ANALISIS Y MEJORA DE LA PREDICCIÓN DE LA DEMANDA

Anuncio
 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales TRABAJO DE FIN DE GRADO GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES ANALISIS Y MEJORA DE LA PREDICCIÓN DE LA DEMANDA ELÉCTRICA EN PERIODOS DE ALTO ECM María Fernández de Mesa Bustelo Número de matrícula: 11127 Tutor: Eduardo Caro Huertas Julio 2016 Madrid A mi familia, por el trabajo en equipo durante estos años. “Si no fuera por la energía eléctrica, estaríamos todos viendo la tele a la luz de las velas” George Gobel Resumen ejecutivo RESUMEN EJECUTIVO La energía eléctrica es hoy en día un bien de consumo de primera necesidad en la sociedad. Actualmente se utiliza para una infinidad de aplicaciones y resulta imprescindible para el desarrollo del día a día, tanto en los hogares como en la industria, el comercio y otros muchos ámbitos. El problema de la energía eléctrica reside en la imposibilidad de almacenarla una vez generada. Por tanto, la que no es consumida en el momento en el que se produce, se pierde. Por esta razón, las empresas encargadas de distribuir la energía trabajan con un margen amplio sobre la demanda prevista, para poder asegurarse de abastecer a la sociedad. Para ello es necesaria la presencia de centrales de producción de energía capaces de generar electricidad de forma rápida y con total disponibilidad. Éstas hacen que el precio de la energía eléctrica aumente considerablemente. Por ello, con una buena previsión que permita saber con la mayor exactitud posible la energía que va a necesitar la población, se puede disminuir este precio a la vez que se reduce el margen entre la demanda energía prevista y la real. De la misma forma, al reducir el número de centrales en reserva en uso, se reduce al impacto ambiental debido a que éstas con las que generan una mayor contaminación. Con este fin se crean modelos de predicción de demanda eléctrica, como el que es objeto de este trabajo, cada vez más cercanos a la demanda real pero que siguen teniendo algunas inconveniencias. En este Trabajo de Fin de Grado se analiza un modelo de predicción de demanda de energía eléctrica con intención de mejorar ciertos errores que se observan entre la demanda y la previsión de la energía que se va a consumir. Generalmente, la curva de demanda de energía en un día cualquiera sigue una curva con una forma característica, que se adecúa a los horarios de trabajo y horas de sueño y comida de la población. Ésta es decreciente desde el comienzo del día (medianoche) hasta llegar a su valor mínimo a las 7h, donde empieza a crecer hasta las 13h aproximadamente. A esa hora, vuelve a decrecer hasta las 17h, cuando la demanda emprende su subida hasta el máximo, que se da sobre las 20h. María Fernández de Mesa Bustelo 5 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Sin embargo, la influencia que ejercen diversos factores hace que esta curva varíe ligeramente según las características de un día concreto. De estos factores, los más importantes son la temperatura y la laborabilidad. Ambos efectos se tienen en cuenta en el modelo de predicción original. La influencia de la temperatura sobre la demanda eléctrica es debida al uso de aparatos de climatización: la calefacción en invierno y el aire acondicionado en verano. El consumo de energía por parte de estos equipos es mayor cuanto menor sea la temperatura en invierno y cuánto mayor sea la temperatura en verano. Por tanto, la curva de demanda durante estos meses varía de esta forma. La modelización de la temperatura en el programa de predicción se realiza por medio de splines cúbicos, que dividen la temperatura en distintos tramos y ajustan un polinomio para cada uno. Como temperatura de referencia en el modelo se utiliza el valor medio de las temperaturas máximas diarias medidas en diez de las ciudades más pobladas de España. La influencia de la laborabilidad está relacionada con la demanda de energía por parte de la población laboral, sobre todo, la industria. De esta forma, influye el hecho de que el día sea laborable o no para el consumo de energía, disminuyendo la demanda los fines de semana y los meses de verano, al igual que las festividades. La modelización de los días festivos es compleja porque dependen del día de la semana en que caen. Además, la demanda de estos días, también influye en los días anteriores y posteriores, lo que la dificulta aún más. En este trabajo se introduce una modificación en el modelo tras analizar el efecto que tiene una mala predicción de la demanda sobre días posteriores. Se observa una diferencia entre dos tipos de días, y para cada uno de ellos se le aplica su modificación correspondiente. Los del primer tipo son aquellos que tienen una demanda más alta o baja de lo normal por alguna razón concreta, pero que al día siguiente vuelven a sus valores de demanda normales. Un ejemplo de esto son las huelgas. El programa, al registrar una demanda real menor que la predicción, disminuye la previsión en gran medida al día siguiente. Así, al volver la demanda real a sus valores habituales, queda al día siguiente una predicción menor que la demanda real. Para estos días, la modificación aplicada consiste en hacer los residuos, que representan la diferencia entre la demanda real y la prevista, nulos. De esta manera, se hace entender al programa que la predicción demanda del día en cuestión ha sido buena y no tiene que modificarla al día siguiente. 6 Escuela Técnica Superior de Ingenieros Industriales Resumen ejecutivo Los del segundo tipo son días cuyos precedentes se habían hecho buenas previsiones, por lo que una mala predicción solo el día en cuestión no genera un cambio en la predicción de días posteriores. En este caso, al contrario que el anterior, la demanda lleva una tendencia que puede ser positiva o negativa pero que va a continuar a lo largo de los días. Un ejemplo de esto puede ser una bajada repentina de las temperaturas al empezar el otoño. Por tanto, al día siguiente se vuelve a cometer el mismo error en la predicción. La modificación que se aplica a este tipo de días es aumentar los residuos. Es decir, hacer creer al modelo que el error ha sido mayor y así, al tener más influencia que el resto de los días anteriores, que éste modifique la demanda del día posterior. Estos cambios son incluidos en el código del programa y al ejecutarlo se comparan ambos comportamientos: las predicciones antes y después de aplicar las modificaciones. Cuantitativamente, se observa una mejora generalizada en aproximadamente la mitad de los días objeto de estudio, que supone un ahorro económico considerable por cada día mejorado. María Fernández de Mesa Bustelo 7 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 8 Escuela Técnica Superior de Ingenieros Industriales Indice Indice CAPITULO 1. INTRODUCCIÓN Y OBJETIVOS ........................................................... 11 1.1 INTRODUCCIÓN ....................................................................................... 11 1.2 OBJETIVOS ............................................................................................. 12 1.3 ESTRUCTURA DEL DOCUMENTO ................................................................... 13 CAPITULO 2. DEMANDA DE ENERGÍA ELÉCTRICA .................................................. 15 2.1 CASACIÓN DEL MERCADO ELÉCTRICO EN ESPAÑA .............................................. 17 2.1.1 MERCADO DIARIO ........................................................................................................... 17 2.1.2 MERCADO INTRADIARIO ................................................................................................. 20 2.2 AGENTES DEL SISTEMA ELÉCTRICO ................................................................ 21 2.3 FACTORES QUE INFLUYEN EN LA DEMANDA ..................................................... 23 2.3.1 TEMPERATURA ................................................................................................................ 24 2.3.2 LABORALIDAD .................................................................................................................. 26 2.3.3 ACTIVIDAD ECONÓMICA ................................................................................................. 28 2.4 DEMANDA ELÉCTRICA EN EL SISTEMA PENINSULAR ............................................ 29 2.4.1 EVOLUCIÓN ANUAL DE LA DEMANDA ............................................................................ 30 2.4.2 EVOLUCIÓN MENSUAL DE LA DEMANDA ....................................................................... 31 2.4.3 EVOLUCIÓN DIARIA DE LA DEMANDA ............................................................................ 32 2.4.4 EVOLUCIÓN HORARIA DE LA DEMANDA ........................................................................ 33 CAPITULO 3. MODELO DE PREDICCIÓN ................................................................. 37 3.1 MODELOS ESTADÍSTICOS EMPLEADOS ............................................................ 38 3.1.1 MODELOS DE REGRESIÓN ............................................................................................... 38 3.1.1.1 Regresión simple ........................................................................................................................ 38 3.1.1.2 Regresión múltiple ..................................................................................................................... 39 3.1.2 SERIES TEMPORALES ....................................................................................................... 39 3.1.2.1 Clasificación ............................................................................................................................... 40 3.1.2.2 Análisis univariante .................................................................................................................... 42 3.1.3 MODELO IMPLEMENTADO: REG-­‐ARIMA ........................................................................ 51 3.2 MODELIZACIÓN DE LA TEMPERATURA ............................................................ 52 3.3 MODELIZACIÓN DE LOS DÍAS ESPECIALES ........................................................ 55 3.4 FUNCIONAMIENTO DEL PROGRAMA .............................................................. 58 3.4.1 FASE DE ESTIMACIÓN ...................................................................................................... 59 3.4.2 FASE DE PREDICCIÓN ...................................................................................................... 61 3.4.3 FASE DE RESULTADOS ..................................................................................................... 62 María Fernández de Mesa Bustelo 9 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM CAPITULO 4. MODIFICACIÓN DEL PROGRAMA DE PREDICCIÓN ............................ 65 4.1 ANÁLISIS PREVIO ..................................................................................... 68 4.2 CLASIFICACIÓN DE DÍAS ............................................................................. 73 4.3 APLICACIÓN ........................................................................................... 76 4.3.1 PREPARACIÓN DE DATOS ................................................................................................ 77 4.3.2 EJECUCIÓN ...................................................................................................................... 78 4.3.3 ANÁLISIS Y RESULTADOS ................................................................................................. 81 CAPITULO 5. CONCLUSIONES ................................................................................ 85 CAPITULO 6. LÍNEAS FUTURAS DE INVESTIGACIÓN ............................................... 87 CAPITULO 7. PLANIFICACIÓN TEMPORAL Y PRESUPUESTO ................................... 89 7.1 PLANIFICACIÓN TEMPORAL: DIAGRAMA DE GANTT ........................................... 89 7.2 PRESUPUESTO ......................................................................................... 92 CAPITULO 8. VALORACIÓN DE IMPACTOS. RESPONSABILIDAD SOCIAL CORPORATIVA...............................................................................................................95 ANEXO 1 FIGURAS RESULTADOS DE MODIFICACIÓN ................................... 99 ANEXO 2 MODELIZACIÓN DE DATOS CON SPLINES ..................................... 109 INDICE DE FIGURAS ............................................................................................... 111 BIBLIOGRAFÍA ....................................................................................................... 115 10 Escuela Técnica Superior de Ingenieros Industriales Introducción y objetivos Capitulo 1. Introducción y objetivos 1.1 Introducción La electricidad es un bien de consumo actualmente indispensable cuyos primeros estudios relevantes datan de los siglos XVI y XVII, cuando tiene lugar la Revolución Científica y aparecen investigadores prestigiosos como Benjamin Franklin y Charles Coulomb. Posteriormente, diversos científicos estudian y se van aproximando a lo largo de los años al uso que actualmente hacemos de la electricidad. Es en el siglo XIX cuando conocidos ingenieros de la época llevan a cabo un importante avance en procesos industriales y de telecomunicaciones, además de la iluminación de las ciudades. A partir de este momento, la necesidad de energía eléctrica genera el incesante desarrollo en este campo, apareciendo entre otros la radio y la televisión, a la vez que la búsqueda de fuentes de energía para satisfacer las exigencias de la sociedad. La energía eléctrica es actualmente algo esencial en nuestro día a día, ya que la evolución de la sociedad y de las tecnologías han hecho de ésta un bien imprescindible tanto en los hogares como en la industria. Debido a la imposibilidad de almacenamiento de energía eléctrica, es importante conocer la demanda futura para ser capaces de suministrar la energía requerida por la sociedad minimizando a su vez las pérdidas de energía inutilizada. Una producción de energía más alta o más baja de la demandada genera un alto impacto económico y medioambiental, de ahí la importancia de hacer una buena predicción de la energía solicitada y por consiguiente, un uso más eficiente de ésta. El 9 de noviembre de 1965, los habitantes de ocho estados de la coste este de Estados Unidos sufrieron un apagón eléctrico durante 14 horas debido a un colapso en cadena de la red que vincula Canadá y la costa noroeste estadounidense, originado por una sobrecarga en el sistema. Este hecho condujo a una llamada de atención por parte del sistema eléctrico y llevó al Ministerio de Industria y Energía en el año 1987 a proponer a las grandes María Fernández de Mesa Bustelo 11 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM empresas eléctricas participar en el proyecto INDEL de investigación de la demanda eléctrica. Así, este proyecto buscaba conocer puntualmente la demanda mediante la creación de modelos estadísticos para realizar estimaciones lo más exactas posibles y la recogida y el estudio de la información de la demanda en los sectores de consumo más importantes. En este punto aparece Red Eléctrica, que se encarga de hacer llegar energía eléctrica a toda la población en el momento que la requiere, así como de superar los picos de demanda para evitar la falta de abastecimiento consecuente en estos casos. El objetivo de este Trabajo de Fin de Grado es, en línea con los objetivos del sector eléctrico, mejorar en la medida de lo posible estos modelos de predicción de demanda, especialmente reduciendo los errores de los días con peores predicciones y así reducir los costes que afectan no solo a las empresas sino también a los hogares, los últimos consumidores. 1.2 Objetivos El objetivo de este Trabajo de Fin de Grado es tratar de perfeccionar en la medida de lo posible el modelo de Matlab para la predicción de la demanda eléctrica que se ha desarrollado en la Escuela Técnica Superior de Ingenieros Industriales, de forma que la predicción para cada día del año sea lo mas similar posible a la demanda real de energía. Más específicamente, este trabajo se centra en el estudio de la influencia que tiene una mala predicción no solo en el día en concreto sino en los días posteriores. En esta línea, los errores de predicción de la demanda se pueden clasificar en varios tipos, como se verá más adelante, y en este trabajo se ha tratado de solucionarlos por separado para estudiar su efecto y cómo mejorarlos. Para ello, el primer paso ha sido localizar los días en los que se han producido mayores errores de predicción y posteriormente tratar de reducirlos por medio de cambios en las funciones del programa, para así aplicarlos a futuras predicciones, consiguiendo unas predicciones más exactas y ahorrando grandes cantidades de dinero. 12 Escuela Técnica Superior de Ingenieros Industriales Introducción y objetivos 1.3 Estructura del documento En el Capítulo 1 se hace una pequeña introducción a la energía eléctrica en España, haciendo hincapié en la importancia de su predicción para evitar la pérdida de energía no almacenable. Además, se especifican los objetivos de este Trabajo de Fin de Grado y los pasos que se van a seguir para llevarlos a cabo. En el Capítulo 2 se hablará del funcionamiento del mercado eléctrico español y de sus principales agentes. Además se describirá la demanda de energía eléctrica en España y los principales factores que influyen en ésta. En el Capítulo 3 se entrará en más detalle en el modelo de predicción implementado en Matlab. Se hablará de las fases principales del programa, así como en la modelización de los dos factores más influyentes en ella: la temperatura y los días especiales. En el Capítulo 4 se detallarán las modificaciones implementadas en el programa de Matlab para la reducción de errores en la predicción de demanda energética. Se analizarán y comentarán los resultados obtenidos antes y después del cambio. En el Capítulo 5 se analizarán exhaustivamente los resultados de este trabajo, la medida en la que han influido los cambios implementados y como esto puede influir en el día a día. En el Capítulo 6 se hablará de las líneas futuras de investigación, las distintas vías por las que seguir ampliando este estudio para perfeccionar este modelo de predicción. En el Capítulo 7 se explicará la planificación temporal con la que se ha llevado a cabo este proyecto, el tiempo dedicado a la investigación, realización y recogida de datos y redacción de esta memoria. Además se detallará el presupuesto necesario para este trabajo. En el Capítulo 8 se llevará a cabo una valoración de impactos económicos, sociales y ambientales de este trabajo. María Fernández de Mesa Bustelo 13 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 14 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Capitulo 2. Demanda de energía eléctrica La demanda eléctrica va cambiando a lo largo de los años, los días, incluso las horas de un mismo día. Por esta razón, el sistema eléctrico funciona con una incertidumbre que afecta al coste del suministro de la electricidad y es por ello por lo que es importante conocer las razones por las que varía la demanda. La demanda de energía eléctrica tiene ciertas características que la diferencian de la demanda de otros bienes de consumo. En primer lugar, al no poderse almacenar, la demanda eléctrica coincide exactamente en el tiempo con su consumo. Por lo tanto, el consumidor eléctrico la demanda en el momento que la va a consumir. Además, el agente distribuidor tampoco almacena energía y el sistema eléctrico tiene que suministrar en todo momento la cantidad de energía que demanden sus clientes. Para ello se tienen habilitados sistemas de generación y redes de distribución que hagan posible el aporte necesario de electricidad en cada momento. Otra característica diferenciadora es la importancia del perfil horario de la energía. Es decir, no solo es importante la cantidad de energía que consume cada persona, sino las regularidades horarias en el consumo y la cantidad de energía demandada en las horas punta o de máximo consumo. En la curva de carga horaria es donde se puede ver las regularidades en el consumo. Es decir, muestra las pautas horarias de consumo de energía eléctrica y sirve como herramienta para saber en qué periodos del día o de la semana va a ser necesario mayores niveles de generación de energía eléctrica. La curva de demanda de energía eléctrica sigue la forma que se observa en la Figura 2.1. Esta imagen, proporcionada por Red Eléctrica, muestra a cada hora del día la cantidad de energía demandada por los consumidores. Esta curva es concretamente del día 16 de mayo de 2016 a las 10:34h. Se observan tres líneas de diferentes colores que se detallan a continuación. María Fernández de Mesa Bustelo 15 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 2.1. Curva de demanda de energía eléctrica. [Fuente: Red Eléctrica] La curva amarilla representa la demanda real y refleja el valor de la demanda de energía en cada instante. La curva verde es la previsión de la demanda elaborada por Red Eléctrica basada en valores de consumo en periodos anteriores corregidos por una serie de factores de los que se hablará en detalle más adelante, como son la climatología, laboralidad y actividad económica. Por último, la línea roja es la programación horaria operativa, que representa la producción programada a los agentes de generación que se les haya adjudicado el suministro de energía en la casación tanto del mercado diario como del mercado intradiario. El sistema eléctrico español hasta 1997 era un sistema regulado en el cual el precio de la electricidad era establecido por el gobierno, a la vez que financiaba los costes de generación, transporte y distribución a las compañías eléctricas mayoritariamente privadas. Es en este año, durante el primer gobierno de José María Aznar cuando se promulga la ley de liberalización del sector eléctrico. La idea principal era que, con la consecuente división de actividades en el suministro eléctrico, se creara cierta competencia para promover una asignación eficiente de los recursos. En esta línea, la normativa prohíbe a una compañía actuar en más de una de las fases del proceso de suministro de energía. Así surge el desarrollo de los mercados eléctricos por distintas zonas de Europa: la OMIE en España y Portugal, el EPEXspot en Francia , Apx-­Endex en Países Bajos, Belpex en Bélgica y NordPool, que opera en los países nórdicos y 16 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Reino Unido. Estos se encargan de gestionar el mercado al contado permitiendo la compra-­venta de electricidad entre agentes del sistema. 2.1 Casación del mercado eléctrico en España La casación de la energía eléctrica en España se realiza de manera conjunta con Portugal en el Mercado Ibérico de la Electricidad. El MIBEL está compuesto por mercados a largo plazo, gestionados por el Operador del Mercado Ibérico Polo Portugués (OMIP) y los mercados spot o al contado gestionados por el Operador del Mercado Ibérico Polo Español (OMIE). El mercado eléctrico tipo spot se gestiona según un mercado tipo “pool” a través de una sesión diaria y seis sesiones intradiarias. 2.1.1 Mercado diario El mercado diario es el principal mercado de contratación de electricidad de la Península Ibérica y su principal función es negociar y fijar los precios, todos los días a las 12h, de los volúmenes de energía que se van a vender las 24 horas del día siguiente. Está gestionado por el Operador del Mercado Eléctrico (OMEL), entidad privada dentro del OMIE que garantiza la contratación de energía eléctrica de forma independiente y transparente. En primera instancia, el precio de la energía para España y Portugal es, la mayor parte de las veces, un precio único. Pero esto puede variar cuando se congestiona la interconexión entre los dos países, no siendo viable económica o técnicamente, y se ejecuta entonces el algoritmo de fijación de precios de forma separada, apareciendo entonces precios para la electricidad diferentes para los dos países, conociéndose como “market splitting”. En el funcionamiento del mercado diario, los vendedores de energía (generadores) empiezan proponiendo ofertas de venta mientras que los compradores (comercializadores) por su parte presentan ofertas de compra para cada hora del día siguiente. Cabe destacar que el precio de la energía tanto para compradores como vendedores está acotado superiormente por 180,30 €/MWh en el MIBEL. El OMEL ordena estas ofertas construyendo así las curvas agregadas de oferta y demanda, como se puede ver en la Figura 2.2. María Fernández de Mesa Bustelo 17 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM En esta imagen se observan las ofertas de compra y venta iniciales, en azul y naranja respectivamente, a la vez que las ofertas casadas después de la obtención del punto de equilibrio, en color verde las de compra y rojo las de venta. Este algoritmo, denominado Euphemia, es gráficamente sencillo y está basado en la maximización del beneficio social neto o Social Welfare, encerrado en color amarillo entre ambas curvas a la izquierda del punto de corte. Con este método se asegura al mismo tiempo y de la manera más justa posible el máximo ahorro del comprador y máximo beneficio del vendedor. Figura 2.2. Casación del precio de la energía en el mercado eléctrico [Fuente: www.omie.es ] La casación de la energía es marginalista, lo que comprende que donde se cruzan ambas curvas se establece el precio del MWh para la cantidad de energía que ha sido casada, y esto mismo para cada hora del día. Todas las ofertas de compra y venta a la izquierda del punto donde se cruzan ambas curvas son las que han resultado casadas y toda la energía se compra al precio de casación, independientemente del precio ofertado por ella. Por otro lado, las ofertas de compra a la derecha del punto de corte se rechazan por ofrecer propuestas de adquisición de energía a precios muy bajos, y las ofertas de venta por ofrecer cantidades bajas de energía a precios altos. En la curva de oferta de electricidad, compuesta por todas las ofertas que presentan los vendedores al mercado para cada hora del día siguiente ordenadas por precio ascendente, se pueden observar ciertos tramos de precios característicos para diferentes centrales o tecnologías. Es importante destacar que este precio está claramente relacionado con el coste de oportunidad. Es decir, lo influyente es el coste que implica ofrecer dicha electricidad a una hora 18 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica determinada y no el coste total de inversión u operación. Es por esto que las centrales nucleares y las energías renovables son las primeras en entrar en el pool eléctrico. Para explicar este hecho nos centramos primero en las centrales nucleares. Como se puede observar en la Figura 2.3, estas centrales ofertan los precios de venta más bajos, concretamente el precio aceptante (0 €/MWh) y esto se debe a que su coste de oportunidad es prácticamente nulo. Las centrales nucleares tienen un factor de carga del 90%, siendo relevantes los costes de su construcción y puesta en marcha. Por tanto, por esta baja capacidad de parada, no les supone un coste adicional vender energía para una hora determinada. Esta misma situación se da para las energías renovables por su incapacidad de almacenaje de energía primaria (viento para las eólicas, sol para las solares..). Figura 2.3. Relación entre cantidad de energía y precio ofertados por las distintas centrales de generación de energía eléctrica [Fuente: www.energiaysociedad.es ] El caso opuesto se da en centrales hidráulicas con capacidad de almacenar agua para producir energía eléctrica en cualquier momento. Esto hace que su coste de oportunidad sea alto y por tanto también el precio de venta. Esta situación explica el hecho de que las energías renovables sean capaces de llevar a grandes ahorros en el pool, llegando a producirse casos extremos en los que la totalidad de la demanda se ve cubierta por producción a 0 €/MWh, constituyendo fuertes beneficios económicos para los consumidores. María Fernández de Mesa Bustelo 19 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM En la curva de demanda de electricidad que se observa en la Figura 2.4 también se pueden observar tramos característicos de algunos sectores de consumidores, que se pueden clasificar según el volumen de energía que consumen y el uso de ésta. Los distribuidores y la mayoría de los comercializadores suelen ofertar al máximo precio permitido para asegurarse de abastecer a los consumidores. Estos comercializadores son representantes de consumidores del mercado liberalizado y ofrecen precios fijos adaptados a las sus preferencias. Actúan de esta manera porque saben que la probabilidad de pagar ese precio por la energía es baja, ya que pagarán por el precio de casación normalmente inferior. Una parte más pequeña de consumidores solo están dispuestos a pagar por la energía a un precio límite, el cual ofertan al mercado. Estos suelen ser algunos consumidores industriales que suelen consumir electricidad solo en periodos de precios bajos. Figura 2.4. Relación entre cantidad de energía y precio ofertados por los distribuidores y comercializadores para comprar energía eléctrica [Fuente: www.energiaysociedad.es ] 2.1.2 Mercado intradiario que compradores y vendedores pueden comprar y vender energía adicional al mercado diario, para ser capaces de ajustar de la mejor manera posible su consumo a lo largo del día, amoldándose a sus propias previsiones. 20 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Los que pueden participar en este mercado y están habilitados a presentar ofertas de compra venta son aquellos que han participado en la sesión del mercado diario a la hora correspondiente según los periodos de programación. Éstos se muestran, junto con el resto de la estructura de los mercados intradiarios, en la siguiente Tabla 2.1. Se contemplan seis sesiones con diferentes horizontes de programación, teniendo cada uno sus respectivas horas de apertura y cierre de sesión, para que los agentes realicen el envío de sus ofertas al operador del mercado y éste pueda ordenar las ofertas de compra y venta y se produzca así la casación de la energía eléctrica de los mercados intradiarios. Tabla 2.1. Estructura del mercado intradiario de la energía [Fuente: OMIE] 2.2 Agentes del sistema eléctrico Los agentes son todas aquellas empresas que interactúan en el mercado eléctrico y que, o bien influyen en la casación del precio de la energía o bien se encargan de abastecer a la población con la energía demandada. A grandes rasgos, el proceso de suministro de energía eléctrica está dividido en cuatro fases: generación, transporte, distribución y comercialización. Las diferentes funciones de los agentes del sistema están estrechamente relacionadas con estas actividades se muestra en la Figura 2.5 y se detallan a continuación: María Fernández de Mesa Bustelo 21 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 2.5. Proceso de suministro de energía eléctrica [Fuente: Solo Kilovatios Verdes] • Empresas productoras de energía eléctrica en régimen ordinario: Generan energía eléctrica a la vez que se encargan de construir, operar y mantener estas centrales de generación. En España, las mayores empresas de producción de energía eléctrica son Endesa, Gas Natural, Iberdrola, EDP y Gamesa, entre otras. • Empresas productoras de energía eléctrica en régimen especial: Generan energía proveniente de fuentes de energía renovables, residuos o cogeneración, sin superar los 50 MW de potencia eléctrica instalada. Por la importancia que tienen en la consecución de objetivos a favor del medio ambiente y seguridad de abastecimiento energético, reciben ayuda económica del estado. • Empresas comercializadoras de electricidad: Son las empresas eléctricas encargadas de vender electricidad a los clientes finales, a la vez que pagan una tasa a las empresas distribuidoras por usar su red eléctrica. Existen las Comercializadoras de Mercado Libre, que ofrecen ofertas ajustadas a sus necesidades y las de Ultimo Recurso, designadas por el gobierno y obligadas a suministrar la tarifa de último recurso (TUR) a los precios fijados. • Transportistas: Se encargan de llevar la energía desde los centros de generación y producción hasta la subestación de transformación. Por estas redes de transporte la tensión de la electricidad oscila entre 220 y 400 kV, por lo que son conocidas como redes de alta tensión. La razón por la que esta energía se transporta a alta tensión es para reducir pérdidas energéticas, que al estar cuadráticamente relacionadas con la intensidad, hacen necesaria una alta tensión 22 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica que conlleve a una menor intensidad de corriente. En España, esta tarea es llevada a cabo por Red Eléctrica. • Empresas distribuidoras de electricidad: Se encargan de transportar la energía eléctrica por redes de media tensión (132 kV) desde las subestaciones de transformación hasta la subestaciones de distribución. En estas últimas subestaciones se reduce la tensión de la electricidad destinada a consumidores domésticos a 220-­380 V y la destinada al consumo industrial a 12,5 kV. • Consumidores de energía: Son todos los usuarios que demandan energía en cualquier momento del día, para cualquier uso y desde cualquier lugar. Desde un consumidor doméstico que enchufa un electrodoméstico hasta una gran fábrica. Dentro de este grupo, los consumidores cualificados son los que tienen un alto consumo anual, concretamente un millón de kilovatios hora. • Operadores: Existen en España dos sociedades mercantiles que intervienen en las transacciones económicas del mercado eléctrico. Como se ha explicado anteriormente, el operador del mercado (OMIE) se encarga de la gestión económica del sistema. Por otro lado, el operador del sistema (en España, Red Eléctrica) asegura el continuo funcionamiento del suministro eléctrico, llevando a cabo la gestión más técnica de éste. 2.3 Factores que influyen en la demanda La demanda eléctrica varía ampliamente según numerosos factores, pero se puede seleccionar algunos de ellos como los más significativos que tienen una influencia más marcada en el consumo de energía. Éstos son los representados en la Figura 2.6. y se explican en detalle a continuación. María Fernández de Mesa Bustelo 23 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 2.6. Factores que influyen en la demanda energética 2.3.1 Temperatura La temperatura es clásicamente el factor que tiene mas relevancia en la demanda de energía eléctrica. Ésta no tiene una tendencia reconocida a lo largo del tiempo por lo que es una componente estacionaria y además varía fuertemente a corto plazo. La variación de la temperatura puede hacer varia la demanda de energía de un mes hasta un 12% en sentido positivo o negativo. Para estudiar la influencia de la temperatura en la demanda se estudian por separado los meses fríos, de noviembre a abril, de los meses cálidos, que corresponden de junio a septiembre. El perfil aproximado de temperaturas de los distintos meses de puede ver en la Figura 2.7. En los meses más fríos, un aumento de la temperatura llevará a un menor uso de la electricidad, debido al menor uso de la calefacción. Por el contrario, en los meses cálidos, este aumento de temperatura llevará a un aumento del uso del aire acondicionado y por tanto a un aumento en la demanda de energía eléctrica. Los meses que se encuentran fuera de estos dos grupos no tienen un comportamiento definido en este sentido, dependiendo su comportamiento de las condiciones climatológicas que se den. 24 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Figura 2.7. Temperatura mensual media histórica en España Un aspecto a destacar respecto a la influencia de la temperatura es que el uso del aire acondicionado está menos implantado en verano que el uso de la calefacción en invierno. Esto es así porque en invierno la tendencia a estar en casa es mayor, mientras que en verano es más habitual salir de la ciudad o pasar el día fuera de casa y por las noches cuando los consumidores llegan a sus casas, las temperaturas son mas bajas y se soporta bien el calor. Esta tendencia de la población a aguantar de mejor manera el calor que el frío se ve reflejada en la demanda, que aumenta hasta un 18% en el mes de diciembre y solo hasta un 6% en el mes de julio. La sensibilidad de la temperatura a largo plazo tampoco es constante y depende del nivel de renta en cada momento, que hará a los consumidores más o menos ahorradores a la hora de poner la calefacción o aire acondicionado;; de la eficiencia energética que permite el avance de soluciones tecnológicas y del cambio en los hábitos de uso de estos aparatos en los consumidores. En los últimos 15 años esta sensibilidad de la población a la temperatura ha aumentado de forma generalizada y esto ha sido en gran medida por la penetración y desarrollo que han tenido los equipos de climatización, que han hecho a los consumidores muy sensibles a las temperaturas extremas. La temperatura ambiente en los últimos años está aumentando, por lo que los veranos están siendo más calurosos y los inviernos menos fríos. Esto hace que la demanda de energía sea menor de lo que hubiera sido si la temperatura ambiente fuera más parecida a la media histórica. Este cambio climatológico está afectando María Fernández de Mesa Bustelo 25 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM negativamente a la demanda de energía al ser los consumidores menos sensibles al calor en verano que al frío en invierno. Además de la temperatura ambiente influyen otras condiciones meteorológicas como son el viento, nubes o precipitaciones, pero al ser la influencia de éstos en la demanda eléctrica mucho menor y al estar todos ellos relacionados con la temperatura, no se han tenido en cuenta como factores influyentes en este estudio de la predicción de demanda de energía. 2.3.2 Laboralidad Este factor muestra la influencia del calendario laboral en una determinada zona sobre el consumo de energía eléctrica. Este agente nos permite tener en cuenta que los días festivos la demanda de energía es mucho menor y así poder hacer una predicción de la demanda más acorde a la realidad. La influencia de la laboralidad va cambiando con el tiempo pero no tiene una tendencia marcada que nos permita conocer cual va a ser su evolución en los próximos años. Es decir, al igual que la temperatura, tampoco tiene una tendencia reconocida a lo largo del tiempo. Un ejemplo de este factor calendario se puede observar en la Figura 2.8: Figura 2.8. Diferencia entre demanda prevista y real por el efecto laboralidad [Fuente: El País] La demanda de energía es el mejor termómetro o medidor para el seguimiento de una huelga, como se pudo comprobar el 29 de marzo de 2012. La existencia este día de una huelga general de trabajadores provocó una disminución de la 26 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica demanda de hasta un 21% a las 11h, cuando se registró una demanda de menos de 28.000 MW mientras lo previsto a esa hora rondaba los 32.000 MW. Como es de esperar, en la madrugada y a partir del mediodía el descenso iba siendo cada vez más moderado debido a que el peso de la industria ya no pesaba tanto como entre las 7 horas y las 13-­14h. Los hogares y algunos servicios públicos no influyen en este tipo de día al seguir consumiendo energía como el resto de días, pero aún así la diferencia entre lo esperado y la demanda real de energía es lo suficientemente grande como para generar problemas al no poderse almacenar ésta y estar generándose según las previsiones. El perfil de demanda de los días con huelgas de trabajadores se parecen en gran medida a los días festivos, pero, al ser la demanda prevista mucho mayor Red Eléctrica tendría que parar la producción en las plantas de energía para evitar la pérdida de electricidad generada. Resulta evidente que sabiendo con anterioridad la existencia de estas huelgas se puede evitar una pérdida de energía que se generaría en un día normal de trabajo. Además, por este factor de laboralidad, los fines de semana y en especial los domingos, es menor la demanda de energía, porque es el día de la semana en el que está la mayor parte de la población sin trabajar y por tanto sin demandar grandes cantidades de energía eléctrica. Este detalle se puede ver en la Figura 2.9, en la que se puede destacar la menor cantidad de energía demandada los lunes respecto al resto de días laborables, lo cual se debe al tiempo que lleva arrancar el proceso de producción tras el parón del fin de semana. %
100
90
80
70
60
50
40
30
20
10
0
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Figura 2.9. Energía demandada según día de la semana [Fuente: informe ATLAS de Red Eléctrica] María Fernández de Mesa Bustelo 27 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Gran parte de los comercios públicos como restaurantes y hoteles siguen funcionando los fines de semana con normalidad, pero no generan un cambio debido a que funcionan igual que el resto de la semana. Es por tanto lógica la disminución de la demanda eléctrica que se produce los días festivos como el 24 y 25 de diciembre o el 15 de agosto. Este Trabajo de Fin de Grado está en parte centrado en el estudio de la demanda de estos días especiales, en cómo se deben tener en cuenta y en la influencia que tienen éstos sobre los días posteriores, como se hablará más adelante. 2.3.3 Actividad económica Esta influencia de la actividad económica en la demanda eléctrica se denomina SEDE o señal económica en la demanda eléctrica. En este ámbito se pueden diferenciar dos componentes: uno relacionado con la estacionalidad del sistema económico y otro debido a las fluctuaciones generadas por las distintas actividades económicas en el consumo de energía eléctrica. Esta señal económica depende a su vez, por un lado, de una tendencia que refleja el impacto del desarrollo de los sistemas productivos y de los hábitos sociales del país y por otro, de una evolución coyuntural que muestra los cambios en la demanda que derivan de ajustes económicos más a corto plazo. Dependiendo del sector económico en cuestión, el dominio en la demanda eléctrica y en el Producto Interior Bruto son diferentes. Específicamente, el sector industrial tiene mayor peso en la demanda que en el PIB. Es decir, estas dos curvas puedes ser parecidas pero no tienen por qué coincidir siempre. A pesar de que el crecimiento de la Intensidad Eléctrica del PIB (la cantidad de electricidad que necesita la economía española para la producción) ha estado creciendo últimamente, sigue dominando la influencia de la actividad económica en la demanda, sobretodo desde la crisis de 1992. La razón por la que el PIB ha ido aumentando resulta fácil de entender: cada vez es mayor el número de industrias que necesita grandes cantidades de energía para producir, utilizando mayores cantidades de energía por cantidad de producto y con mayor peso en la demanda del sistema. 28 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica La influencia que ha tenido la actividad económica sobre la demanda anual entre los años 1988 y 1997 ha sido muy variable como se puede observar en la siguiente Figura 2.10, donde se ve una gráfica con la variación anual de la demanda realizada con datos obtenidos de Red Eléctrica: 6
5
4
3
2
1
0
-­‐1
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
-­‐2
-­‐3
-­‐4
Figura 2.10. Variación anual de la demanda por la actividad económica 2.4 Demanda eléctrica en el sistema peninsular En este Capítulo cabe centrarse en la demanda del sistema peninsular, diferente a la del resto de países por su dependencia con la situación económica y social de cada uno de ellos. También es muy influyente la cultura y las costumbres de la población de cada país y las condiciones meteorológicas. Un ejemplo de estas diferencias es Suecia donde, en invierno, el número de horas de día es muy inferior a las horas de sol que tenemos en España, además de que las temperaturas son mucho menores. Por tanto, el uso de las calefacciones se multiplica, así como la iluminación de los hogares desde horas más tempranas. A continuación se estudian las características de la demanda del propio sistema peninsular español, analizando su características y factores que explican su variabilidad. María Fernández de Mesa Bustelo 29 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 2.4.1 Evolución anual de la demanda Para estudiar la evolución anual de la demanda lo mejor es estudiar la energía demandada por los distintos sectores de la sociedad por separado. Al existir en un año las cuatro estaciones con sus respectivas climatologías, días festivos y en general, todos los factores que influyen en la demanda, la diferencia entre la energía demandada un año y otro está mas bien enfocada a la energía que la sociedad necesita para los distintos ámbitos según necesidades temporales o la evolución de la sociedad. Comparando por ejemplo la demanda anual entre 1997 y 2008, se observan claras diferencias en la cantidad de energía demandada por cada uno de los grupos. El desglose de la demanda nacional de energía eléctrica fue el siguiente en cada uno de estos años : Tabla 2.2. Desglose de demanda nacional de energía por sectores [ Fuentes: Ministerio de Industria, Turismo y Comercio y Red Eléctrica ] Como se puede observar en las siguientes Figura 2.11 y Figura 2.12, el sector industrial ha crecido mucho en estos diez años, ganando terreno a el sector servicios. Su crecimiento está relacionado con el desarrollo económico del país debido al impacto que puede tener éste en los niveles de empleo e inversión. Además, el desarrollo de la industria ha estado muy influenciado estos últimos años por la evolución tecnológica, que sigue creciendo día tras día y cada vez son más los aparatos electrónicos que se venden y por tanto fabrican, tendiendo la industria a estar más relacionada a la ciencia e innovación. 30 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica 6% 2% 1%
24%
47%
20%
Industrial
Residencial
Servicios
Transporte
Hostelería
Otros
Figura 2.11. Demanda de energía eléctrica por sectores en 1997 3%
4%
2%
42%
23%
26%
Industrial
Residencial
Servicios
Transporte
Hostelería
Otros
Figura 2.12. Demanda de energía eléctrica por sectores en 2008 Por otro lado, esta distribución de la demanda es importante tenerla en cuenta para entender los días o épocas en los que se notan fuertes aumentos de requerimientos de demanda, como por ejemplo los domingos o el mes de agosto en los que las industrias trabajan menos y necesitan menos electricidad. De la misma forma, es una información valiosa a la hora de predecir la demanda, como se verá a lo largo de este Trabajo de Fin de Grado. 2.4.2 Evolución mensual de la demanda Como ya se ha comentado anteriormente, la demanda de energía es mayor en los meses de invierno que en los meses de verano. Pero aunque esto es lo que se cumple a nivel general, si se estudia la evolución mensual de la demanda en los distintos sectores, se observan diferencias entre ellos. En el mes de enero, por ejemplo, se gestiona la mayor demanda en los hogares pero a la vez la menor en restauración y hoteles turísticos, que aumentan su clientela en los meses de verano o festivos. María Fernández de Mesa Bustelo 31 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM En la Figura 2.13 se muestra la estacionalidad mensual de la demanda, es decir, la constancia o repetición de valores similares de demanda en estos meses (datos obtenidos del atlas de Red Eléctrica). Como era de esperar, se observa que en los meses de verano, que son temporada alta en los hoteles, las cantidades de energía demandadas son altas, mientras que en el sector residencial se tienen mayores valores en las épocas del año en las que se usa más la calefacción. Estacionalidad mensual de la demanda
180
160
140
120
100
80
60
40
20
0
General
Residencial
Hoteles
Industrias
Figura 2.13. Estacionalidad mensual de la demanda Por su parte, el sector industrial en este caso se mantiene prácticamente constante todos los meses excepto en agosto y en enero, cuando los festivos y las vacaciones llevan a una menor necesidad de energía por parte de las compañías, que cierran por vacaciones o tienen menos cantidad de trabajo. Estos meses, en definitiva, sufren una menor laboralidad y un descenso de la demanda eléctrica. 2.4.3 Evolución diaria de la demanda En la Figura 2.14 se puede observar un patrón que se va repitiendo aproximadamente cada 24 horas, lo que muestra que la energía que se consume por ejemplo a las 3 de la tarde cada día es similar. 32 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Figura 2.14. Demanda de energía eléctrica de los días 3 de marzo a 9 de marzo de 2014 La demanda de los fines de semana, además de ser significativamente menor, tiene una curva distinta. Concretamente el domingo se sale del patrón previamente definido. Por tanto, esto indica que no solo se consume menos energía sino que cambian los hábitos o la rutina de consumo, dándose la máxima demanda energética a las 22 horas, cuyo valor es inferior a la mitad del pico de cualquier día laboral. En concreto, en esta Figura se muestra la demanda de energía de la semana del 3 al 9 de marzo de 2014, donde se observa la clara diferencia en el fin de semana incluso en los viernes. 2.4.4 Evolución horaria de la demanda La curva de demanda que se observa habitualmente cualquier día entre semana si no es festivo o en periodos vacacionales es la que se muestra en la Figura 2.15, concretamente la curva de demanda del lunes 3 de marzo de 2014. María Fernández de Mesa Bustelo 33 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 2.15. Curva de demanda eléctrica del lunes 3 de marzo de 2014 Los mayores picos de demanda de energía se dan alrededor alrededor de las 11-­12 horas y a las 18-­19 horas. Por otro lado, se observa un profundo valle durante la noche. Esta repetición es debida a la estrecha relación que existe entre los horarios de jornada laboral y de las rutinas o costumbres de la población con las cantidades de energía demandadas. Los sábados y domingos estos picos son menos acusados y se dan a horas más tardías, como se puede observar en la Figura 2.14, en la que se muestra la demanda del domingo 9 de marzo de 2014. Además se puede ver, como era de esperar, como la cantidad de energía demandada en GW es menor que en la Figura 2.15. Esta repetición de necesidad de energía día tras día favorece una predicción de la demanda que se ajusta más a la realidad, pero también es cierto que los picos no favorecen al sistema eléctrico, que busca flexibilidad y estabilidad. Figura 2.16. Curva de demanda eléctrica del domingo 9 de marzo de 2014 34 Escuela Técnica Superior de Ingenieros Industriales Demanda de energía eléctrica Algunos de los objetivos que persigue actualmente el sector eléctrico relacionados con este hecho son el desplazamiento del consumo de energía a las horas valle y la concienciación de la población de la necesidad del ahorro energético. Es por ello que se están instaurando contadores inteligentes y facturas de discriminación horaria, que bajan el precio de la electricidad hasta los 7 céntimos/kwh aproximadamente entre las 23 y las 8 horas (horas valle), mientras que los precios más altos se encuentran entre las 20 y las 23 horas, llegando hasta los 14 céntimos/kwh. Así, mientras que los consumidores concentren el 30% de su demanda de energía en las horas más baratas, estarán obteniendo un ahorro significante. María Fernández de Mesa Bustelo 35 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 36 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción Capitulo 3. Modelo de predicción Es evidente la necesidad de prever la demanda de energía debido a la imposibilidad de su almacenamiento y a la inconstancia de la curva de demanda para distintas horas y días. La importancia de la eficiencia energética y el interés por mejorar el aprovechamiento de recursos, empuja al sector y a las compañías eléctricas a buscar la mejor predicción de la demanda, aquella que se adecúe más a la realidad. La solución a los mayores consumos de energía de lo esperado no es una solución barata. En estos momentos en los que hace falta más energía de la prevista y generada, entran en juego las centrales en reserva. Éstas, que son mayoritariamente de ciclo combinado, tienen un tiempo de arranque muy inferior a las demás y son capaces de producir energía en cualquier momento y de forma rápida. Este tipo de centrales no suelen entrar en el pool eléctrico por su alto coste de oportunidad y su subsistencia es debida a los pagos que reciben las compañías eléctricas por el hecho de que estén disponibles cuando sean necesarias. Por tanto, una mejor predicción hace menos necesario el uso de este tipo de centrales, produciendo energía de forma más barata y reduciendo los pagos a compañías por sus centrales en reserva. Pero esta predicción de la que se habla no es sencilla. La cantidad de factores que entran en juego dificultan los porcentajes de exactitud de los modelos de predicción desarrollados, las cuales van siendo cada vez más fiables y van incluyendo mayor número de variables en sus predicciones. Continuando esta trayectoria investigadora, este Trabajo de Fin de Grado tiene como objetivo tratar de mejorar un modelo de predicción ya desarrollado, estudiando la influencia de los errores de predicción de la demanda sobre días posteriores. Este Modelo de Predicción de Demanda de Energía Eléctrica ha sido desarrollado por el Departamento de Estadística de la Escuela Técnica Superior de Ingenieros Industriales, en la Universidad Politécnica de Madrid. El programa está implementado en Matlab y utiliza como herramienta para la predicción un modelo estadístico de series temporales, Reg-­ARIMA, para predecir a corto plazo (uno o dos días vista) la demanda de energía eléctrica. María Fernández de Mesa Bustelo 37 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM El modelo hace un predicción de las 24 horas del día de forma separada al estar formada por 24 series temporales de carácter univariante (la misma estructura pero con distintos valores de parámetros) debido a que, de la misma manera que puede ser interesante estudiar las 24 horas del día, también puede ser objeto de estudio un número concreto de horas, incluso una sola hora. En contraposición al modelo, que toma la demanda de cada hora independiente de las demás, en la realidad la demanda de una hora influye en el resto. Es por esta razón por la que se incluyen coeficientes de correlación que relacionan las horas más cercanas. El programa de estudio, que cuenta con más de 200 regresores para la predicción de la demanda, depende de la propia dinámica del sistema, del efecto de la temperatura y del efecto de los días laborales y festivos, de cuya modelización de hablará más adelante. 3.1 Modelos estadísticos empleados 3.1.1 Modelos de regresión Los modelos de regresión analizan el efecto que tiene una serie de variables explicativas xi sobre una variable respuesta y. 3.1.1.1 Regresión simple Los modelos de regresión simple tratan de buscar una dependencia lineal entre dos variables, consiguiendo una recta de la forma: En ella, la variable 𝑥" es la variable independiente o explicativa y el término 𝑢" representa una perturbación aleatoria, que sigue una distribución normal de media 0 y varianza constante 𝜎 % (homocedasticidad), siendo las distintas 𝑢" independientes entre sí. El parámetro 𝛽' representa el valor medio de 𝑦 cuando 𝑥 es nula, y 𝛽) es la pendiente, representando el incremento que se observa en 𝑦 cuando se incrementa en una unidad la variable 𝑥. 38 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción La variabilidad de los puntos alrededor de la recta de regresión se mide con la desviación típica residual 𝑠+ que es la suma de los residuos al cuadrado dividida entre el número de observaciones menos 2. Por último, los residuos son la diferencia entre el valor observado 𝑦" y el valor previsto por la recta 𝑦, : 3.1.1.2 Regresión múltiple El modelo de regresión múltiple incorpora al modelo anterior el efecto de las k variables explicativas, añadiendo una perturbación aleatoria que es provocada por los factores no contemplados en estas k variables. La ecuación general del modelo es de la siguiente forma: La perturbación aleatoria cumple las mismas hipótesis que el modelo de regresión simple, pero además hay que imponer que el número de datos sea mayor que el número de parámetros a estimar k + 1 y que las variables explicativas x sean linealmente independientes. 3.1.2 Series temporales Las series temporales son secuencias de datos que surgen de observar los valores de una misma variable a lo largo de determinados intervalos de tiempo. Estos periodos de tiempo pueden ser discretos o continuos y suelen ser regulares: horas, días, meses, años…etc. El aspecto que caracteriza a las series temporales es que las sucesivas observaciones no son independientes entre si, por lo que hay que analizarlas teniendo en cuenta el orden temporal de las observaciones. En una primera instancia, se pueden clasificar en dos grupos según su predictibilidad: María Fernández de Mesa Bustelo 39 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM • Series deterministas: Permiten realizar predicciones exactas del valor próximo de la serie a partir de un histórico de valores. • Series estocásticas o aleatorias: Realizan predicciones aproximadas en mayor o menor medida a la realidad, sin ser exactas como en el caso anterior. Este es el caso de la predicción de la demanda de energía eléctrica. Están formadas por un conjunto de variables aleatorias {𝑍. } con 𝑡 ∈ 𝑇, donde 𝑡 es la posición dentro de la secuencia de las observaciones. Es decir, si 𝑡 corresponde con la variable tiempo, para cada instante de tiempo existe una variable aleatoria 𝑍. y los valores observados en cada instante forman una serie temporal. Visto de esta manera, se puede entender entonces que una serie temporal es un proceso estocástico en el que 𝑡 corresponde a la variable tiempo. Generalmente, una serie temporal se refiere a un periodo de tiempo más corto que el del proceso estocástico del que proviene la serie. De la misma manera, un proceso estacionario es un caso especial de serie estocástica. Algunos ejemplos de serie estocástica son las señales biomédicas y de comunicación o el índice de la bolsa segundo a segundo. Es aquí donde intervienen los modelos estadísticos que por un lado describen la evolución de la serie y la relación de sus componentes y por otro, predicen la evolución futura de ésta. El número de fenómenos con los que nos encontramos diariamente que siguen este tipo de series es alto, y por esta razón su estudio constituye actualmente un área de mucho interés. 3.1.2.1 Clasificación Las series temporales se pueden clasificar según el número de variables que evolucionan en el periodo temporal de estudio en: • Series univariantes: Son las series en las que se toma un solo dato en cada periodo de observación, que corresponde al valor de la variable estudiada en ese intervalo de tiempo. • Series multivariantes: Son las series en las que se toman dos o más datos en cada periodo de observación, que corresponden al valor de una de las variables estudiadas, por lo que el número de datos obtenidos en cada intervalo de tiempo será igual al número de variables que se estudian. 40 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción En la Figura 3.1 se observa un ejemplo de serie temporal bivariante, donde las variable estudiadas son la temperatura en Cádiz y la temperatura en Bilbao el día 12 de julio de 2016. Si solo estuviera representada una de ellas, la serie sería univariante. T (ºC)
35
30
25
20
15
10
0h
2h
4h
6h
8h 10h 12h 14h 16h 18h 20h 22h Hora
Tempertaura en Cádiz
Temperatura en Bilbao
Figura 3.1. Serie temporal bivariante que muestra las temperaturas en Cádiz y en Bilbao el día 12 de julio de 2016. Las series temporales también se pueden clasificar según su estacionariedad en: • Series estacionarias en media: Son las series que oscilan de forma aproximada a un valor constante. Se denominan también series estables y son muy frecuentes en el mundo de las ondas. • Series no estacionarias en media: Son las series que en lugar de oscilar alrededor de un nivel constante, muestran una o varias tendencias (a la hora de crecer o decrecer) a lo largo del tiempo de estudio. Ejemplos de estos dos tipos de gráficas se muestran en la Figura 3.2: Figura 3.2. Serie estacionaria en media (izquierda) y no estacionaria en media (derecha) [Fuente: Apuntes Estadística Ingeniería Organización Industrial, ETSII UPM] María Fernández de Mesa Bustelo 41 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM • Series estacionarias en varianza: Son las series cuyos datos presentan un grado de dispersión constante en el tiempo, y que al representarlas en una gráfica se observa en la mayoría de las observaciones una distancia similar respecto a la media. • Series no estacionarias en varianza: Son las series cuyos datos presentan una dispersión que no es constante en el tiempo, y que al representarlas en una gráfica se observa un ensanchamiento o estrechamiento respecto a la media. Ejemplos de estos dos tipos de gráficas se muestran en las siguiente Figura 3.3: Figura 3.3. Serie estacionaria en varianza (izquierda) y no estacionaria en varianza (derecha)
[Fuente: Apuntes Estadística Ingeniería Organización Industrial, ETSII UPM] Otra tercera forma de clasificar las series temporales en según su estacionalidad: • Series estacionales: Son las series que presentan una determinada tendencia que se repite con una intensidad similar cada cierto periodo de tiempo: a la misma hora varios días o el mismo mes varios años. La estacionalidad es un fenómeno frecuente en las series de variables sociales y económicas, y en su gráfica se observa la presencia de una patrón que se repite cada cierto tiempo. • Series no estacionales: Son las series cuyos movimientos no se ven influidos por ninguna componente estacional, no encontrándose en su gráfico ningún patrón que se repita a lo largo del tiempo. 3.1.2.2 Análisis univariante Las series temporales pueden descomponerse en tres componentes de la siguiente forma: 42 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción donde: -­ 𝑇. : Se conoce como “nivel de la serie” y es el término que corresponde a la tendencia seguida por la misma. Puede ser constante o variable, dependiendo de si se mantiene fija o no a lo largo del tiempo, en magnitud y en dirección -­ 𝑆. : Es la componente estacional. Algunas veces se puede encontrar por encima de la media y otras veces por debajo, como nuestro modelo de predicción. Se modela como una función periódica, que verifica la condición: -­ Donde s es el periodo de la función, dependiente de la estacionalidad de los datos. De esta forma, una serie diaria con estacional semanal tiene un periodo de siete días, ya que los coeficientes estacionales S se repiten una vez tras cada siete observaciones -­ 𝐼. : Es la componente de irregularidad o componente no controlable, que evalúa las variaciones alrededor de la tendencia o la estacionalidad. Puede ser constante o variable Siguiendo en esta línea, los modelos utilizados para estudiar las series temporales univariantes permiten el desglose de la serie en dos términos: donde: -­ 𝑍. : es la serie a observar -­ 𝑍. ∗ : es la componente predecible de la serie a observar -­ 𝑎. : es la componente de aleatoriedad de la serie, que recoge el resto de efectos que actúan sobre la misma y que no han sido contemplados en el término anterior por no ser predecibles. Estas variables aleatorias tienen una estructura estable en el tiempo, con media cero y varianza constante de una distribución normal María Fernández de Mesa Bustelo 43 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM El estudio de las series temporales en este Trabajo de Fin de Grado no solo requiere que éstas sean series temporales univariantes, sino que además tienen que ser estacionarias para resultar de interés para el estudio y la predicción de la demanda. Este tipo de series, que ya se han introducido en el Capítulo 3.1.2.1, se detalla algo más a continuación. Una serie temporal es estacionaria si: El ejemplo más simple de proceso estacionario es el ruido blanco. Éste se da cuando se cumple que la media y la covarianza de la variable objeto de estudio son nulas. La varianza que presenta es constante, y el hecho de presentar una covarianza nula quiere decir que no existe autocorrelación. Para las variables que siguen una distribución normal, la esta condición de incorrelación temporal implica a su vez independencia. Estos procesos de ruido blanco gaussiano son deseados en series de tiempo, buscando que los residuos sean muy parecidos a esta distribución. De esta forma, se asegura que se ha obtenido la máxima información posible de los datos y que no se pueden obtener más indagaciones de los errores confirmando que las predicciones son fiables y bastante exactas. Las series estacionarias se caracterizan generalmente por permitir crear modelos correctos y fiables y así prever su evolución. La influencia de las observaciones a medida que se avanza en la serie va decreciendo paulatinamente. Algunas de las ventajas que presentan las series estacionarias son la facilidad para obtener predicciones y la estimación de la media para utilizarla para nuevas predicciones (por ser series de media constante). Por tanto, a veces es necesario transformar una serie no estacionaria en una estacionaria, y se lleva a cabo una transformación de ésta eliminando la tendencia, como se explica con más detalle en la página 46, en los modelos integrados I(d). Los distintos tipos de modelos univariantes se explican a continuación: 44 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción PROCESOS AUTORREGRESIVOS AR (p) Este modelo describe un tipo de procesos cuyo comportamiento puede ser predicho con observaciones previas incluyendo además un término de error de predicción. Es uno de los modelos más útiles para representar la inercia que tienen las series temporales por la que se observa una cierta dependencia entre valores presentes y pasados. Es decir, expresan la dependencia lineal entre una variable aleatoria en un instante de tiempo 𝑡 (𝑣. ) y ésta en un momento anterior (𝑣.:; ). El orden 𝑝 indica el número de observaciones que se tienen en cuenta en el modelo. Sea 𝑣) , 𝑣% … 𝑣? una serie temporal de datos, la ecuación general del modelo será: Por tanto, si se quisiera escribir una variable aleatoria que viniera explicada por el valor que hubiera tomado en la observación anterior, añadiendo el correspondiente término de error, correspondería a un proceso autorregresivo de orden 1, AR(1), con la siguiente ecuación: 𝒗𝒕 = ∅ 𝒗𝒕:𝟏 + 𝜺𝒕 donde ∅ es una constante que debe cumplir -­1 < ∅ < 1;; y 𝜀 simboliza el término de error que suele ser un proceso de ruido blanco. De la misma forma se obtendría el polinomio AR(2) si la variable aleatoria estuviera explicada con las dos observaciones inmediatamente anteriores (más el error). Se define 𝐵 como el operador retardo, un operador lineal al que se le aplica una función temporal y proporciona esa misma función retardada en el tiempo: Utilizando este operador 𝐵 se llega a: Despejando entonces 𝜀 se obtiene: María Fernández de Mesa Bustelo 45 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Siendo el polinomio contenido en el paréntesis un polinomio autorregresivo ∅(𝐵) de grado 𝑝. Los coeficientes de este polinomio representan el peso con el que influyen las observaciones pasadas en la observación del instante 𝑡. Éstos son decrecientes, es decir, las observaciones recientes tienen mayor influencia que las anteriores. También se cumple que las raíces del polinomio autorregresivo son menores que la unidad en valor absoluto si el proceso es estacionario. En el modelo de predicción de la demanda, el vector 𝜀 tiene 24 componentes, estando formado por los errores y componentes aleatorias del modelo. PROCESOS DE MEDIA MÓVIL MA (q) Este modelo describe una serie temporal estacionaria. El valor de la variable aleatoria en un instante de tiempo 𝑡, 𝑣. se define en función de los errores correspondientes a instantes justo anteriores a 𝑡, añadiendo como en el caso anterior el término de error. En este caso, 𝑞 indica el orden del modelo de media móvil. Al contrario que el proceso anterior, estos modelos se caracterizan por tener una memoria muy corta, estando el valor de la serie actual relacionado solo con unos pocos valores previos en vez de relacionarse con todos los valores que se han tomado en instantes anteriores. Sea 𝑣) , 𝑣% … 𝑣? una serie temporal de datos, la ecuación general del modelo será: Por tanto, si se quisiera escribir una variable aleatoria 𝑣. que viniera explicada por el valor de la innovación o error observado en el instante anterior, el proceso MA (1) se podría expresar de la siguiente manera, siendo combinación lineal de las dos últimas innovaciones: 𝒗𝒕 = −𝜽 ∙ 𝜺𝒕:𝟏 + 𝜺𝒕 Este proceso será estacionario tome teta el valor que tome por estar compuesto por dos procesos estacionarios. Independientemente de esto, se establece que 𝜃 < 1 para que la innovación del instante anterior tenga menor influencia en 𝑣. que la innovación del instante actual. De la misma forma se obtendría el polinomio MA(2) si la variable aleatoria estuviera explicada por las dos innovaciones anteriores. 46 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción Con el operador retardo se llega a: Despejando 𝑣. : Donde el polinomio contenido en el paréntesis es el polinomio de medias móviles de grado q. PROCESOS AUTORREGRESIVOS DE MEDIA MÓVIL ARMA (p,q) Este modelo es una combinación de los procesos AR y MA con el que se representan procesos cuyos primeros coeficientes son valores arbitrarios y donde los restantes términos decrecen con el distancia temporal. Es decir, es la extensión de los modelos AR (p) y MA (q) que incluye por tanto términos autorregresivos y medias móviles. En esta línea, el valor de una variable del modelo ARMA en un instante de tiempo t, se define según los valores que ha tomado dicha variable en instantes de tiempo previos y por una sucesión de errores que se han dado también en instantes de tiempo anteriores a t. Sea una serie de datos temporal 𝑣) , 𝑣% … 𝑣? , la ecuación general del modelo será: Por tanto, para denotar una variable aleatoria que está definida por el valor de si misma en el instante anterior y además por el error correspondiente también al instante anterior, es decir, ARMA (1,1), se tiene: 𝒗𝒕 = ∅𝟏 𝒗𝒕:𝟏 − 𝜽𝟏 𝜺𝒕:𝟏 + 𝜺𝒕 Utilizando el operador retardo B: Que identificándolo con términos anteriores: María Fernández de Mesa Bustelo 47 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM PROCESOS INTEGRADOS 𝑰(𝒅) Este tipo de procesos, que en principio no son estacionarios, pasan a serlo después de diferenciarlas. El orden del modelo, d, indica el número mínimo de diferenciales que son necesarias para convertir el proceso en uno estacionario. Una característica distintiva de este proceso es que la dependencia de una variable 𝑣. aleatoria con los valores que ha tomado ésta en instantes de tiempo anteriores va disminuyendo linealmente con el tiempo hasta desaparecer. Normalmente, estos procesos son no estacionarios con la media, es decir, su nivel medio va variando con el tiempo. Para poder trabajar con estas series como estacionarias en modelos univariantes, es necesario diferenciarlas. En los casos en los que la serie sea no estacionaria en varianza, se hace una transformación logarítmica. En algunas ocasiones, es necesario diferenciar estas series más de una vez para transformarlas en estacionarias, llegando a 𝐼 𝑑 con 𝑦. = ∇; ∙ 𝑣. . Es por tanto evidente que un proceso que fuera inicialmente estacionario se denominaría 𝐼(0). Para corregir la variabilidad que hace estas series no estacionarias, se utiliza el método de la diferenciación, que supone que la tendencia de la serie evoluciona lentamente en el tiempo. Esto se refiere a que la tendencia en el instante 𝑡 y en el instante 𝑡 − 1 deben ser próximas. Aplicando este método a la serie 𝑣) , 𝑣% … 𝑣? y siendo 𝑧. la nueva variable a utilizar: Utilizando el operador retardo B: Que sería la variable resultante de diferenciar 𝑦. una sola vez. Aplicando esta diferenciación d veces, como indica el orden del proceso I(d), se obtendría una nueva variable: 48 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción Un ejemplo de diferenciación de una serie no estacionaria se muestra en la Figura 3.4. Se representa gráficamente el número mensual de pasajeros de un avión, serie que no es estacionaria en media ni tampoco en varianza. Figura 3.4. Serie no estacionaria: número mensual de pasajeros en un avión [Fuente: Apuntes Estadística Ingeniería Organización Industrial, ETSII UPM] Al realizar una transformación logarítmica, la serie se convierte en estacionaria (Figura izquierda) en varianza pero la tendencia de los datos sigue siendo creciente, por lo que se le aplica una diferenciación (Figura derecha). Figura 3.5. Serie estacionaria en varianza (izquierda) y en media (derecha) [Fuente: Apuntes Estadística Ingeniería Organización Industrial, ETSII UPM] En este momento la serie se vuelve estacionaria y se puede trabajar con ella en modelos univariantes de series temporales. PROCESOS AUTORREGRESIVOS INTEGRADOS DE MEDIA MÓVIL ARIMA Cuando se tiene un proceso ARIMA no estacionario y se diferencia d veces hasta obtener una nueva serie estacionaria, se llega a un proceso ARIMA (p,d,q). Por tanto, se puede decir que es una combinación de los modelos AR (p), I (d) y María Fernández de Mesa Bustelo 49 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM MA (q);; con p el orden de la parte autorregresiva, q el orden de la parte media móvil y d el orden de integración del proceso. Este modelo presenta por un lado una parte regular de grados (p,d,q) y por otro lado una parte irregular (P,Q,D)y por tanto será un proceso expresado como: ARIMA (p,d,q) x (P,D,Q)S En nuestro modelo, que busca predecir la demanda de energía, la estacionalidad de la demanda es de tipo semanal, por lo tanto s=7. Así, se puede escribir la ecuación general del modelo autorregresivo integrado de media móvil ARIMA como: La construcción de un modelo ARIMA se realiza en varias etapas, como se observa en el esquema de la Figura. El primer paso es elegir uno de los procesos ARIMA candidatos para comprobar que funciona y que se adecua a los datos. Posteriormente, se realiza la estimación de los parámetros del modelo elegido, para comprobar su validez. Si éste resulta satisfactorio, el proceso está listo para hacer predicciones futuras, pero en el caso de que no lo fuera, se volvería a probar con otro modelo, estimando de nuevo sus parámetros. Por tanto, la construcción del modelo ARIMA se realiza de forma iterativa. Figura 3.6. Esquema de construcción del modelo ARIMA 50 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción 3.1.3 Modelo implementado: Reg-­ARIMA El programa utiliza para el modelo de la serie de la demanda de energía eléctrica el ya citado modelo de series temporales Reg-­ARIMA, con polinomios autorregresivos integrados de media móvil estacionales y regulares. El análisis se realiza de forma univariante estimando un modelo para cada hora, para evitar el trabajo con un número demasiado grande de datos que pueden dar errores y problemas al consumir excesivamente recursos de los equipos informáticos. Definiendo 𝑦. como el vector con 24 componentes que contiene el logaritmo de la demanda horaria de energía para el día 𝑡 e 𝑦U,. el valor específico de las componentes del vector para cada hora: Donde los parámetros y variables se definen como: -­ 𝑐 : constante del modelo -­ 𝑋. : vector de dimensión 𝑚) con los regresores relativos a la temperatura del día t y anteriores, que son comunes a todas las horas de un día 𝑡. -­ 𝛼U : vector de dimensión 𝑚) que incluye los parámetros a estimar correspondientes a la temperatura, diferentes en este caso para cada hora ℎ. -­ 𝑍. : vector de dimensión 𝑚% que identifica el tipo de día 𝑡 como día festivo o no festivo, también común para todas las horas del día 𝑡. -­ 𝛽U : vector de dimensión 𝑚% que incluye los parámetros a estimar correspondientes al tipo de día, diferentes para cada hora ℎ. -­ 𝑣U,. : errores del modelo de regresión según el modelo ARIMA -­ 𝜀U,. : innovaciones o ruido del modelo ARIMA, variables aleatorias con distribución normal de media cero y varianza 𝜎 % . -­ 𝐵: operador retardo. -­ ∅ 𝐵 : polinomio autorregresivo regular de grado 𝑝 con coeficientes diferentes para cada hora ℎ. -­ (1 − 𝐵); : término que índica el número de diferencias regulares. María Fernández de Mesa Bustelo 51 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM -­ (1 − 𝐵 \ )] : término que indica el número de diferencias estacionales. -­ ∅U 𝐵 : polinomio de media móvil regular de grado 𝑞 con coeficientes diferentes para cada hora ℎ. Los mejores resultados al modelar de forma adecuada la serie temporal de la demanda se obtienen con el modelo ARIMA (0,1,3) x (0,1,2). Los polinomios autorregresivos son de grado 0 y los de media móvil son de grado 2 o grado 3. Por lo tanto la ecuación de cada modelo horario se reduce a: Cabe destacar también la corrección horaria que considera el modelo debido a que al tratar las distintas horas del día de forma independiente no se tienen en cuenta las relaciones entre la demanda de las horas sucesivas de un mismo día y más concretamente, entre las últimas horas de un día y las primeras horas del siguiente. Para corregir estas predicciones de los modelos univariantes utilizando la información sobre la demanda de horas anteriores se aplica una corrección horaria en el modelo. 3.2 Modelización de la temperatura Ya se ha comentado la gran influencia que tiene la temperatura sobre la demanda, siendo directamente proporcional en los meses más cálidos (verano) e inversamente proporcional en los meses más fríos (invierno). En la representación de la demanda eléctrica casada en un año frente a las temperaturas dadas, Figura 3.7, se puede observar como la función obtenida tiene forma parabólica y alcanza los valores más elevados cuando las temperaturas tienden a ser muy altas o muy bajas, y los valores mínimos cuando las temperaturas rondan los 20ºC. Los puntos azules representan la demanda según la temperatura los días entre semana, los verdes y rojos representan la demanda según la temperatura los sábados y domingos respectivamente, y los negros representan la demanda según la temperatura los días festivos. 52 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción Figura 3.7. Representación de la demanda eléctrica en función de la temperatura. [Fuente: “Modelo de Predicción de demanda eléctrica, Laboratorio de Estadística ETSII UPM] Esta curva se implementa en el modelo empleando regresión con splines (Anexo 2) que se basa en la división del rango de las temperaturas de estudio (𝑇^ , 𝑇_ ) en varios tramos ajustando un polinomio distinto en cada uno de ellos. Cada tramo posee un conjunto de nodos en los que los polinomios se unen de forma que la función global que resulta es continua en todos sus puntos, al igual que su primera y segunda derivada y que se denominan como 𝑥" con 𝑖 = 1, 2 … siendo 𝑟 el número de nodos total. La base de las funciones de splines de Wahba (1990) y Wood (2010) es la siguiente: Como temperatura media diaria 𝑇 se utiliza la media de las temperaturas máximas registradas en las ciudades con mayor población del territorio peninsular español: María Fernández de Mesa Bustelo 53 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 3.8. Ciudades con las que se calcula la temperatura media peninsular Siendo 𝑇^ y 𝑇_ los valores máximo y mínimo de la temperatura peninsular, la variables x que aparece en las ecuaciones anteriores se define como: Por tanto, la demanda de energía eléctrica un día t además de depender de la temperatura que ha hecho ese día, depende de la temperatura de los días anteriores 𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑘. El modelo de regresión empleado entonces para la hora ℎ del día 𝑡, llamado 𝑔U,. , recoge la influencia que tiene la temperatura en la demanda, formulándose como: Con r el número de nodos y VARK el número de retardos considerados, el número de parámetros a modelizar es (𝑟 + 1)(𝐾 + 1). Las filas de la matriz de regresores relacionados con la temperatura son: Y el vector de parámetros: 54 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción 3.3 Modelización de los días especiales Como ya se ha comentado durante este Trabajo de Fin de Grado, las curvas de demanda de los días de la semana son significativamente distintas entre si. Mientras que lo martes miércoles y jueves presentan una demanda muy similar, los sábados y domingo la curva de demanda presenta una forma diferente además de valores menores. Por último, los lunes y los viernes las curvas de carga difieren algo de el resto de días laborales por su proximidad con el fin de semana. Otros días que presentan también curvas de demanda diferentes con valores muy bajos de energía requerida por la población son los días especiales, cuyo comportamiento y modelización cambia completamente de lo explicado hasta ahora. Además, no hay que olvidar que no solo hay que incluir en la modelización el efecto de los días festivos nacionales sino que también hay que tener en cuenta los días anteriores y posteriores que también se ven afectados por estos festivos. La importancia que presenta la correcta implementación de estos efectos en el modelo es evidente: cada día festivo no considerado como tal provoca un error en el programa que se arrastra al tener éste comportamiento dinámico, pudiendo llegar a ocasionar un error global significativamente alto en el programa. Sin embargo, la dificultad de la modelización de los días especiales es alta debido varios aspectos. Dependiendo del día de la semana en el que caiga un festivo tiene un efecto diferente, variando entonces el consumo eléctrico si el festivo cae en lunes o si cae en sábado. Además, no facilita la modelización el hecho de que el festivo no modifique solo la curva de carga de ese mismo día, sino de los días próximos. En este modelo, se clasifican los días festivos en m grupos: 𝐺) , 𝐺% , … , 𝐺g y se definen las variables 𝑍.," ficticias para indicar al grupo al que pertenece el festivo en cuestión como: Tomando esta valor 1 si pertenece al grupo 𝐺" y 0 en caso contrario. Por otro lado, el indicador del día de la semana también es una variable ficticia 𝐼.,h que funciona de manera similar: María Fernández de Mesa Bustelo 55 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Con el objetivo de considerar en el modelo la influencia del festivo en los días anteriores a éste, se crea una variable ficticia 𝑈."j , donde 𝑖 corresponde al tipo de día y 𝑘 es el número de días considerados anteriores al festivo. La demanda de los días posteriores al festivo también se puede ver afectada, lo que se representa con la siguiente variable 𝑉 j ." : Los festivos no afectan de igual forma a todos las ciudades y a la población de todo el territorio peninsular, debido a que mientras algunas festividades repercuten a todo el país, otros solo a algunas comunidades autónomas. Un ejemplo de esto es San Isidro, festivo solo en la Comunidad Autónoma de Madrid. Este es un aspecto importante a considerar en el modelo de predicción, y para ello se crea una variable que permita cuantificar la influencia de este efecto sobre la demanda energética, 𝑃. reflejando el porcentaje de población que es afectada por la festividad del día 𝑡. Por tanto, su valor varía entre 0 cuando nadie es afectado por este festivo y 1 cuando la festividad es de carácter nacional y toda la población española es afectada por ésta. Por tanto, la influencia de los días especiales sobre la curva de demanda de energía se puede expresar de la siguiente manera agrupando todas las variables que han quedado definidas anteriormente como una función lineal: Donde: -­ 𝑘m corresponde al número de días antes del festivo -­ 𝑘n corresponde al número de días después del festivo -­ 𝛽U"h mide el incremento o disminución de la demanda de la hora ℎ de un día especial del grupo 𝑖 que cae en día 𝑗 de la semana -­ 𝛾U"h mide el incremento o disminución de la demanda de la hora ℎ, 𝑘 días después del festivo que cae en día 𝑗 de la semana 56 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción -­ 𝛿U"h mide el incremento o disminución de la demanda de la hora h, k días después del festivo que cae en día j de la semana Tanto 𝑘m como 𝑘n pueden depender del tipo de día festivo y del día de la semana en que caen, pasando a llamarse 𝑘m"h y 𝑘n"h , con valores 0, 1 o 2. Para modelizar los días especiales hacen falta entre 100 y 200 parámetros, según la fórmula 7 x 𝑚 x ( 𝑘m + 𝑘n + 1). Con este alto número de parámetros se tiene como ventaja una alta precisión pero por otro lado un inconveniente: podría ser pesado y laborioso para el programa y que éste no llegara al óptimo. Por esta razón, para reducir el número de parámetros a estimar y aumentar los grados de libertad con los que éstos se estiman, se trata de simplificar términos e igualar algunos muy similares. Para ello se pueden imponer restricciones 𝛽U)% = 𝛽U)r = 𝛽U)s , indicando que el cálculo de la demanda de una misma hora h es independiente de si el festivo del grupo 𝑖 cae en martes, miércoles o jueves (respectivamente 𝑖 = 2, 3 o 4) . Con esta restricción, solo se tendría en cuenta la temperatura ambiente. Otra mejora que se produjo posteriormente para seguir reduciendo el número de parámetros fue el método de los contrastes, mediante técnicas de eliminación o agrupación. El modelo clasifica estos días especiales en nueve grupos, en cada uno de los cuales se incluyen el festivo en sí y sus contiguos anteriores y posteriores. Los ocho primeros grupos hacen referencia a los festivos de carácter nacional, con un valor de P igual a 1, y en el noveno grupo están los festivos de carácter local o regional, con un valor de P que en este caso es menor que la unidad. Los festivos nacionales se muestran en la siguiente Tabla 3.1: Tabla 3.1. Festivos nacionales María Fernández de Mesa Bustelo 57 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Asimismo, en el grupo 6 está incluido el día 8 de diciembre, al igual que el 25 de diciembre dentro del grupo 7 y el 1 de enero dentro del grupo 8. Además de éstos, hay otros días que se consideran igual de importantes que éstos en cuanto a festividad por el OMIE, a pesar de ser festivo solo en algunas comunidades españolas. A efectos de pérdidas y de menor cantidad de energía demandada, se consideran como festivos, además de la Tabla anterior, el 24 y 25 de marzo, el 2 y el 16 de mayo, el 25 de julio, el 9 de noviembre y el 26 de diciembre. 3.4 Funcionamiento del programa El programa con el que se calcula la predicción de la demanda va acompañado de un histórico de 10 años? con el que estima los parámetros y realiza las predicciones. Hay que diferenciar dos periodos de tiempo: el horizonte de estimación, en el que se estiman los parámetros de los regresores de los 24 modelos y el periodo de predicción, en el que se realizan predicciones basadas en el periodo anterior. Lo primero que se introduce antes de ejecutar el programa son las fechas de inicio y fin de las que queremos predecir la demanda. En el ejemplo de la Figura, se quiere predecir desde el 1 de enero de 2013 hasta el 1 de junio de 2015, poniendo como fecha fin el día posterior. Fragmento del programa 1. Introducción periodo de predicción Con estos datos y la información relativa a los festivos se crea la matriz de regresores para los días festivos, formada por elementos de valor ‘0’ en su mayoría y de valor ‘1’ cuando es día festivo. Posteriormente se leen los datos de demanda y de temperatura de un Excel, que abarcan desde el 1 de marzo de 2016 hasta el 1 de enero de 2000, y se crea la matriz de regresores para la temperatura. En los casos en los que no coincidan éste y el periodo de la estimación, es necesario recortar los datos para ajustarlos a las fechas introducidas. 58 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción Por tanto, la matriz de regresores 𝑋 está compuesta por otras dos matrices: la matriz 𝑋) formada por los veinte regresores que modelizan la temperatura y la matriz 𝑋% formada por los regresores que modelizan los días festivos, cada una formada con un histórico de días diferente. En esta matriz es donde se pueden añadir posteriormente regresores de otros efectos si fuera necesario. Llegado este punto, el programa pasará a la estimación de parámetros, y a las fases de predicción de la demanda y de resultados. 3.4.1 Fase de estimación La fase de estimación comienza preparando los datos de entrada eliminando las columnas donde todos los valores sean nulos y posteriormente se estiman los parámetros del modelo para cada hora, guardando los resultados obtenidos. En cuanto a la estimación, se puede decir al programa que haga una nueva o que utilice alguna en concreto. En el caso de la Figura, el programa utiliza la estimación que se encuentra en el archivo ´PENIN_data_modelo_2016_04_04_19-­
56’. Fragmento del programa 2. Posibilidades en cuanto a la estimación Como periodo o horizonte de estimación (histórico de datos para la estimación) se toma el periodo más alto posible del que se dispongan datos para así tener mayor probabilidad de que un día festivo caiga en el mismo día de la semana del que se quiere realizar la predicción. Para entender esto hay que tener en cuenta que para que un festivo que ha caído este año en lunes vuelva a caer en lunes en un futuro próximo, deben pasar varios. Concretamente, para tener la seguridad de que un día festivo cae dos veces en un mismo día de la semana deben pasar 12 años, aunque pueden ser menos. Es por esta razón por la que el periodo de estimación elegido ha sido de 12 años y el de predicción ha sido de un año de duración, el siguiente a estos doce. María Fernández de Mesa Bustelo 59 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Por ejemplo, el pasado 25 de diciembre de 2015 era viernes, y para que este día vuelva a caer en viernes tienen que pasar cinco años, puesto que el día de navidad en 2020 vuelve a ser viernes. De este periodo, los años más recientes tienen mayor influencia que los más antiguos. Para llegar al mejor modelo de estimación, el Laboratorio de Estadística prueba con muchos modelos diferentes en el modo offline del programa. De esta forma, simulamos una ejecución del programa como si hoy estuviéramos en una fecha pasada. Lo que se consigue de esta forma es poder comparar la predicción de demanda obtenida con los valores reales de demanda, ya que al ser una fecha pasada también se tienen. En contraposición, con el modelo online calculan las predicciones de los próximos días, y hay que esperar a que pasen estos días para compararlas con los valores reales. En esta fase, en la que se estiman los parámetros del modelo, se obtienen también los residuos y la varianza que nos permiten estudiar la calidad del modelo obtenido. Los parámetros obtenidos son muy parecidos para horas contiguas y varían de forma muy suave a lo largo de las horas del día, pero entre horas muy alejadas se pueden observar diferencias significantes. Además, también se fijan las horas y días que se quieren calcular y la longitud del histórico que se quiere utilizar. Como se puede observar en la Figura, se calcula la demanda para las 24 horas del día utilizando un histórico de 12 años. Posteriormente, para cada una de estas 24 horas de cada día se estima un modelo ARIMA que ha sido implementado en Matlab: Fragmento del programa 3. Introducción horas y días del histórico de estimación Fragmento del programa 4. Estimación modelo ARIMA 60 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción La desviación típica residual, que indica las horas que son más fáciles de predecir, sigue una curva con forma que se observa en la siguiente Figura: 0,022
0,021
0,02
0,019
0,018
0,017
0,016
0,015
0,014
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Horas
Figura 3.9. Desviación típica residual por horas Los valores más altos de desviación típica se dan a las 19 horas y a las 9 de la mañana. Como buen indicador de la calidad de la predicción de la demanda, se puede intuir que a estas horas se obtendrán los mayores errores en la predicción. Cabe destacar que son estas horas a las que se producen los picos de demanda. 3.4.2 Fase de predicción En esta parte del programa se calculan las predicciones para las fechas del horizonte de predicción utilizando para ello los valores de los parámetros que se han creado en la fase de estimación. La fase de predicción también consta de tres partes: la preparación de los datos, la predicción en sí y el almacenamiento de resultados. Como el programa realiza una predicción por hora y por día, si se quiere predecir la demanda de energía eléctrica de todo un año se deben realizar unas 8700 predicciones a uno o dos días vista. La variable de salida es una matriz formada por M filas (siendo M el número de días) y N columnas (con N el número de horas). María Fernández de Mesa Bustelo 61 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Al ejecutar el programa en modo offline, como se ha comentado anteriormente, se pueden comparar las predicciones realizadas con los valores reales y asi obtener el error de predicción para las horas y días del periodo de predicción. Siendo 𝑦U,. la predicción de la demanda para el día t y la hora h, e 𝑦U,. el valor real de la demanda para el mismo día y hora, el error de predicción 𝑒U,. se define como: Como los errores van creciendo al aumentar la demanda, se corrige este efecto utilizando el error porcentual 𝑝U,. : El error cuadrático medio para el día t se calcula como la media de estos errores porcentuales al cuadrado: Considerando los 365 días de un año, se puede calcular el error cuadrático medio de la hora h a lo largo del año como la raíz cuadrada de la media de los errores porcentuales al cuadrado: Los valores más altos de error cuadrático medio de una predicción indica que se han tenido unas predicciones malas, alejadas de los valores reales. Por tanto, los objetivos de mejora de este programa están enfocados a obtener los menores valores de ECM. 3.4.3 Fase de resultados La mejor manera de evaluar los resultados de las predicciones efectuadas es con error cuadrático medio obtenido. Las predicciones obtenidas con el programa 62 Escuela Técnica Superior de Ingenieros Industriales Modelo de predicción original cuyos errores se tratan de corregir para el día 3 de marzo de 2014 presentan el siguiente error cuadrático medio: Figura 3.10. ECM (%) de las predicciones hechas el 3 de marzo de 2014 Como era de esperar según los valores de la desviación típica residual, el error que se produce a las 20 horas es el más alto, coincidiendo con los mayores valores de demanda por la población en generalmente los días laborales entre semana. Con los valores de los resultados de las predicciones, se procede al estudio y análisis del modelo María Fernández de Mesa Bustelo 63 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM .
64 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción Capitulo 4. Modificación del programa de predicción El inconveniente que existe en el sector eléctrico por la imposibilidad de almacenar energía en grandes cantidades lleva al sistema a pérdidas económicas considerables. Algunos progresos en este campo tratan de mejorar este almacenamiento, como el almacenamiento de energía hidroeléctrica y el almacenamiento de aire comprimido. El primero de los casos no almacena energía en sí, pero la reutiliza para volver a generarla. Mientras continúa esta situación, resulta imprescindible realizar predicciones de demanda para generar solo la energía que se vaya a utilizar. La demanda energética, aunque siga una curva similar algunos días de la semana y meses del año, varía continuamente por diversas causas anteriormente expuestas. Por tanto, si cada día se produjese lo demandado por la población el día anterior, el sistema estaría sumido en grandes pérdidas. Hoy en día existe un gran sector dedicado a crear, desarrollar y mejorar estos programas de predicción de demanda, utilizando modelos estadísticos y valores de demanda anteriormente almacenados, que poco a poco van consiguiendo predicciones que se asemejan cada vez más a los valores reales. Pero estos modelos siguen estando en investigación debido a la gran dificultad que tienen los expertos para conseguir pronósticos ajustados a la necesidad energética de la población. Esto se debe a la complejidad de factores que influyen en la demanda y a los sucesos repentinos que hacen que ésta varíe en gran medida. Además, otro hecho que dificulta esta previsión es la relación que existe entre errores que se han producido en la predicción de un día concreto y la demanda prevista para los posteriores. En este inconveniente del modelo en cuestión se centra el estudio que se ha llevado a cabo en esta investigación. En esta línea, este Trabajo de Fin de Grado tiene como objetivo introducir algunas modificaciones en el Modelo de Predicción de Demanda de Energía Eléctrica desarrollado por el Departamento de Estadística de la Escuela Técnica Superior de Ingenieros Industriales, centrándose en corregir un tipo concreto de errores que se detallan más adelante. María Fernández de Mesa Bustelo 65 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM La investigación de errores en este modelo y sus posibles mejoras se lleva a cabo mediante modificaciones en el código del programa, que va proporcionando unos resultados que se analizan en comparación con los anteriores de forma que es posible conocer el mejor proceso, que finalmente es el que ofrece una predicción más ceñida a los valores reales. Un aspecto relevante a tener en cuenta es el siguiente: si se realiza una predicción de la demanda un día t para los próximos tres días (por ejemplo), sería lógico pensar en principio que es necesario esperar tres días enteros para comprobar la calidad de nuestra predicción comparándola con los valores de energía que ha necesitado la población durante el periodo de predicción. Figura 4.1. Modo online del programa de predicción de demanda energética Sin embargo, con este programa se presenta la opción de hacer una predicción y comprobar en qué medida se ajusta a la realidad al mismo tiempo. Para ello, se utiliza el modo offlline del programa, que consiste en hacer la predicción en un día t que ya ha pasado, con un periodo de predicción que también sea anterior a la fecha actual. En contraposición, el modo online es el que se utiliza para hacer las predicciones en el día actual. Figura 4.2. Modo offline del programa de predicción de demanda energética El modo offline, esquematizado en la Figura 4.2 para un periodo de predicción de dos días en este caso concreto, se puede entender como el procedimiento que 66 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción se utiliza en el modelo para ir probando modificaciones en el código o metodología, mientras que el online se usaría en casos reales de predicción de demanda. Al situar el programa a hacer la predicción en una fecha pasada, no es necesaria la espera a que pase el periodo de predicción. Esta predicción se hace, para que tenga sentido la comparación, sin tener en cuenta los valores reales de demanda que hubo durante este periodo de predicción;; es decir, como si el día que se hace la predicción fuera el día presente en realidad. La mejora que se introduce en el programa está relacionada con el error que se da en la predicción de demanda de un día t debido al error que se produjo en la predicción del día t-­1. Al ser la memoria una de las características de este modelo, es fácil entender que el error se arrastre de un día a otro. El mismo programa en si tiende a mejorar las predicciones: si en el día t-­1 se ha equivocado en gran medida con la predicción, en el día tiende a hacer las predicciones intentando lidiar con él. Es decir, la inercia propia del modelo le hace corregir las predicciones consecutivamente posteriores. Esto es importante para entender más adelante la clasificación que se hace de los días según como el programa reacciona a un error alto de predicción. Hay que señalar que cuando se habla de un error grande en la predicción de la demanda se entiende que tiene un error cuadrático medio mayor de 3 %, el cual se fija en el programa para que compare los días que se han hecho buenas predicciones con los días que es necesario estudiar como consecuencia de importantes diferencias entre el valor esperado de demanda y el valor real. Normalmente se tiende a pensar que el error en la predicción es exclusivamente debido a una demanda real fuera de lo normal, mientras que aquí se está hablando de la influencia que tiene el error de predicción que se ha producido el día anterior. Sin embargo, aunque pueda parecer que la corrección de este error no surge en una primera impresión, cambios en este sector del programa varían positivamente las predicciones. Con esta modificación se intenta suavizar el efecto de las peores predicciones sobre días inmediatamente posteriores, de forma que las buenas predicciones sean más influyentes sobre los días que le siguen que las malas predicciones. Cabe destacar que, al depender esta predicción de muchos factores, no se consigue una mejora de la totalidad de los días que presentan errores cuadráticos María Fernández de Mesa Bustelo 67 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM medios altos, pero si que mejoran gran parte de ellos. La clave está en que este tipo de pequeñas mejoras se realicen de forma continuada, convirtiéndose así todas ellas en la causa de mejoras considerables en el modelo implementado. 4.1 Análisis previo En primer lugar se realiza el análisis de los periodos de predicción de demanda con alto error cuadrático medio, para comprobar si existe algún patrón en estas diferencias con los valores reales y así poder aplicar las modificaciones que sean convenientes. Para ello, con los datos de predicción y demanda real obtenidos previamente, se buscan los días con ECM mayor que 3% (consideramos error alto cuando es mayor que 3) entre el día 1 de enero de 2014 hasta el 26 de febrero de 2016. Para facilitar el examen del comportamiento de estos errores, se crean gráficas con las curvas de demanda prevista y real para cada día con alto error y sus siete días posteriores, obteniendo así unas curvas durante ocho días y para poder observar los errores de los días consecutivos. Los días cuyo estudio se consideran de mayor importancia son los dos días consecutivos y el mismo día de la semana siete días después. Por tanto, principalmente se investiga la influencia que tiene una mala predicción en un día t sobre los dos días inmediatamente posteriores y el de la semana siguiente, es decir, sobre los t+1, t+2 y t+7. Las predicciones de demanda se realizan de dos maneras distintas: con refresco horario y sin refresco horario, para ver el error evoluciona de una manera característica en cada una de ellas. Las predicciones sin refresco horario se realizan mediante 24 modelos univariantes independientes (uno para cada hora del día) de manera que para realizar la predicción de mañana lunes (por ejemplo) de la hora x, se utiliza la demanda real que hubo el lunes pasado a la misma hora x. Este funcionamiento, que era el que se utilizaba de forma primitiva en los modelos de predicción, no tiene en cuenta por tanto los valores de demanda de las últimas horas. En algún momento se introdujo una mejora realizada con esta cuestión. Ahora el modelo puede tener en cuenta, si se desea, los valores reales de demanda que 68 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción ha habido en las últimas horas, dato importante sobretodo para las horas inmediatamente posteriores a la predicción a realizar. Esto se consigue utilizando un solo modelo univariante que fusione los veinticuatro modelos independientes de todas las horas. Esta introducción, que se conoce como refresco horario, mejora las predicciones reduciendo significativamente su error, como se va a comprobar más adelante. Una vez obtenidas las gráficas de los días con errores grandes y sus días posteriores, se analiza: -­ Si son mejores las predicciones de demanda realizadas con refresco horario y sin refresco horario. -­ Si siempre se cometen en la predicción del día t+1 errores altos pero con el signo cambiado, y lo mismo para los días t+2, t+3 y t+7. -­ Si se observa algún tipo de comportamiento regular. El término “el signo cambiado” se refiere a cuando la predicción de un día t se pasa respecto a los valores reales y al día siguiente la predicción aparece con valores menores que los reales. Por el contrario, cuando el signo no cambia, la predicción de un día t se pasa respecto a los valores reales y en el día t+1 pasa lo mismo. Los resultados de este análisis se muestran en las siguientes imágenes. En la Tabla 4.1 se pueden ver los valores del error cuadrático medio para los distintos días con y sin refresco horario, y una comparación que indica cuál es la mejor predicción de las dos. Tabla 4.1. Valores del error cuadrático medio con y sin refresco horario María Fernández de Mesa Bustelo 69 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM En la Tabla 4.2. se observa el valor de los errores en la predicción de los días t+1, t+2, t+3 y t+7. Todos estos errores anteriores se representan gráficamente en la Figura 4.3. Tabla 4.2. Valores del error cuadrático medio de los días posteriores a malas predicciones, con altos valores de ECM 8
ECM (%)
7
6
5
4
3
2
1
0
ECM dia d
ECM d+1
ECM d+2
ECM d+3
ECM d+7
29/12/14
28/12/14
13/10/14
1/5/15
15/8/14
22/12/14
3/5/15
1/5/14
14/12/14
2/1/14
Figura 4.3. Evolución del ECM para los días de estudio 70 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción Por último, en las Tabla 4.3 y Tabla 4.4 se muestran los resultados del análisis realizado, que responden a si en la predicción de los días posteriores aparecen ECM altos y a si éstos aparecen con el signo cambiado. Tabla 4.3. Resumen de la influencia de días con alto ECM sobre días posteriores Tabla 4.4. Signo del ECM de los días posteriores a días con alto ECM El primer comentario que se puede hacer respecto a estos resultados es la gran diversidad de resultados, que no llegan a seguir un patrón claro aunque se pueden reconocer algunas características en el comportamiento. Esta diversidad de resultados es consecuencia de la alta complejidad de los factores que influyen en esta predicción. María Fernández de Mesa Bustelo 71 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Una conclusión que se puede sacar de la Tabla 4.1 es que los días con refresco horario presentan en general menos valores de ECM que los que no tienen refresco horario. Esto resulta lógico al estar relacionados de esta forma la predicción de la demanda de una hora h con la demanda real de la hora inmediatamente anterior. Sin embargo, al influir en el valor del error pero no en la evolución de su valor los días consecutivos (no se observa en la Tabla una mejoría concreta en los días posteriores respecto al día t al aplicar el refresco horario), se trabaja sin refresco horario para mayor facilidad. Se puede observar que la influencia del día t sobre los días posteriores en mucho más fuerte sobre los días t+1 y t+2 que sobre los siguientes, y va perdiendo peso cuanto más se aleje el día de la semana. En la Tabla 4.2 se ve como el único día que presenta error alto en t+7 es el 22 de diciembre de 2014. Al ser solo un caso también existe la opción de que el error alto en este día no fuera por la influencia que de la mala predicción del mismo día una semana antes, sino por otras causas como puede ser la cercanía a un festivo, el 31 de diciembre. Por otro lado, se puede ver que, excepto para el día 28 de diciembre de 2014, el resto tienen un menor ECM en t+1 que en t. No obstante, que esto se cumpla no quiere decir que estos errores en t+1 no sean altos, como se puede comprobar en la Figura 4.3, donde se ve que cuatro de los días tienen en t+1 valores de ECM superiores a la línea discontinua, que representan el límite por encima del cual el error pasa a ser alto. La mayor controversia aparece en la Tabla 4.4 en la que se observa que los días con ECM alto posteriores a una mala predicción no siempre aparecen con el mismo signo de error, y tampoco siempre con el signo contrario. Además, en algunos días (que aparecen en la Tabla con un SI – NO) se da el caso en el que a algunas horas de un día t+1 el error en la predicción presenta el mismo signo que el día anterior, y a otras horas, el error presenta el signo contrario. Estos tres casos particulares de la evolución del error en la predicción de la demanda se diferencian en tres tipos, los cuales se detallan a continuación. 72 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción 4.2 Clasificación de días En el momento en el que el modelo se encuentra con una predicción en un día t muy diferente a los valores reales en ese mismo día, puede actuar de varias formas, pero siempre modificando la predicción del día t+1 tendiendo a reducir ese error. El error en la predicción del día t puede estar provocado por una huelga, un festivo que no estaba incluido en la lista de festividades en el código del programa, una fuerte bajada o subida de temperaturas de un día para otro...u otras muchas cosas. Es decir, hechos inesperados que no se habían tenido en cuenta en el modelo y por tanto encuentran demandas reales muy diferentes a la prevista. Por esta razón, en primer lugar se va a exponer una clasificación en los tipos de días que se han encontrado en el análisis previo, según la reacción que presenta el modelo debido a un error cuadrático medio alto en un día t, que se ve reflejada en una corrección en la predicción de la demanda en el día t+1. En consecuencia, los que se clasifican son exclusivamente los días t+1 que presentan, en la predicción de la demanda del día anterior t, errores mayores que 3 %, que son lógicamente los que interesa su estudio y mejora. Estos días quedan divididos en días tipo 1, días tipo 2 y días tipo 3. De ahora en adelante en este Trabajo de Fin de Grado se trabaja con estos días por separado y se utiliza esta notación para referirnos a ellos, por lo que se detallan a continuación. Los días tipo 1 son aquellos cuya demanda tiende a predecirse aplicando un coeficiente de corrección de manera inversa al error del día anterior, por lo que puede ser de reducción o al alza según la predicción haya sido mayor o menor que la prevista. Es decir, si la predicción de la demanda de un día t ha sido mayor que los valores reales, el programa se corrige a si mismo y al día siguiente la predicción de la demanda resulta menor que los valores reales. La razón por la que en el día t+1 se produce un error en la predicción en lugar de ajustarse a la demanda es porque la previsión del día d ha sido un caso especial pero en el día t+1 ha vuelto a la normalidad, por lo que al modificar la predicción se produce un error en sentido opuesto. La idea en la que se basa la mejora de los días tipo1 está relacionada con programar estos días como si fueran días especiales, es decir, que el error en la predicción de la demanda no se ha dado por una tendencia (positiva o negativa) María Fernández de Mesa Bustelo 73 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM que vaya a continuar en el tiempo, sino que al día siguiente va a volver a valores normales y esperados de demanda. En la siguiente Figura 4.4 se ilustra un ejemplo de este tipo de días, donde la curva verde representa la predicción de la demanda y la curva azul la demanda real. Figura 4.4. Comportamiento de la demanda días tipo 1 Los días tipo 2 son muy diferentes a los anteriores. En este caso, la predicción de la demanda en el día t+1 aparece con un error con el mismo signo que el día anterior t. Es decir, se habla de este tipo de día cuando los valores previstos de la demanda de un día t han sido mayores que los valores reales pero, en vez de cambiar la predicción del día siguiente, se vuelve a cometer en el mismo error y en el mismo sentido. Para entender la existencia de los días tipo 2 hay que tener en cuenta que la predicción de la demanda se realiza teniendo en cuenta los valores de demanda reales de los últimos 14 días. Por tanto, cuando el error en el día t es grande pero en los 13 días anteriores se han previsto valores de demanda muy próximos a los valores reales, este último error ejerce poca influencia y no cambia significativamente la predicción del día siguiente t+1. Por lo tanto, estos días tienen el mismo funcionamiento que los días especiales (porque no influyen en la demanda del día siguiente al ser un caso especial) cuando en realidad no lo son ni deben ser tratados como tal. 74 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción La mejora a introducir en estos días tipo 2 está relacionada con darle más importancia a este error del día inmediatamente anterior para así corregir la predicción del día siguiente y obtener menores errores en la predicción. En la siguiente Figura 4.5 se ilustra un ejemplo de este tipo de días, donde la curva verde representa la predicción de la demanda y la curva azul la demanda real. Figura 4.5. Comportamiento de la demanda días tipo 2 Los días tipo 3 tienen un comportamiento que es una mezcla entre los días tipo 1 y días tipo 2, en cuánto a que la predicción de la demanda de un día t+1, es a algunas horas mayor que los valores reales de demanda y a otras horas menor. Esto sucede independientemente de que en el día anterior t la demanda haya sido mayor o menor que la que estaba prevista. Este Trabajo de Fin de Grado se centra en el análisis de los días de tipo 1 y de tipo 2, no aplicando a los días de tipo 3 sin ninguna modificación al estar fuera del alcance de éste y dejando su estudio para futuras investigaciones. Para entender de la mejor forma posible esta clasificación, se pueden observar las Figura 4.6 y Figura 4.7, en la que se ilustra el comportamiento del programa en la predicción de la demanda de un día t+1 para el caso en el que la demanda de un día t haya sido menor que los valores previstos y en el caso de que la demanda del día t haya sido mayor que éstos. María Fernández de Mesa Bustelo 75 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 4.6. Corrección de la demanda según tipo de día (caso 1) Figura 4.7. Corrección de la demanda según tipo de día (caso 2) 4.3 Aplicación La aplicación de la modificación del programa se puede explicar mediante tres fases. En la primera, preparación de los datos, se averiguan cuáles son los días que tienen mayores errores para reducir éstos, se clasifican según tipos de días y se estudia cuál es la mejor modificación que se le puede aplicar. Posteriormente, se meten estas alteraciones en el código del programa y se ejecuta, para crear las predicciones y generar gráficas para su mejor estudio. Por último, se analizan los resultados de estos errores para comprobar la calidad de estas rectificaciones. Cabe destacar que en esta parte del Trabajo de Fin de Grado se trabaja con un periodo de estimación y de predicción diferente al que se utilizó en el análisis previo, por lo que los días en los que se hacen malas predicciones cambian, al igual que el valor y signo de sus errores. En definitiva, la sección 4.1. Análisis Previo ha sido utilizado para conocer el comportamiento general de los errores y la clasificación de los días, pero es una predicción distinta (respecto a los horizontes de tiempo) a la que se hace ahora. 76 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción 4.3.1 Preparación de datos En la preparación de los datos, lo primero que se hace es localizar los días en los que se hacen predicciones erróneas y aparecen altos valores de ECM. En este caso, el límite del ECM se coloca en 4% para reducir el número de días malos, debido a que el periodo de predicción es más grande y es más sencillo trabajar con menos datos. Para ello ejecutamos el programa original y obtenemos una lista con 30 días con alto ECM. Según las gráficas generadas, se dividen estos días en tipos 1,2 y 3 cuya clasificación se puede observar en la Tabla . En ella, los sombreados en verde son los días de tipo 1, en amarillo los de tipo 2 y en rosas los de tipo 3. Tabla 4.5. Clasificación días con alto ECM María Fernández de Mesa Bustelo 77 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Algunas de las gráficas de mayor interés para este estudio están adjuntadas al final de este documento en el Anexo 1, en las que se observan el valor y el signo de los errores para la clasificación. Estos signos se pueden observar en la parte de abajo del gráfico, en formas de barras verticales de color amarillo cuando la predicción es mayor que la demanda y en color rosa cuando es menor. 4.3.2 Ejecución La modificación consiste en tratar a cada tipo de día de forma diferente. A los días de tipo 1, que como recordatorio eran los que la predicción de la demanda es en t mayor que la real y en el día t+1 es menor, se les pone los residuos a cero. Esto es equivalente a hacerle entender al programa que no tiene que aplicar una modificación ya que la demanda del día t ha sido buena, haciendo que los residuos, que son las diferencia entre la demanda prevista y la real, sea nula. La modificación para los días de tipo 1 se realiza en dos partes del programa. En una de ellas se introduce un vector con los días de este tipo: Fragmento del programa 5. Introducción días tipo 1 en modelo En otra carpeta del programa, se introducen unas líneas en el código de Matlab que hacen que los residuos se anulen, como se puede ver en el siguiente fragmento de programa: Fragmento del programa 6. Modificación a días tipo 1 78 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción Este caso se da para los días en los que la mala predicción ha sido por un caso especial, pero al día siguiente no va a seguir esa tendencia negativa o positiva de la demanda energética (por ejemplo, una huelga) y se busca que el programa no tenga en cuenta esa mala predicción. La modificación de los días de tipo 2 es muy diferente a la anterior. En este caso, como se ha explicado antes, el programa no tiene en cuenta el error en la predicción del día t a la hora de hacer la predicción para t+1 porque el resto de días anteriores las predicciones habían sido buenas y ésta no influye mucho. Sin embargo, para estos días de tipo 2 si interesa que se tengan en cuenta las malas predicciones en t, porque son situaciones que se van a mantener el resto de días (por ejemplo, una fuerte bajada de temperaturas repentina a principios de noviembre). Para otorgarle más influencia a esta mala predicción, para los días de tipo 2 se aumentan los residuos, es decir, se aumenta la diferencia entre la demanda prevista y real en t para que tenga más efecto sobre la predicción en t+1. Al igual que el caso anterior, la modificación en los días tipo 2 se realiza en dos partes del programa. En una primera parte se crea un vector que incluya estos días, como se ve en el fragmento de programa a continuación: María Fernández de Mesa Bustelo 79 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Fragmento del programa 7. Introducción días tipo 2 en modelo Por otro lado se introduce en el código del programa el aumento de los residuos para este vector. Fragmento del programa 8. Modificación a días tipo 2 Para los días de tipo 3 no se realiza ninguna modificación al no entrar en el alcance de este Trabajo de Fin de Grado, donde el estudio se centra en la mejora de los días de tipo 1 y de tipo 2. Posteriormente se ejecuta el programa y se analizan los resultados obtenidos. 80 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción 4.3.3 Análisis y resultados El objeto de este Trabajo de Fin de Grado es corregir la influencia de las malas predicciones de un día t sobre las predicciones de t+1. Por tanto, el análisis de los resultados se lleva a cabo mediante la comparación de errores que se generaban en la predicción de la demanda de los días t+1 y los que se generan después de la modificación. Los valores de los ECM tanto para los días t como para los t+1 antes de la modificación se muestra en la Tabla 4.6: Tabla 4.6. Valor de los errores con el modelo original María Fernández de Mesa Bustelo 81 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Los valores de los ECM tanto para los días t como para los t+1 después de la modificación se muestra en la Tabla 4.7: Tabla 4.7. Valor de los errores con el modelo modificado 82 Escuela Técnica Superior de Ingenieros Industriales Modificación del programa de predicción Por tanto, se observa una mejora en la predicción de la demanda reflejada en la disminución del ECM en los días t+1 para las siguientes fechas: Tabla 4.8. Mejora en la predicción tras modificación María Fernández de Mesa Bustelo 83 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 84 Escuela Técnica Superior de Ingenieros Industriales Conclusiones Capitulo 5. Conclusiones En este Trabajo de Fin de Grado se han cumplido los objetivos planteados, que consistían en el análisis y la mejora de la previsión de la demanda eléctrica en España, concretamente del error cuadrático medio (ECM) de días con grandes diferencias entre demanda prevista y real y sus días consecutivos. Se estudia la influencia que tiene este día con alto error en la predicción de los días posteriores, considerando que es error alto cuando es mayor del 4%. Para ello, se localizan los días con peores predicciones en un periodo de tres años y se identifican dos tipos de comportamientos. En el primero, los días que presentan una predicción más alta que la demanda real, tienden a corregirla al día siguiente de manera agresiva al darle más peso a este día concreto que a sus días anteriores obteniendo como resultado una predicción inferior a la demanda real. Lo mismo pero en sentido inverso ocurre con los días que presentan predicciones mas bajas que la demanda real. Para estos días la modificación consiste en poner los residuos a cero. En el segundo, los días que presentan predicciones más altas que la demanda real, tienden a corregirla de forma menos agresiva al día siguiente al darle más peso a los bajos errores en días anteriores que al alto error de ese último día. Lo mismo ocurre con los días que presentan predicciones más altas que la demanda real. Para estos días la modificación consiste en aumentar los residuos. Para ambos casos, tras la modificación se consigue reducir el error de algunos días, aunque no de todos debido a la complejidad de factores que influyen en el modelo. Éstos, serán líneas de estudio e investigación para futuros proyectos. En cuanto a los días que se mejoran, en términos económicos, se produce un ahorro considerable debido a que, al ajustar más la demanda prevista a la real, es menor la cantidad de energía producida y no aprovechada, de la misma forma que se reducen los pagos por capacidad a las centrales en reserva. Cuantitativamente, la mayor disminución del error obtenida tras la modificación es de 1,73 a 0,84 % de ECM el día 3 de enero de 2013, es decir, una reducción del 0,89 %. Esta diferencia hace que la energía producida por estas centrales en reserva sea menor, bajando por tanto los costes asociados a éstas. María Fernández de Mesa Bustelo 85 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Entre los días mejorados, el menor ahorro se produjo el día 1 de mayo de 2015, cuyo ECM se consiguió reducir de 1,9 % a 1,89 %. En término medio, se consigue mejorar un 0,11% el ECM de estos días, lo que supone un ahorro económico lo suficientemente alto para considerar oportuna la implementación de esta mejora. Por tanto, queda demostrada la utilidad de la modificación aplicada al modelo de predicción de demanda de energía eléctrica. 86 Escuela Técnica Superior de Ingenieros Industriales Líneas futuras de investigación Capitulo 6. Líneas futuras de investigación Este Trabajo de Fin de Grado tiene como objetivo la mejora del modelo de predicción de demanda eléctrica desarrollado anteriormente por el Laboratorio de Estadística. Al ser este trabajo un proyecto de investigación, es muy amplio el número de caminos por los cuales se podría seguir ampliando el estudio y perfección de este modelo. El gran número y la complejidad de los factores que influyen en la demanda energética hace que los resultados en este modelo sean algo difíciles de interpretar. En la modificación implementada, no todos los días que eran objeto de estudio han sido mejorados. Por tanto, puede ser una buena investigación seguir por esta línea e intentar llegar a un punto en el que todos estos días mejoren. Por otro lado, en este trabajo solo se ha estudiado la modificación del programa en la predicción de la demanda sin refresco horario, por lo que sería interesante ver como influye este cambio en el modelo en las predicciones realizadas con refresco horario. Actualmente el programa de predicción tiene en cuenta los factores mencionados anteriormente, pero existen también otros que, aunque en menor medida, influyen en la demanda real de energía. Éstos podrían tenerse en cuenta en futuras investigaciones, y algunos de ellos pueden ser: -­ Días que no se consideran como festivos ni especiales, pero que la población española cambia su comportamiento y se refleja en un aumento del consumo eléctrico en horas puntuales. Uno de estos casos es el fútbol: cuando juega la Selección Española y hay partidos importantes (por ejemplo, la final de una Eurocopa) toda la población está pegada a las pantallas durante 2 horas. Podría ser interesante incluir coeficientes para tener en cuenta estos aumentos de demanda en días y horas señaladas. -­ Otros factores meteorológicos además de la temperatura, como pueden ser las precipitaciones, el viento, la humedad o la nubosidad. Éstos, aunque en menor medida, también afectan a la demanda, por lo que podría ser interesante estudiar si inclusión estudiando previamente el efecto que tienen en la demanda energética de la población. María Fernández de Mesa Bustelo 87 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 88 Escuela Técnica Superior de Ingenieros Industriales Planificación temporal y presupuesto Capitulo 7. Planificación temporal y presupuesto 7.1 Planificación temporal: Diagrama de Gantt Después de buscar los distintos proyectos que se ofrecían, habiendo solicitado este en concreto y una vez mantenida una reunión con el tutor a principios de septiembre de 2016, este Trabajo de Fin de Grado se puede dividir en distintas etapas, que se recogen en el Diagrama de Gantt de la Figura 7.1. Estos bloques en los que se puede estructurar el desarrollo de este Trabajo de Fin de Grado son los siguientes: Figura 7.1. Estructura del desarrollo de este TFG Durante el periodo de preparación y documentación se repasa la teoría de diseño de experimentos y modelos de regresión. Además se estudia el funcionamiento de la demanda de energía y del mercado eléctrico y se lleva a cabo una lectura del atlas de Red Eléctrica. María Fernández de Mesa Bustelo 89 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Posteriormente se dedicó un tiempo a la familiarización del modelo de predicción y el funcionamiento de Matlab, comprendiendo los fundamentos del modelo original y el manejo del programa de predicción. Se plantea después ciertas modificaciones en el programa original que modeliza la predicción de la demanda, se aplican y se analizan los resultados por medio de Tablas, cuadros y gráficas representativas. Por último se procede a la redacción de la memoria de este Trabajo de Fin de Grado, que realmente tiene lugar en dos partes: en una primera se escribe la memoria durante el análisis del modelo y la aplicación de las modificaciones;; y en una segunda parte se elaboran el análisis de resultados, conclusiones, presupuesto y planificación e impactos del mismo. Esta estructura se presenta recogida en el siguiente diagrama de Gantt, en la Figura 7.2: 90 Escuela Técnica Superior de Ingenieros Industriales Planificación temporal y presupuesto Figura 7.2. Diagrama de Gantt María Fernández de Mesa Bustelo 91 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 7.2 Presupuesto En esta sección se efectúa un breve análisis económico de este Trabajo de Fin de Grado, dividiendo los costes en: -­ Costes de recursos humanos -­ Costes de recursos materiales El coste de recursos humanos se calcula en función de las horas dedicadas a este trabajo por el alumno, estimando las tareas específicas y su duración en la planificación de las actividades realizadas. Además, se tiene en cuenta el tiempo dedicado por el tutor del TFG. El cálculo se realiza fijando un salario medio de 10 €/h al alumno y de 30€/h al profesor, y los costes se reflejan en la Figura 7.3 los del alumno y en la Figura 7.4 los del tutor: Figura 7.3. Coste de recursos humanos (alumno) Figura 7.4. Coste de recursos humanos (tutor) Por tanto, el coste de los recursos humanos totales es de 4900 €. 92 Escuela Técnica Superior de Ingenieros Industriales Planificación temporal y presupuesto Por otro lado, los recursos materiales incluyen licencias para programas informáticos, el precio de la matrícula del Trabajo de Fin de Grado de 12 ECTS y el ordenador y la impresión de la memoria. Estos costes están valorados en: Figura 7.5. Coste de recursos materiales Finalmente, el coste total de este Trabajo de Fin de Grado es la suma de ambos costes con su correspondiente IVA del 21%, como se puede observar en la Figura 7.6: Figura 7.6. Coste total Por tanto, el presupuesto final del proyecto asciende a: SIETE MIL CUATROCIENTOS SESENTA Y TRES EUROS CON OCHENTA CÉNTIMOS María Fernández de Mesa Bustelo 93 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 94 Escuela Técnica Superior de Ingenieros Industriales Valoración de impactos Capitulo 8. Valoración de impactos. Responsabilidad social Corporativa Este Trabajo de Fin de Grado tiene un impacto importante en el sector económico-­social y en el ambiental, y el por qué, que se explica a continuación, está estrechamente relacionado con la incertidumbre. Ya se ha comentado durante este trabajo la importancia de las predicciones de demanda energéticas en el sector eléctrico, ya que las distribuidoras eléctricas tienen que abastecer a toda la población con la energía que necesitan en cada momento, y esta va cambiando a lo largo de las horas. Resulta evidente que unas predicciones más ajustadas a los valores reales traerán consigo menos problemas de todo tipo, y sobre todo una disminución de las pérdidas económicas que traen consigo las cantidades de energía generada que no se utilizan y, al no poderse almacenar, se pierden. Como estas predicciones, aunque cada vez más exactas, no llegar a ser perfectas e iguales a los valores reales, el sistema dispone de un número de centrales de reserva, que son capaces de producir energía en el momento en que se necesiten debido a los bajos tiempo de arranque que necesitan. No solo estas centrales son necesarias por las fuertes e imprevistas variaciones de demanda eléctrica que el sistema no es capaz de DAR, también son necesarias cuando falla alguna central que esté en proceso de generación, por temas mecánicos o simplemente por la dependencia de las energías renovables del tiempo. Un ejemplo es la energía eólica, que necesita el viento para generar energía y si inesperadamente no hay viento, no puede seguir su producción. En este momento entraría en juego la central en reserva. El impacto económico-­social de estas centrales de reserva viene porque, por el hecho de tener que estar siempre disponibles, reciben una subvención del sistema eléctrico conocida como pagos por capacidad. Red Eléctrica los define como pagos regulados para financiar el servicio de capacidad de potencia a medio y largo plazo ofrecido por las instalaciones de generación al sistema eléctrico. Estos pagos, aunque han sido reducidos casi un 85% este último año, se ven reflejados en la factura de la luz. María Fernández de Mesa Bustelo 95 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Por tanto, al llevar este Trabajo de Fin de Grado a una disminución de esta incertidumbre que generaría unas mejores predicciones y una menor necesidad de las centrales de reserva, se entiende como impacto económico la reducción de éstas y de sus respectivos pagos por capacidad. Por otro lado, el impacto ambiental se refiere a la contaminación que generan estas centrales de reserva. La generación de energía cuya centrales tienen un arranque más rápido y por tanto pueden ser utilizadas como centrales de reserva son las de gas. Dentro de este grupo de centrales de gas, entre las que se encuentran las centrales de carbón, de ciclo combinado y de fuel-­oil, las de ciclo combinado tienen todavía un menor tiempo de arranque. Este arranque de una turbina que trabaja en ciclo combinado puede durar de 1 a 6 horas, según arranque en caliente o en frío, y la descomposición de este tiempo se muestra en la siguiente Figura 8.1: Figura 8.1. Curva de arranque de central de ciclo combinado [Fuente: www.turbinasdegas.com ] Donde el primer periodo es desde el inicio de arranque hasta la sincronización;; el segundo es el tiempo de espera hasta que los by-­pass están presurizados y perfectamente operativos;; en t3 se consigue la calidad de vapor adecuada;; el periodo cuarto es el tiempo necesario para acelerar y acoplar la turbina de vapor y en el quinto periodo se sube la carga hasta la deseada. El problema que presentan estas centrales es el alto nivel de CO2 que producen, aumentando mucho la contaminación al medio ambiente. 96 Escuela Técnica Superior de Ingenieros Industriales Valoración de impactos En la Figura 8.2, obtenida de Red Eléctrica, se muestran por un lado las emisiones de C02 al medio ambiente asociado a la generación, y por otro (de color naranja) la proporción de este CO2 que corresponde a las centrales de ciclo combinado del día 15 de julio a las 20:40h. Figura 8.2. Emisiones de CO2 de ciclo combinado a las 20:40h del 15 de julio de 2016 Por tanto, tanto el impacto económico como el ambiental se deben a la disminución de la incertidumbre asociada a la no exacta predicción de la demanda, para así poder disminuir el uso de las centrales de reserva y los pagos por su siempre disponible capacidad para generar energía. María Fernández de Mesa Bustelo 97 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 98 Escuela Técnica Superior de Ingenieros Industriales Anexo 1 Anexo1: Figuras resultados de modificación FIGURAS RESULTADOS DE MODIFICACIÓN A continuación se adjuntan algunas de las figuras más significativas de los resultados de la modificación, donde la curva verde representa la demanda prevista y la curva azul representa la demanda real. A pesar de estar representadas las curvas de demanda prevista con y sin refresco horario, las figuras a observar son las superiores, debido a que este estudio se ha centrado en la predicción sin refresco horario, como se explicó anteriormente. También se puede observar el valor del error cuadrático medio (%) y el signo: las barras verticales situadas en la parte inferior del gráfico son de color amarillo cuando la predicción de la demanda es mayor que la demanda real, y moradas en caso contrario. Al ser el objetivo del estudio la mejora de los días posteriores al que tiene un alto ECM, lo más interesante es observar la reducción del error en el día t +1. Es decir, en las dos primeras figuras que se presentan, que corresponden al día 3 de enero de 2013 y posteriores antes y después de la modificación, la mejora se contempla en el error del 4 de enero de 2013, que se reduce de 1,73 % a 0,84 %. De igual forma se observan las mejoras del resto de días adjuntados de forma gráfica en este anexo, que representan una elección de los mejores resultados. María Fernández de Mesa Bustelo 99 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura Anexo 1. 01-­03-­2013 antes de la modificación 100 Escuela Técnica Superior de Ingenieros Industriales Anexo1: Figuras resultados de modificación Figura Anexo 2. 01-­03-­2013 después de la modificación María Fernández de Mesa Bustelo 101 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura Anexo 3. 04-­03-­2013 antes de la modificación 102 Escuela Técnica Superior de Ingenieros Industriales Anexo1: Figuras resultados de modificación Figura Anexo 4. 04-­03-­2013 después de la modificación María Fernández de Mesa Bustelo 103 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura Anexo 5. 14-­04-­2013 antes de la modificación 104 Escuela Técnica Superior de Ingenieros Industriales Anexo1: Figuras resultados de modificación Figura Anexo 6. 14-­04-­2013 después de la modificación María Fernández de Mesa Bustelo 105 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura Anexo 7. 06-­01-­2014 antes de la modificación 106 Escuela Técnica Superior de Ingenieros Industriales Anexo1: Figuras resultados de modificación Figura Anexo 8. 06-­01-­2014 después de la modificación María Fernández de Mesa Bustelo 107 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 108 Escuela Técnica Superior de Ingenieros Industriales Anexo 2: Modelización de datos con splines Anexo 2 MODELIZACIÓN DE DATOS CON SPLINES Un spline es una curva formada por secciones de polinomios con los que se puede representar una función univariante. Así, la función en cada uno de los tramos se ajusta al polinomio que se adapte a los puntos. Estas secciones se unen mediante nodos, y el número de éstos es igual al número de uniones más dos (principio y fin de la curva). La característica que se cumplen en estos nodos es que los polinomios se unen suavemente, por tanto la curva es continua al igual que su primera y segunda derivada. La dificultad de este método reside en la elección de los nodos, que depende de la curva a representar. Otra elección que se hace para las funciones splines es su base. Para definir una de estas bases existen varias alternativas, pero la usada en este programa para la modelización de las temperaturas es la de splines cúbicos. Un spline cúbico es una curva construida con polinomios de tercer grado y es el más utilizado por proporcionar un ajuste excelente a los nodos con un cálculo no muy complejo. Un ejemplo de un spline cúbico con 9 splines y 8 tramos o secciones se muestra en la Figura: Figura Anexo 9. Representación con splines cúbicos María Fernández de Mesa Bustelo 109 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM La base de los splines cúbicos elegida, con un número de nodos interiores igual a q-­2 (dimensión) es la siguiente (Wahba, 1990;; Wood 2010) : Con los nodos definidos como 𝑥" ∗ con 𝑖 = 1, 2 … . 𝑟 ;; y siendo los primeros elementos de la base 𝑏) 𝑥 y 𝑏% (𝑥), que no dependen de los nodos elegidos. A partir de esta base de splines se define la función a través de un modelo lineal. Actualmente, la modelización mediante splines se utiliza para curvas con formas complicadas, ya que es sencillo de implementar y presenta muy buenas propiedades matemáticas. Por ejemplo, para polinomios de grado bajo evita las oscilaciones, indeseables en la mayoría de los casos. . 110 Escuela Técnica Superior de Ingenieros Industriales Indice de figuras Indice de Figuras Figura 2.1. Curva de demanda de energía eléctrica. ................................................... 16 Figura 2.2. Casación del precio de la energía en el mercado eléctrico ....................... 18 Figura 2.3. Relación entre cantidad de energía y precio ofertados por las distintas centrales de generación de energía eléctrica ....................................................... 19 Figura 2.4. Relación entre cantidad de energía y precio ofertados por los distribuidores y comercializadores para comprar energía eléctrica ............................................ 20 Figura 2.5. Proceso de suministro de energía eléctrica................... ............................ 22 Figura 2.6. Factores que influyen en la demanda energética ...................................... 24 Figura 2.7. Temperatura mensual media histórica en España ..................................... 25 Figura 2.8. Diferencia entre demanda prevista y real por el efecto laboralidad ............26 Figura 2.9. Energía demandada según día de la semana ..................... ....................... 27 Figura 2.10. Variación anual de la demanda por la actividad económica .................... 29 Figura 2.11. Demanda de energía eléctrica por sectores en 1997 .............................. 31 Figura 2.12. Demanda de energía eléctrica por sectores en 2008 .............................. 31 Figura 2.13. Estacionalidad mensual de la demanda .................................................. 32 Figura 2.14. Demanda de energía eléctrica de los días 3 de marzo a 9 de marzo de 2014 ...................................................................................................................... 33 Figura 2.15. Curva de demanda eléctrica del lunes 3 de marzo de 2014 .................... 34 Figura 2.16. Curva de demanda eléctrica del domingo 9 de marzo de 2014 ............... 34 Figura 3.1. Serie temporal bivariante que muestra las temperaturas en Cádiz y en Bilbao el día 12 de julio de 2016. .......................................................................... 41 Figura 3.2. Serie estacionaria en media (izquierda) y no estacionaria en media (derecha)................................................................................................................41 Figura 3.3. Serie estacionaria en varianza (izquierda) y no estacionaria en varianza (derecha).......................................................................................................................... 42 Figura 3.4. Serie no estacionaria: número mensual de pasajeros en un avión........... 49 Figura 3.5. Serie estacionaria en varianza (izquierda) y en media (derecha)..............49 Figura 3.6. Esquema de construcción del modelo ARIMA ........................................... 50 Figura 3.7. Representación de la demanda eléctrica en función de la temperatura. 53 Figura 3.8. Ciudades con las que se calcula la temperatura media peninsular ........... 54 Figura 3.9. Desviación típica residual por horas .......................................................... 61 Figura 3.10. ECM (%) de las predicciones hechas el 3 de marzo de 2014 ................. 63 Figura 4.1. Modo online del programa de predicción de demanda energética ............ 66 Figura 4.2. Modo offline del programa de predicción de demanda energética ............ 66 Figura 4.3. Evolución del ECM para los días de estudio .............................................. 70 Figura 4.4. Comportamiento de la demanda días tipo 1 .............................................. 74 Figura 4.5. Comportamiento de la demanda días tipo 2 .............................................. 75 Figura 4.6. Corrección de la demanda según tipo de día (caso 1) .............................. 76 María Fernández de Mesa Bustelo 111 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM Figura 4.7. Corrección de la demanda según tipo de día (caso 2) .............................. 76 Figura 7.1. Estructura del desarrollo de este TFG ....................................................... 89 Figura 7.2. Diagrama de Gantt ..................................................................................... 91 Figura 7.3. Coste de recursos humanos (alumno) ....................................................... 92 Figura 7.4. Coste de recursos humanos (tutor) ............................................................ 92 Figura 7.5. Coste de recursos materiales .................................................................... 93 Figura 7.6. Coste total .................................................................................................. 93 Figura 8.1. Curva de arranque de central de ciclo combinado ................................... 96 Figura 8.2. Emisiones de CO2 de ciclo combinado a las 20:40h del 15 de julio de 2016
.............................................................................................................................. 97 Figura Anexo 1. 01-­03-­2013 antes de la modificación ................................................100 Figura Anexo 2. 01-­03-­2013 después de la modificación...................................... .....101 Figura Anexo 3. 04-­03-­2013 antes de la modificación ............................................... 102 Figura Anexo 4. 04-­03-­2013 después de la modificación .......................................... 103 Figura Anexo 5. 14-­04-­2013 antes de la modificación ............................................... 104 Figura Anexo 6. 14-­04-­2013 después de la modificación .......................................... 105 Figura Anexo 7. 06-­01-­2014 antes de la modificación ............................................... 106 Figura Anexo 8. 06-­01-­2014 después de la modificación .......................................... 107 Figura Anexo 9. Representación con splines cúbicos ................................................ 109 Indice de Tablas Tabla 2.1. Estructura del mercado intradiario de la energía ........................................ 21 Tabla 2.2. Desglose de demanda nacional de energía por sectores ........................... 30 Tabla 3.1. Festivos nacionales ..................................................................................... 57 Tabla 4.1. Valores del error cuadrático medio con y sin refresco horario .................... 69 Tabla 4.2. Valores del error cuadrático medio de los días posteriores a malas predicciones, con altos valores de ECM ............................................................... 70 Tabla 4.3. Resumen de la influencia de días con alto ECM sobre días posteriores .... 71 Tabla 4.4. Signo del ECM de los días posteriores a días con alto ECM ...................... 71 Tabla 4.5. Clasificación días con alto ECM .................................................................. 77 Tabla 4.6. Valor de los errores con el modelo original ................................................. 81 Tabla 4.7. Valor de los errores con el modelo modificado ........................................... 82 Tabla 4.8. Mejora en la predicción tras modificación ................................................... 83 112 Escuela Técnica Superior de Ingenieros Industriales Indice de figuras Indice de fragmentos de programa Fragmento del programa 1. Introducción periodo de predicción .................................. 58 Fragmento del programa 2. Posibilidades en cuanto a la estimación .......................... 59 Fragmento del programa 3. Introducción horas y días del histórico de estimación ..... 60 Fragmento del programa 4. Estimación modelo ARIMA .............................................. 60 Fragmento del programa 5. Introducción días tipo 1 en modelo .................................. 78 Fragmento del programa 6. Modificación a días tipo 1 ................................................ 78 Fragmento del programa 7. Introducción días tipo 2 en modelo .................................. 80 Fragmento del programa 8. Modificación a días tipo 2 ................................................ 80 María Fernández de Mesa Bustelo 113 Análisis y mejora de la predicción de la demanda eléctrica en periodos de alto ECM 114 Escuela Técnica Superior de Ingenieros Industriales Bibliografía Bibliografía -­ Informa ATLAS de Red Eléctrica. Demanda eléctrica española. -­ Aprenda Matlab como si estuviera en Bolonia. Javier García Jalón de la Fuente. Escuela Técnica Superior de Ingenieros Industriales. -­ Diseño de experimentos y modelos de regresión. Departamento de Ingeniería de Organización, Administración de Empresas y Estadística. Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid. -­ Modelo de predicción de energía eléctrica. Laboratorio de Estadística, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid. Jesús Juan Ruiz y Eduardo Caro Huertas. -­ Energía y sociedad. Las claves del sector energético. -­ Evolución del mercado de energía eléctrica. OMIE. Disponible: http://www.omie.es/files/informe_mensual_enero_2014.pdf -­ Solo Kilovatios Verdes. El blog de Gesternova -­ La formación de precios en el mercado diario de la electricidad. Disponible: www.energiaysociedad.es -­ Análisis de series temporales. Daniel Peña -­ Regresión y diseño de experimentos. Daniel Peña -­ Red Eléctrica Española. Disponible: www.ree.es -­ Ministerio de Industria, Energía y Turismo. Disponible: www.minetur.gob.es/energia/electricidad/Paginas/sectorElectrico -­ Demanda y producción en tiempo real. Red Eléctrica. -­ Endesa Educa. http://www.endesaeduca.com/Endesa_educa/recursos-­
interactivos/conceptos-­basicos/i.-­la-­energia-­y-­los-­recursos-­energeticos María Fernández de Mesa Bustelo 115 
Descargar