = a2 (x2 +a2 )2 2a a 2(x2 +a2 ) 4x+2a ⎪ ⎪ ⎪ dx 2 2 2x+a−√ ⎪ a2 −4b a2 −2b 1 x −a ⎩ √ √ ln 2x+a+ a2 −4b if 4b < a2 x(x2 −a2 ) = 2a2 ln x2 2 a2 −4b 1 m 25. abx dx = 9. sin2 (x) = 1 − cos2 (x) co 21. = a1 ln |ax + b| 8. sin(x) = cos(x − π2 ) w. 19. dx ax+b a n+1 n+1 x no 16. axn dx = 31. x2 +2ax+a2 = ln x2 −ax+a2 + 1 6a2 33. K d2 Ha dx x3 +a3 √1 3a2 32. tan x x3 +a3 √1 3a tan 2x−a √ 3a −1 34. 35. 2x−a √ 3a = dx x4 +a4 √1 2 2a3 x2 −ax+a2 1 dx = 6a ln x2 +2ax+a2 + −1 tan x x4 +a4 √1 4 2a3 −1 dx = x2 x4 +a4 √ 2 √ x +√2ax+a2 ln x2 − 2ax+a2 + 2a a2 −x2 −1 2a2 tan −1 2 a x2 2 √ x −√2ax+a2 ln x2 + 2ax+a2 + √1 4 2a dx = √ 2a √1 tan−1 a2 −x2 2 2a Square Roots √ 2 ax + b dx = 3a (ax + b)3/2 √ dx 37. √ax+b = a2 ax + b √ 3/2 38. x ax + b dx = 6ax−4b 15a2 (ax + b) √ x 39. √ax+b dx = 2ax−4b ax + b 2 3a 36. ax+b x = √dx x ax+b 44. 47. √ √ x a x +b = √ 2 x a dx = x a − − 2b a2 + 2b2 √ x a3 − ln |a x + b| 2b x a2 + 2 2b a3 √ x2 + a2 dx = 12 x x2 + a2 + √ ln x + x2 + a2 √ √ 48. x2 − a2 dx = 12 x x2 − a2 − a2 2 √ ln x + x2 − a2 √ √ a2 − x2 dx = 12 x a2 − x2 + √ 50. x2 x2 + a2 dx = 49. √ √ √ a2 2 2(as−br) u2 dx = 2 2 rx+s r (u −a/c)2 du where u = ax+b rx+s , see eqs. 24 & 27 √dx a x +b bx a2 2x3 +a2 x 8 51. ln |a x + b| 2 x2 + a2 − √ x2 x2 − a2 dx = 2x3 −a2 x 8 √ √ √ a4 8 a2 2 sin−1 xa √ ln x + x2 + a2 √ ln x + x2 − a2 m 43. − √ ln |a x + b| √ 46. x + a x + b dx = √ 2 a√ 2b a2 x − x + − x + b)3/2 − (x + a 3 6 3 4 √ √ a3 a ab − 4 ln x + 2 + x + a x + b ax+b 2 3/2 3a x co ⎧ √ √ ax+b − 1 ⎪ ⎨ √b ln √ax+b +√bb if b > 0 ⎪ ax+b ⎩ √2 tan−1 if b < 0 −b −b 42. dx = w. 41. √ √x a x +b 2b3 a4 √ dx = 2 ax + b + ⎧√ √ √ax+b −√ b ⎪ ⎨ b ln ax+b +√b if b > 0 √ ⎪ ax+b ⎩−2 −b tan−1 if b < 0 −b no 40. 45. x 2 − a2 − a4 8 52. √ x2 a2 − x2 dx = x K d2 Ha √ 63. 2x3 −a2 x 8 √x2 +a2 x 4 a2 − x2 + a8 sin−1 √ 53. dx = x2 + a2 − √ a+ x2 +a2 a ln x 54. 55. 56. √ √ √ x2 −a2 x a2 −x2 x dx = dx = √ a+ a2 −x2 a ln x x2 +a2 x2 √ √ dx = − x a2 − x 2 − √ x2 +a2 x + x2 −a2 x + √ ln x + x2 + a2 √ x2 −a2 x2 dx = − √ √ ln x + x2 − a2 58. 59. 61. 62. a 2 a2 −x2 x2 √ dx x2 +a2 √ dx x2 −a2 √ dx a2 −x2 2 √ x 2 x +a2 √ 2 2 dx = − a x−x − sin−1 √ = ln x + x2 + a2 √ = ln x + x2 − a2 = sin−1 xa √ dx = 12 x x2 + a2 − √ ln x + x2 + a2 √ ln x + x2 − a2 √ dx = 12 x a2 − x2 + √ a+ x2 +a2 dx −1 √ 65. x x2 +a2 = a ln x 66. x√xdx2 −a2 = a1 sec−1 xa √ 2 −x2 a+ a dx −1 67. x√a2 −x2 = a ln x √ − x2 +a2 dx √ 68. x2 x2 +a2 = a2 x √ 2 2 dx √ 69. x2 x2 −a2 = xa2−a x √ − a2 −x2 dx √ 70. x2 a2 −x2 = a2 x √ x 2 2 71. x+√dx = 2a2 x + a − x2 +a2 64. 2 √ x 2 a −x2 x2 2a2 x a 72. + 12 ln(x + √dx x+ x2 −a2 x2 2a2 a2 2 sin−1 x a √ x 2 + a2 ) √ −x = 2a x 2 − a2 + 2 + 12 ln(x + √ x2 − a2 ) √ 73. x+√dx = ln(x + a2 − x2 ) − a2 −x2 1 1 2 2 −1 √ x 4 ln |2x − a | + 2 tan a2 −x2 74. √dx a+ a2 −x2 tan −1 = √ x a2 −x2 √ a2 −x2 x − + a x co 2 √ √ dx = 12 x x2 − a2 + w. 60. a 2 √ x 2 x −a2 no 57. a2 2 a x2 − a2 − a sec−1 3 m Natural Logarithms dx n+1 xn+1 78. , n = 1 75. xn ln x dx = x n+1ln x − (n+1) 2 x ln x = ln |ln x| x ln x 1 ln x 79. dx = ln x − ln |x + a| 1 2 (x+a)2 a x+a 76. x dx = 2 (ln x) 80. (ln x)2 dx = x[(ln x)2 − 2 ln x + 2] (ln x)m m+1 x) 77. dx = (lnm+1 , m = −1 x 81. √ ln(a x + b) dx = 85. K d2 Ha 83. ln(x + + x2 a2 ) dx = − √ x2 + √ a2 87. x 2 − a2 ) ln(a + x ln(a + + 88. √ √ a2 − x2 ) dx = x + a2 − x2 ) − a sin−1 x a ln(x3 + a3 ) dx = x ln(x3 + a3 ) − x + x2 +2ax+a2 √ a −1 √2x 3a tan 2 ln x2 −ax+a2 + 3a no √ x2 − a2 ) dx = 2x ln a + √ x ln(x + a2 − x2 ) − x − √ a+ a2 −x2 a 2 ln x x ln(x + x2 + a2 ) √ √ 84. ln(x + x2 − a2 ) dx = − x2 − a2 + x ln(x + √ √ x2 − a2 − x ln(x + x2 − a2 ) √ 86. ln(x + a2 − x2 ) dx = (x + a2 ) ln(x2 + ax + b)+ ⎧√ −1 √ 2x 2 ⎪ if 4b > a2 4b − a tan ⎪ 2 ⎪ 4b−a ⎪ ⎨ 0 if 4b = a2 ⎪ ⎪ √ √ ⎪ 2 −4b ⎪ 2x+a+ a 1 ⎩ a2 − 4b ln √ if 4b < a2 2 2x+a− a2 −4b √ ln(x − √ √ √ 2 (x − ab 2 ) ln(a x + b) − x2 + b a x 82. ln(x2 + ax + b) dx = −2x − a + Exponential Functions 89. 91. 92. xeax dx = xeax a x2 eax dx = ea √ x dx b+eax dx = = x b − 2 ax x e a 2√ a − − xea 1 ab eax a2 96. ax √ 2xe a2 x − 2e a3 √ a x + 2 a2 e ax ln |b + eax | eax b+eax 95. √ a b − eax + = √ b a √ √b−eax −√ b ln b−eax +√b 97. √ dx eax +b = ⎧√ √ √eax +b −√ b b ⎪ √ ⎨ a ln eax +b + b if b > 0 √ √ ⎪ ⎩ 2 −b tan−1 √eax +b if b < 0 a −b 98. eax sin(bx) dx = eax a2 +b2 [a sin(bx) 99. eax cos(bx) dx = eax a2 +b2 4 − b cos(bx)] m b − eax dx = √ √ √eax +b−√ b b √ a ln eax +b+ b √ 2 √ dx b−eax co dx = a1 ln |b + eax | √ √ eax + b dx = a2 eax + b + 94. ⎧√ √ √eax +b −√ b b ⎪ ⎨ a ln eax +b +√b if b > 0 √ √ ⎪ ⎩− 2 −b tan−1 √eax +b if b < 0 a −b 93. w. 90. [b sin(bx) + a cos(bx)] 100. xeax sin(bx) dx = eax a2 +b2 [ax sin(bx) − K d2 Ha bx cos(bx) − a2 −b2 a2 +b2 sin(bx) + 2ab a2 +b2 101. xeax cos(bx) dx = ax cos(bx) − cos(bx)] a2 −b2 a2 +b2 eax a2 +b2 [bx sin(bx) + cos(bx) − 2ab a2 +b2 sin(bx)] Trigonometric Functions 102. 103. 2 3 104. 105. 106. 107. 108. x 2 − sin(2x) 4 2 sin3 (x) dx = − sin (x) cos(x) − cos3 (x) cos2 (x) dx = x 2 + sin(2x) 4 3 2 cos (x) dx = sin(x) cos (x) + sin3 (x) sin2 (x) cos2 (x) dx = x 16 − sin(4x) 32 x sin(x) dx = sin(x) − x cos(x) x2 sin(x) dx = 2 cos(x) + 112. 117. 118. sin(2x) 8 x cos(x) dx = cos(x) + x sin(x) 2 x cos(x) dx = −2 sin(x) + sin(2x) 8 dx cos(x) dx sin2 (x) = − cot(x) dx cos2 (x) = tan(x) dx sin3 (x) − cos2 (x) 2 sin(x) 1−cos(x) 119. = + ln sin(x) dx 1+sin(x) sin2 (x) 1 120. cos3 (x) = 2 cos(x) + 2 ln cos(x) 1+sin(x) dx 1 121. sin2 (x) cos(x) = ln cos(x) − sin(x) 1−cos(x) dx 1 122. sin(x) cos2 (x) = ln sin(x) + cos(x) 123. sin(x) sin(x + a) dx = 12 x cos(a) − 1 2 1 4 124. sin(2x + a) sin(ax) sin(bx) dx = sin((a−b)x) 2(a−b) − sin((a+b)x) 2(a+b) 125. sin((a−b)x) 2(a−b) cos(ax) cos(bx) dx = + sin((a+b)x) 2(a+b) 126. sin(ax) cos(bx) dx = cos((a+b)x) 2(a+b) 127. 5 dx 1±sin(x) − cos((a−b)x) 2(a−b) − m 2x cos(x) + x sin(x) 2 113. x cos2 (x) dx = x4 + x sin(2x) + cos(2x) 4 8 2 2 3 114. x cos2 (x) dx = x6 + x sin(2x) + 4 − 2 x cos(2x) 4 co 111. + 116. 1−cos(x) = ln sin(x) 1+sin(x) = ln cos(x) dx sin(x) w. 2x sin(x) − x2 cos(x) 2 109. x sin2 (x) dx = x4 − x sin(2x) − cos(2x) 4 8 2 2 2 3 110. x sin (x) dx = x6 − x sin(2x) − 4 x cos(2x) 4 115. no 2 3 sin2 (x) dx = = ∓ tan π 4 ∓ x 2 128. = ∓ tan π 4 ∓ π 2x+π 130. 4 129. x 1±sin(x) dx = x tan ∓ 4 x 2 ∓ 2 ln sin π4 ± x2 131. dx a+sin(x) = dx a+cos(x) = x 1±cos(x) dx = (x + π2 ) tan π 4 ∓ 2x+π 4 π 2x+π 2 ln sin 4 ± 4 K d2 Ha dx 1±cos(x) ⎧ √ 2x+π a2 −1 2 −1 ⎪ √ ⎨ a2 −1 tan if |a| > 1 |a−1| tan 4 √ 2 ⎪ ⎩ √ 1 2 ln a tan(x/2)+1−√1−a2 if |a| < 1 1−a a tan(x/2)+1+ 1−a 132. ⎧ x |a−1| 2 −1 ⎪ √ tan 2 if |a| > 1 ⎪ ⎨ √a2 −1 tan a2 −1 √ 1−a2 tan(x/2)+ ⎪ 1 ⎪ √1−a if |a| < 1 ⎩ √1−a2 ln 2 tan(x/2)− 1−a 1−a 134. 135. 137. = cos(x) a sin(x)+cos(x) dx √ 1 a2 +1 = x+tan−1 a1 ln tan 2 x a2 +1 + a 2(a2 +1) ln a + tan2 (x) dx = tan(x) − x tan3 (x) dx = 12 tan2 (x) + ln | cos(x)| cot2 (x) dx = − cot(x) − x sin(2x) + 143. (cos−1 (x))2 dx = x(cos−1 (x))2 − √ ln(x + x2 − 1) 145. (sin−1 (x))(cos−1 (x)) dx = x sin−1 (x) cos−1 (x) + 2x + √ 146. 1 − x2 (cos−1 (x) − sin−1 (x)) sin(a sin−1 (x))dx = m − 1) ln(x + √ 142. cos−1 (x) dx = x cos−1 (x) − 1 − x2 x2 a tan(x)+1 ln a tan(x)+a2 √ 2x − 2 cos−1 (x) 1 − x2 144. cos−1 x1 dx = x cos−1 x1 − √ 2x + 2 sin−1 (x) 1 − x2 141. sin−1 x1 dx = x sin−1 x1 + √ a a2 +1 co cot3 (x) dx = − 12 cot2 (x) − ln | sin(x)| √ 139. sin−1 (x) dx = x sin−1 (x) + 1 − x2 140. (sin−1 (x))2 dx = x(sin−1 (x))2 − 138. a2 +1 2 w. 136. dx a sin(x)+cos(x) no 133. √ a 1−x2 cos(a sin−1 (x))+x sin(a sin−1 (x)) 1−a2 6 ∓ 147. cos(a cos−1 (x))dx = 149. K d2 Ha √ a 1−x2 sin(a cos−1 (x))+x cos(a cos−1 (x)) 1−a2 148. 1 2 153. tan−1 (x) dx = x tan−1 (x) − 2 ln(x + 1) tan−1 ax+b x+c dx = x + ex −e−x 2 155. cosh(x) = ex +e−x 2 156. tanh(x) = ex −e−x ex +e−x tan−1 tan(a + tan−1 (x)) dx = x cot(a) − 150. 151. 152. ax+b x+c + 1 sin2 (a) ln(x sin(a) − cos(a)) √ (2x2 −1) sin−1 x+x 1−x2 4 √ (2x2 −1) cos−1 x−x 1−x2 4 −1 x sin (x) dx = x cos−1 (x) dx = (x2 +1) tan−1 (x)−x 2 x tan−1 (x) dx = b−ac 2a2 +2 ln((ax + b)2 + (x + c)2 ) Hyperbolic Functions 169. x sinh(x) dx = x cosh(x) − sinh(x) 170. x cosh(x) dx = x sinh(x) − cosh(x) 171. sinh−1 (x) dx = x sinh−1 (x) − no 154. sinh(x) = ab+c a2 +1 √ 172. √ 173. x2 + 1 cosh−1 (x) dx = x cosh−1 (x) − x2 − 1 tanh−1 (x) dx = 12 ln(1 − x2 ) + w. x tanh−1 (x) 174. x sinh−1 (x) dx = 2x2 +1 4 175. √ x2 + 1 cosh−1 (x) − 1 4 √ x2 − 1 x tanh−1 (x) dx = 12 (x2 − 1) tanh−1 (x) + m 7 1 4 x cosh−1 (x) dx = 2x2 +1 4 176. sinh−1 (x) − co 157. cosh2 (x) − sinh2 (x) = 1 √ 158. sinh−1 = ln(x + x2 + 1) √ 159. cosh−1 = ln(x + x2 − 1) −1 160. tanh = ln 1+y 1−y 161. sinh(x) dx = cosh(x) 162. cosh(x) dx = sinh(x) 163. tanh(x) dx = ln(ex + e−x ) x dx = ln eex −1 164. sinh(x) +1 dx = 2 tan−1 (ex ) 165. cosh(x) −1 166. sinhdx2 (x) = − coth(x) = tanh(x) 167. coshdx2 (x) = tanh(x) 168. tanh2 (x) dx = x − tanh(x) x 2 √ (sinh−1 (x))2 dx = 2x + x(sinh−1 (x))2 − 2 sinh−1 (x) x2 + 1 √ 178. (cosh−1 (x))2 dx = 2x + x(cosh−1 (x))2 − 2 cosh−1 (x) x2 − 1 179. sinh−1 x1 dx = x sinh−1 x1 + sinh−1 (x) −1 1 −1 1 −1 √ x 180. cosh x dx = x cosh x + tan 1−x2 177. m co w. no K d2 Ha 8