GUÍA DIDÁCTICA EL TEOREMA DE PITÁGORAS MATEMÁTICA NIVEL MEDIO MATERIAL AUDIOVISUAL http://www.las400clases.com.ar/videos/curriculares/teorema-pitagoras-0 TIPO DE GUÍA Indagación OBJETIVOS Que los alumnos: - analicen distintas demostraciones del Teorema de Pitágoras y su recíproco. - analicen las implicaciones lógicas existentes en las demostraciones. CONOCIMIENTOS PREVIOS - Construcción de triángulos. - Congruencia de triángulos. ACTIVIDAD 1: CONSTRUCIÓN DE TRIÁNGULOS RECTÁNGULOS Primera parte En parejas realicen las siguientes actividades. Construyan con regla, escuadra y compás, si es posible, un triángulo pedido en cada caso. Si no es posible, expliquen por qué. Decidan cuántos triángulos distintos se pueden construir con esos datos. a. Tiene un ángulo recto y los lados que lo forman miden 5 cm y 4 cm. b. Tiene un ángulo recto, el lado opuesto al ángulo mide 5 cm y otro de los lados mide 3 cm. c. Tiene un ángulo recto y lados que miden 2 cm, 4 cm y 5 cm. Segunda parte En grupos de 3 o 4 alumnos respondan esta pregunta. Analicen las construcciones anteriores. ¿Cuántos triángulos rectángulos distintos se pueden construir si se conocen las medidas de dos de los lados? Puesta en común y análisis de conclusiones. Se espera que en el debate colectivo se concluya que en un triángulo rectángulo si se conocen las medidas de dos de los lados, el tercero debe quedar definido y no puede ser cualquiera. ACTIVIDAD 2: DEMOSTRACIÓN DEL TEOREMA DE PITÁGORAS Video: El teorema de Pitágoras http://www.las400clases.com.ar/videos/curriculares/teorema-pitagoras/demostracion-del-teoremapitagoras Luego de mirar el video respondan en pequeños grupos estas preguntas. a. ¿Cuáles son los datos que tiene Adrián Paenza para resolver su situación? b. ¿Qué es lo que quiere demostrar? d. Estas son las figuras que dibuja Adrián Paenza. i. Marquen los lados que son iguales en la FIGURA 1. ¿Cómo está seguro que es un cuadrado? ii. ¿Cuántos triángulos como el original se ven en la FIGURA 1? ¿Cómo saben que los triángulos coinciden con el original? iii. ¿Qué figura forma el cuadrilátero anaranjado de la FIGURA 1? ¿Cómo están seguros de eso? iv. ¿En qué figuras quedó dividido el cuadrado de la FIGURA 2? ¿Cómo pueden estar seguros? v. ¿Dónde están los triángulos originales en la FIGURA 2? vi. ¿Cómo se calculan las áreas de los cuadrados marcados con verde en la FIGURA 2? vii. ¿Qué relación hay entre las áreas del cuadrilátero anaranjado de la FIGURA 1 y la suma de las áreas de los cuadriláteros verdes de la FIGURA 2? viii. ¿A qué conclusión llega Adrián Paenza? ¿La conclusión será cierta para todo triángulo rectángulo? ¿Por qué? Puesta en común y análisis de conclusiones. Se espera que en la puesta en común puedan analizar nuevamente la demostración del teorema de Pitágoras planteada en el video y se aseguren que la propiedad vale para cualquier triángulo rectángulo. ACTIVIDAD 3: RECÍPROCO DEL TEOREMA DE PITÁGORAS Video: Recíproco del teorema de Pitágoras http://www.las400clases.com.ar/videos/curriculares/teorema-pitagoras/reciproco-del-teoremapitagoras Luego de mirar el video respondan en pequeños grupos estas preguntas. a. ¿Cuáles son los datos que tiene Adrián Paenza para resolver su situación? b. ¿Qué es lo que quiere demostrar? c. ¿Qué similitudes y diferencias encuentran entre lo que quiere demostrar en este caso con lo que quería demostrar en el anterior? d. Supongan que en el triángulo ABC se verifica que los cuadrados de las medidas de dos de los lados es igual al cuadrado del tercero y realicen la siguiente construcción. i. Trazar un ángulo recto con vértice en B que tenga a como uno de los lados y que quede en el semiplano opuesto a A. ii. Marcar un punto D sobre el lado del ángulo recto que no es de modo que mida lo mismo que . iii. Trazar el triángulo CBD. e. ¿Es cierto que los lados de los triángulos ABC y CBD miden lo mismo? ¿Por qué? f. ¿A qué ángulo es igual ABC? ¿Por qué? g. ¿Es cierto que ABC es un triángulo rectángulo? ¿Por qué? Puesta en común y análisis de conclusiones. Se espera que puedan analizar que los triángulos son iguales dado que: ▁AB = ▁DB por la construcción pedida. ▁CB es común a los dos triángulos. Además como el triángulo CBD es rectángulo (porque así lo construimos) a² + b² = ▁CD ² (por el Teorema de Pitágoras) y además en el triángulo ABC se verifica que a² + b² = h² porque es la hipótesis de la que partimos. Luego ▁CD² = h² y como los números son positivos ▁CD = h. Entonces los triángulos tienen los mismos lados y por lo tanto son iguales. Luego el ángulo CBA es igual al ángulo CBD, el triángulo es rectángulo. EVALUACIÓN Resuelvan estas consignas en parejas. a. ¿Qué hipótesis plantea el Teorema de Pitágoras? ¿Cuál es la conclusión? b. ¿Qué hipótesis plantea el Reciproco del Teorema de Pitágoras? ¿Cuál es su conclusión? c. ¿Por qué se llaman recíprocos? e. Resuelvan la siguiente actividad. Primera parte 1. Dibujen en un sistema de ejes cartesianos el triángulo cuyos vértices sean A = (6 ; 1), B = (2 ; 3) y C = (4 ; 7). 2. Calculen la medida de cada lado del triángulo. 3. ¿El triángulo es rectángulo? ¿Por qué? Segunda parte Analicen que teorema usan en cada una de las resoluciones del problema e indiquen por qué usan ese teorema.