Subido por Manuel Flores

chicuadrado

Anuncio
UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI
ESCUELA DE COMERCIO EXTERIOR Y NEGOCIACIÓN INTERNACIONAL
ESTADISTICA INFERENCIAL
MCS : JORGE POZO
CHI CUADRADO
MARÍA GORDÓN
Tulcán – Ecuador
2012
TEMA: CHI-CUADRADO
PROBLEMA:El desconocimiento del Chi- Cuadrado incide en la realización y
desarrollo de ejercicios útiles para la solución de problemas relacionados a
comercio exterior.
OBJETIVOS
General
Realizar y analizar el Chi-cuadrado en ejercicios planteados para tener
un mejor desarrollo como profesionales en el futuro.
Específicos:
Investigar el Chi-cuadrado y plantear ejercicios relacionados al comercio
exterior
Realizar ejercicios planteados sobre el Chi-cuadrado para aplicarlos en
la carrera.
Analizar la información obtenida sobre el Chi-cuadrado.
JUSTIFICACIÓN
El presente trabajo tiene la finalidad de aprender acerca del Chi-cuadrado, su
concepto y ejercicios a desarrollar, para conocer lo fundamental que ayudara
en la carrera de comercio exterior y como profesionales en este campo.
Además se reforzará los conocimientos y así como resolver ejercicios sobre
Chi-cuadradoaplicando la fórmula en ejercicios de nuestra carrera.
5.- MARCO TEORICO
CHI-CUADRADO
En una prueba de ajuste la hipótesis nula establece que una variable X tiene
una cierta distribución de probabilidad con unos determinados valores de los
parámetros. (Arvelo, 1998)
El tipo de distribución se determina, según los casos, en función de: La propia
definición de la variable, consideraciones teóricas al margen de esta y/o
evidencia aportada por datos anteriores al experimento actual. (Arvelo, 1998)
A menudo, la propia definición del tipo de variable lleva implícitos los valores de
sus parámetros o de parte de ellos; si esto no fuera así dichos parámetros se
estimarán a partir de la muestra de valores de la variable que utilizaremos para
realizar la prueba de ajuste. (Arvelo, 1998)
EJERCICIOS
EJERCICIO 1.1.- Un jugador quiere probar que es legal el dado con el que juega. Tiro el dado
120 veces y obtuvo la siguiente distribución de frecuencias de las caras
resultantes.
RESULTADO 1
FRECUENCIA 15
2
25
3
33
4
17
5
16
6
14
a) Enuncie las hipótesis de la prueba y determine las frecuencias
esperadas.
b) Describa la estadística de la prueba
c) Determine la región crítica de la prueba al nivel de significación del 5%.
d) ¿A qué conclusión llega usando el nivel de significación 0,05?
e) Determine la probabilidad P.
1.Ho: El dado es legal.
Ha: El dado no es legal.
2.- Es de dos colas.
3.- Nivel de confianza
4.-
gl= k-1
gl=6-1
gl=5
5.-
Zona
aceptación
11,07
6.Ei
Oi
20
15
20
25
20
33
20
17
20
16
20
14
7.- Se acepta la hipótesis alternativa y se rechaza la hipótesis nula, es decir el
dado del jugador no es legal ya que se encuentra dentro de la zona de rechazo.
EJERCICIO 2.2.- El gerente de ventas de una compañía P&C afirma que todos sus
vendedores realizan el mismo número de visitas durante el mismo período de
tiempo. Una muestra aleatoria de 5 registros de los vendedores en una semana
dada reveló el siguiente número de visitas.
Vendedor
Número de visitas
A
23
B
29
C
25
D
23
E
30
Con el nivel de significación de 0.05, ¿es razonable aceptar la afirmación del
gerente?
1)
: hacen el mismo número de visitas
: hacen menor número de visitas
2) Gráfica: unilateral y cola a la derecha
3) Nivel de significación 0.05
4) Variables cualitativas → chi cuadrado
5) gl = k-1
gl = 5-1 = 4
= 9,49
6)
26
23
26
29
26
25
26
23
26
30
7) Acepta la hipótesis nula por que realizan el mismo número de visitas
EJERCICIO 3.3.- El gerente de personal
de la compañía de “REXA” quiere probar la
hipótesis que hay diferencias significativas de tardanzas de los diferentes días
de la semana. De los registros de asistencia obtuvo la siguiente tabla de
tardanzas de su personal para cada uno de los días de la semana:
DIAS
LUNES MARTES MIERCOLES
TARDANZAS 58
39
75
JUEVES VIERNES
48
80
¿Se puede aceptar la hipótesis del gerente con un nivel de significación de
0.05?
1.- HO = El número de tardanzas en el mismo cada día
2.- La prueba es unilateral de una cola
3.- Nivel de significancia del =0.05
4.-Utilizamos la prueba del CHI-CUADRADO
5.-
z. rechazo
z. aceptación
9.488
gl=K-1
gl= 5-1
gl=4
x2=9.488
6. - frecuencias esperadas
Xi
58
39
75
48
80
300
=60
60
58
X2=
60
39
60
75
60
48
60
80
= 20.232
7.- Se rechaza la hipótesis nula y se acepta la hipótesis alternativa debido a
que
hay tardanzas del personal en cada día de la semana ya que llegan
puntuales a la compañía REXA.
EJERCICIO 4.4.- De una muestra de turistas que se hospedan en el hotel “EL PALMER” se
recogió sus opiniones acerca de los servicios del hotel, resultando los
siguientes datos:
PESIMA
MALA REGULAR BUENA MUY BUENA EXCELENTE
TURISTAS 20
25
40
54
56
Pruebe con un nivel de significación del 5%, la hipótesis nula de que no hay
diferencias significativas entre las opciones de los turistas.
1.- HO = no hay diferencias significativas en las opiniones
2.- La prueba es unilateral de una cola
3.- Nivel de significancia del =0.05
4.- Utilizamos la prueba del CHI-CUADRADO
5.-
z. rechazo
z. aceptación
9.488
gl=K-1
gl= 5-1
gl=4
x2=9.488
6. FRECUENCIA ESPERADAS
Xi
20
25
40
54
56
195
=39
39
20
39
25
X2=
39
40
39
54
39
56
= 27.486
7.- La hipótesis nula se rechaza porque, no hay diferencias significativas en las
opiniones de los turistas.
Ejercicio 5
En un día se observó el número de conductores que escogieron cada una de
las diez casetas de pago de peaje ubicadas a la salida al sur. Los datos se
registraron en l siguiente tabla:
Caseta #
1
#
de 580
conductores
2
700
3
730
4
745
5
720
6
710
7
660
8
655
9
670
10
490
Presentan estos datos suficiente evidencia para concluir que hay casetas
preferidas?. Utilice el nivel de significancia del 5%.
Pasos:
1)
Ho: No existen las casetas preferidas
Ha: Existen casetas preferidas
2) la prueba es unilateral con una cola hacia la derecha.
3) nivel de significancia del 0.5
4) utilizar el Chi cuadrado.
5) grafica
gl= k-1
gl= 10-1=9
Tabla obtenemos 16,919
6) calculo estadístico
Ei
Oi
666
580
666
700
666
730
666
745
666
720
666
710
666
660
666
655
666
670
666
490
(9) =
(9) =
+
+
7)
+
+
+
+
+
+
+
= 82,42
Se rechaza la hipótesis nula y se acepta la alternativa que propone que si
existen preferencias en las casetas del cobro de peaje.
Ejercicio 6
Un ejecutivo de hipermercado “TOD” afirma que las compras se pagan 30%
con cheques, 45% con efectivo y 25% con tarjeta de crédito. En una muestra
aleatoria de 400 compradores se encontró q 110 de ellos pagaron con
cheques, 210 con efectivo y 80 con tarjetas ¿puede usted concluir con la
significación de 0,05 que la afirmación del ejecutivo es razonable?
30% cheque
45% efectivo
25% tarjeta de crédito
N= 400
110 cheques
210 efectivos
80 tarjetas
1) Ho: los pagos guardan relación
Ha: los pagos no guardan relación entre si
2) la prueba es unilateral con una cola hacia la derecha.
3) nivel de significancia del 0.05
4) utilizar el Chi cuadrado.
5) grafica
gl= k-1
gl= 3-1=2
Tabla obtenemos 5,991
6) calculo estadístico
Ei
Oi
120
110
180
210
100
80
(2) =
(2) =
+
+
= 9,83
7) se rechaza la hipótesis nula y se acoge la alternativa que manifiesta que los
pagos con tarjeta, cheque o efectivo no guardan ninguna relación entre si.
EJERCICIO 7.Una maquina llena latas con 300 caramelos de sabores: Piña, Fresa, Limón y
Naranja en la relación: 4:3:2:1. Si en una lata de estos caramelos se encontró;
115 de piña, 95 de fresa, 70 de limón, y 20 de naranja, pruebe la hipótesis de
que la maquina está mezclando en la relación: 4;3;2;1 al nivel de significación
de 0.05.
SABORES
RELACION
CANTIDAD
TOTAL
1)
PIÑA
4
115
119
FRESA
3
95
98
LIMON
2
70
72
NARANJA
10
20
21
= la maquina esta mesclado en la relación 4:3:2:1
2) La prueba es unilateral de una cola
3) Nivel de significación 0.05
TOTAL
10
300
316
4) Utilizamos CHI- CUADRADO
5)
7.815
gl= (f -1) (c- 1)
gl= (2-1)(4-1)
gl=3
X= 7.815
6)
= 300 X 40 =120
= 300 X 30 =90
= 300 X 20=60
= 300 X 10=30
120
115
90
95
=
= 5.496
+
60
70
30
20
7) TOMA DE DECICIONES
Como se puede ver aceptamos la hipótesis nula y desechamos la
hipótesis alternativa y que la maquina mezcladora tiene relación entre
4:3:2:1.
EJERCICIO.- 8
Se cree que las personas que mueren por sobredosis de narcóticos son
generalmente jóvenes. Para comprobar esta hipótesis se ha obtenido la
siguiente distribución del número de muertes por sobredosis.
EDAD
15 - 19
NUMERO 31
DE
MUERTES
20 - 24
44
25 - 29
30 - 34
35 - 39
27
39
41
40
MAS
28
O
Con estos resultados y con un nivel de significación de 0.05. ¿Se puede
concluir, empleado, que muere un número igual de personas en cada
categoría?
1)
= Muere igual el número de personas en cada categoría
2) La prueba es unilateral de una cola
3) Nivel de significación 0.05
4) Utilizamos CHI- CUADRADO
5)
11.070
gl= K -1 = 6-1= 5
= 11.070
6)
35
31
35
44
=
35
27
35
39
35
41
35
28
+
= 0.46+2.31+1.83+0.46+1.03+1.4
= 7.486
6) TOMA DECISIONES
Se acepta la hipótesis nula y se rechaza la hipótesis alternativa y que le
número de muertos es igual al número de personas por categoría.
EJERCICIO 9.9. Un investigador escogió una muestra aleatoria de 192 familias con 4 hijos y
encontró la siguiente distribución de frecuencias del número de hijos varones:
Número
de 0
1
2
3
4
de 18
42
64
40
28
varones
Número
familias
Él quiere probar la hipótesis de que los nacimientos de varones y mujeres son
igualmente probables. Esto es, quiere probar que la distribución de estos datos
se aproxima a una distribución binomial.
Enuncie la hipótesis de la prueba y obtenga las frecuencias esperadas.
Describa la estadística de la prueba
Determine la región crítica de la prueba al nivel de significación del 5%
A que conclusión llega usando el nivel de significación 0.05
Determine el nivel de significación de la prueba (calcule probabilidad)
1) H0: la distribución de nacimiento de varones y mujeres son igualmente
probables.
H1: la distribución de nacimientos de varones y mujeres no son
igualmente probables.
2) La prueba es unilateral y de cola derecha
3) Nivel de significación 0.05
4) Emplearemos la distribución maestral del CHI-CUADRADO
5) Gl= k-1
Gl=5-1=4
9.48
6)
Ei
Oi
38.4
18
38.4
42
38.4
64
Cálculo de las frecuencias esperadas
38.4
40
38.4
28
1. Toma de decisiones
Aceptamos la Ha y rechazamos la Ho.
Esto significa que los nacimientos de varones y mujeres no son
igualmente probables.
EJERCICIO 10.-
10. Se lanzaron 200 veces 5 monedas y en cada tirada se contaron el número
de caras. Los resultados de este experimento son los siguientes:
Número de caras
0
1
2
3
4
5
Número de tiradas
3
15
55
60
40
27
Pruebe la hipótesis de que la distribución del número de caras se ajusta a una
distribución binominal. Use el nivel de significación del 1%
1) H0: la distribución del número de caras se ajusta a la distribución.
H1: la distribución del número de caras no se ajusta a la distribución.
2) La prueba es unilateral y de cola derecha
3) Nivel de significación 1% = 0.01
4) Emplearemos la distribución muestral del CHI-CUADRADO
5) Gl= k-1
Gl=6-1=5
15.086
6)
Ei
Oi
33.33
3
.3333,
15
33.33
55
33.33
60
33.33 33.33
40
27
1. Cálculo del Estadístico de la Prueba
7.- Toma de decisiones
Aceptamos la Ha y rechazamos la Ho. La distribución del número de caras se
ajusta a una distribución binomial.
CONCLUSIONES:
Mediante el presente trabajo hemos podido conocer y aplicar sobre la
distribución de Chi-Cuadrado, además hemos aprendido sobre las
relaciones que existen entre las variables dentro de un problema.
Con el desarrollo de varios problemas con respecto al tema hemos
podido practicar y aprender las relaciones existentes: relación infinita,
positiva perfecta, negativa imperfecta, nula etc.
La aplicación de Chi cuadrado puede ser compleja en cuanto a la
determinación de las hipótesis, pero son de suma importancia para
determinar la aceptación o rechazo de ellas.
RECOMENDACIONES:
Es de vital ayuda poner en práctica los conocimientos aprendidos ya que
nos servirán dentro de nuestra carrera y el desarrollo de la problemática
que en ella se engloba.
Es necesario identificar el Chi cuadrado dentro de las variables porque
estas se aplican para el desarrollo de proyectos.
Proponer ejercicios mediante la distribución del chi cuadrado en función
a las actividades del comercio exterior y así lograr una mayor
comprensión.
CRONOGRAMA
Tiempo
JULIO
Actividades
2
Clase: Chi cuadrado
Desarrollo del formato de
presentación del trabajo
3
4
5
6
SEMANA
7 8 9 10
11
X
X
Resolución de ejercicios
X
X
Evaluación de prueba de
hipótesis, t-student y chicuadrado
Entrega de trabajo de ChiCuadrado
BIBLIOGRAFÍA
Arvelo, A. F. (1998). Metodos estadisticos. caracas: la noriega.
X
X
12
13
ANEXOS:
1) Un camión lleva al país de destino 200 productos perecibles como:
manzanas, Limón y Naranja y mangos en la relación: 4:3:2:1. Si en el
camión en se encontró; 115 de piña, 95 de fresa, 70 de limón, y 20 de
naranja, pruebe la hipótesis que el camión tiene relación: 4;3;2;1 al nivel
de significación de 0.05.
PRODUCTOS
PERECIBLES
RELACION
CANTIDAD
TOTAL
MANZANAS LIMON
NARANJA
MANGOS
TOTAL
4
115
119
2
70
72
10
20
21
10
300
316
3
95
98
1)
= el camión tiene relación: 4;3;2;1
2) La prueba es unilateral de una cola
3) Nivel de significación 0.05
4) Utilizamos CHI- CUADRADO
5)
7.815
gl= (f -1) (c- 1)
gl= (2-1)(4-1)
gl=3
X= 7.815
6)
= 300 X 40 =120
= 300 X 30 =90
= 300 X 20=60
= 300 X 10=30
120
115
90
60
95
=
70
30
20
+
= 5.496
7) TOMA DE DECICIONES
Como se puede ver aceptamos la hipótesis nula y desechamos la
hipótesis alternativa y el camión tiene relación: 4;3;2;1
2) En un día se observó el número de conductores que pasan por el
puente de rumichaca . Los datos se registraron en l siguiente tabla:
1
#
de 580
conductores
2
700
3
730
4
745
5
720
6
710
7
660
8
655
9
670
10
490
Presentan estos datos suficiente evidencia para concluir que hay casetas
preferidas?. Utilice el nivel de significancia del 5%.
Pasos:
1)
Ho: No existen las casetas preferidas
Ha: Existen casetas preferidas
2) la prueba es unilateral con una cola hacia la derecha.
3) nivel de significancia del 0.5
4) utilizar el Chi cuadrado.
5) grafica
gl= k-1
gl= 10-1=9
Tabla obtenemos 16,919
6) calculo estadístico
Ei
Oi
666
580
666
700
666
730
666
745
666
720
666
710
666
660
666
655
666
670
666
490
(9) =
(9) =
+
+
7)
+
+
+
+
+
+
+
= 82,42
Se rechaza la hipótesis nula y se acepta la alternativa que propone que si
existen preferencias en las casetas del cobro de peaje para conductores que
pasan en el puente de rumichaca pasando mercadería
3) En un estudio realizado en el departamento comercio exterior se aplicó:
Una encuesta a los exportadores cuanto exportan en toneladas, obteniendo
los resultados que presenta la siguiente tabla
Exportación en toneladas
Exportación
1 mes
Alto
32
Bajo
28
Total
60
2 meses
225
290
515
3 meses
50
79
129
total
307
397
704
Al nivel de significación Q=0.05, determinar que las variables perjuicio étnico
hacia el negro y lugar de residencia son independientes
1. Ho: el departamento de comercio exterior y los exportadores
H1: existe dependencia entre las variables.
2. La prueba es unilateral y la cola derecha
3. Asumimos el nivel de significación de Q= 0.05
4. Utilizaremos la distribución muestral de chi-cuadrado porque las dos
variables son cualitativas.
5. Esquema de la prueba
Gl =(C-1) (F-1)
Gl =(3-1) (2-1)
1.1.3.4
= 2 11.3.4
Gl= 2
Q= 0.05
X2 = (2) = 5.991
C= # de columnas
F= # de filas
6. Calculo del estadístico de la prueba
5.991
Formula
x= 3.54
2
X2= 3.54
Ya conocemos las frecuencias observadas para determinar las frecuencias
esperadas emplearemos la misma
tabla, manteniendo invariables de
frecuencias marginales de dos variables
Exportación en toneladas
exportación
1 mes
Alto
E11
Bajo
E21
Total
60
2 meses
E12
E22
515
3 meses
E13
E23
129
total
307
397
704
Cuando las variables X y Y son independientes, las frecuencias de cada celda
son igual al productos de las frecuencias marginales correspondientes dividido
por el tamaño de la muestra.
26.16
32
50
225
33.84
28
56.25
224.58
290.42
290
72.75
79
Las frecuencias esperadas y las asociadas determinan las frecuencias
observadas anteriormente
4) En la exportación de naranjas, la empresa exportadora envía
mensualmente lotes de 50 cajas al exterior, cada caja tiene un peso
aproximado de 20 kilos. Las cajas son previamente almacenadas.
Para
el
control
de
calidad
se
examinanalazar,si
en
alguna caja encuentran por lo menos una naranja malograda, esta es
calificada mala.
Para que pase el control mediante la inspección de la muestra no debe
haber caja malograda, si solo e x i s t e
cambiada,
si
hay
más
de
1
una
en
caja
esta
será
las 5 inspeccionadas,
inspeccionaran las cincuenta cajas. Según las estadísticas pasadas de
un total de 40 envíos, registro lo siguiente: Se puede afirmar que la
variable número de cajas en mal estado en la muestra de 5 sigue una
distribución Binomial?
manzanas
Grandes
Medianas
pequeñas
total
Rojas
3
5
7
15
verdes
5
4
9
18
ambos
5
8
6
19
13
17
22
52
1)
H0: La variable número de cajas sigue una distribución Binomial.
Ha: No siguen una Binomial.
2) La prueba es unilateral y de una cola derecha
3) Nivel de significación 0.10
4) Utilización del chi cuadrado
5) Esquema de la prueba
Gl = (c-1) (f-1)
= (3-1) (3-1)
=4
α = 0.10
En la tabla de CHI CUADRADA obtenemos
X2 (4) = 7.779
6) Calculo del estadístico de la prueba
Calculo de las pruebas esperadas.
manzanas
Grandes
Rojas
verdes
3.75
4.5
ambos
4.75
13
3
Medianas
5
4.90
5
5.88
6.21
5
17
4
pequeñas
6.35
8
7.62
8.04
7
9
6
22
15
18
19
52
total
= 0.15+ 0.06+ 0.01+ 0.002+0.60+0.52+ 0.07+ 0.25+ 0.52
=2.182
7)
ZA
ZR
2.182
7.779
ZA= aceptamos la hipótesis nula porque La variable número de cajas
sigue una distribución Binomial.
5) En Tulcán se realiza un estudio si es factible la creación de una Bodega
, para la cual se aplicó una encuesta a las personas que se dedican al
comercio exterior, obteniéndose los resultados que se presentan a
continuación:
Actividad de Comercio Exterior
Factibilidad
Importadores Exportadores
Si
No
Total
18
12
30
20
8
28
Agentes de Total
Aduana
38
76
14
34
52
110
Al nivel de significación α= 0.05, determinar que las variables factibilidad de
creación de Zona Franca y actividad de comercio exterior son independientes.
a)
Ho= factibilidad de creación de Zona Franca y la actividad de comercio exterior
son independientes;
H1=existe dependencia entre las dos variables.
b) La prueba es unilateral y de cola derecha.
c) Asumimos el nivel de significación de α= 0.05
d) Utilizaremos la distribución muestral de Chi-cuadrado porque las dos
variables son cualitativas
e)
gl= (C-1)(F-1)
gl= (3-1)(2-1) = 2
α= 0.05
x2(2)=5.991
f)
Actividad de Comercio Exterior
Factibilidad
Importadores Exportadores
Si
No
Total
Ei
Oi
E11
E21
30
20,73
18
19,35
20
9,27
12
E12
E22
28
35,93
38
8,65
8
16,07
14
Agentes de Total
Aduana
E13
76
E23
34
52
110
g) Vemos que el valor se encuentra en la zona de aceptación por lo tanto
aceptamos la Ho.
6) Los estudiantes de comercio exterior quiere determinar si la creación de
una empresa de contenedores para el Transporte de exportaciones e
importaciones entre Ecuador y Perú.
EMPRESA DE ALQUILER DE CONTENEDORES
Grado de
perjuicio
Están de
acuerdo
No Están
de
acuerdo
TOTAL
Transportistas Empresas de Exportadores Importadores TOTAL
transporte
392
222
331
123
1068
122
324
122
323
891
514
546
453
446
1959
El nivel de significancia es de α=0.05 determinar las variables de la
aceptabilidad de la creación de la empresa.
1).
la aceptabilidad de la creación de la empresas.
Existe aceptabilidad.
2). La prueba es unilateral y la cola es derecha.
3) Asumimos el nivel de significancia de α=0.05
4) Utilizaremos la distribución maestral de Ji-Cuadrado porque las dos variables
son cualitativas.
5) Esquema de la prueba
6) Calculo del estadístico de la prueb
EMPRESA DE DE ALQUILER DE CONTENEDORES
Grado de Transportistas Empresas
perjuicio
de
transporte
Están de 392
222
acuerdo
280.22
No Están 122
de
acuerdo
TOTAL
514
Exportadores Importadores
TOTAL
331
1068
246.96
297,66
324
546
243,14
122
248,33
233,77
123
323
206,03
891
202,85
453
446
6,62
7,815
1959
Descargar