MANUAL OF STEEL CONSTRUCTION LOAD & RESISTANCE FACTOR DESIGN Volume I Structural Members, Specifications, & Codes Volume II Connections Second Edition iv Copyright © 1994 by American Institute of Steel Construction, Inc. ISBN 1-56424-041-X ISBN 1-56424-042-8 All rights reserved. This book or any part thereof must not be reproduced in any form without the written permission of the publisher. The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the American Institute of Steel Construction or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use. Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition. Printed in the United States of America v FOREWORD T he American Institute of Steel Construction, founded in 1921, is the non-profit technical specifying and trade organization for the fabricated structural steel industry in the United States. Executive and engineering headquarters of AISC are maintained in Chicago, Illinois. The Institute is supported by three classes of membership: Active Members totaling 400 companies engaged in the fabrication and erection of structural steel, Associate Members who are allied product manufacturers, and Professional Members who are individuals or firms engaged in the practice of architecture or engineering. Professional members also include architectural and engineering educators. The continuing financial support and active participation of Active Members in the engineering, research, and development activities of the Institute make possible the publishing of this Second Edition of the Load and Resistance Factor Design Manual of Steel Construction. The Institute’s objectives are to improve and advance the use of fabricated structural steel through research and engineering studies and to develop the most efficient and economical design of structures. It also conducts programs to improve product quality. To accomplish these objectives the Institute publishes manuals, textbooks, specifications, and technical booklets. Best known and most widely used are the Manuals of Steel Construction, LRFD (Load and Resistance Factor Design) and ASD (Allowable Stress Design), which hold a highly respected position in engineering literature. Outstanding among AISC standards are the Specifications for Structural Steel Buildings and the Code of Standard Practice for Steel Buildings and Bridges. The Institute also assists designers, contractors, educators, and others by publishing technical information and timely articles on structural applications through two publications, Engineering Journal and Modern Steel Construction. In addition, public appreciation of aesthetically designed steel structures is encouraged through its award programs: Prize Bridges, Architectural Awards of Excellence, Steel Bridge Building Competition for Students, and student scholarships. Due to the expanded nature of the material, the Second Edition of the LRFD Manual has been divided into two complementary volumes. Volume I contains the LRFD Specification and Commentary, tables, and other design information for structural members. Volume II contains all of the information on connections. Like the LRFD Specification upon which they are based, both volumes of this LRFD Manual apply to buildings, not bridges. The Committee gratefully acknowledges the contributions of Roger L. Brockenbrough, Louis F. Geschwindner, Jr., and Cynthia J. Zahn to this Manual. By the Committee on Manuals, Textbooks, and Codes, William A. Thornton, Chairman Barry L. Barger, Vice Chairman Horatio Allison Robert O. Disque Joseph Dudek William G. Dyker Ronald L. Hiatt David T. Ricker Abraham J. Rokach Ted W. Winneberger Charles J. Carter, Secretary Mark V. Holland William C. Minchin Thomas M. Murray Heinz J. Pak Dennis F. Randall AMERICAN INSTITUTE OF STEEL CONSTRUCTION vi REFERENCED SPECIFICATIONS, CODES, AND STANDARDS Part 6 (Volume I) of this LRFD Manual contains the full text of the following: American Institute of Steel Construction, Inc. (AISC) Load and Resistance Factor Design Specification for Structural Steel Buildings, December 1, 1993 Specification for Load and Resistance Factor Design of Single-Angle Members, December 1, 1993 Seismic Provisions for Structural Steel Buildings, June 15, 1992 Code of Standard Practice for Steel Buildings and Bridges, June 10, 1992 Research Council on Structural Connections (RCSC) Load and Resistance Factor Design Specifications for Structural Joints Using ASTM A325 or A490 Bolts, June 8, 1988 Additionally, the following other documents are referenced in Volumes I and II of the LRFD Manual: American Association of State Highway and Transportation Officials (AASHTO) AASHTO/AWS D1.5–88 American Concrete Institute (ACI) ACI 349–90 American Iron and Steel Institute (AISI) Load and Resistance Factor Design Specification for Cold-Formed Steel Structural Members, 1991 American National Standards Institute (ANSI) ANSI/ASME B1.1–82 ANSI/ASME B18.2.2–86 ANSI/ASME B18.1–72 ANSI/ASME B18.5–78 ANSI/ASME B18.2.1–81 American Society of Civil Engineers (ASCE) ASCE 7-88 American Society for Testing and Materials (ASTM) ASTM A6–91b ASTM A490–91 ASTM A617–92 ASTM A27–87 ASTM A500–90a ASTM A618–90a ASTM A36–91 ASTM A501–89 ASTM A668–85a ASTM A53–88 ASTM A502–91 ASTM A687–89 ASTM A148–84 ASTM A514–91 ASTM A709–91 ASTM A153–82 ASTM A529–89 ASTM A770–86 ASTM A193–91 ASTM A563–91c ASTM A852–91 ASTM A194–91 ASTM A570–91 ASTM B695–91 ASTM A208(A239–89) ASTM A572–91 ASTM C33–90 ASTM A242–91a ASTM A588–91a ASTM C330–89 ASTM A307–91 ASTM A606–91a ASTM E119–88 ASTM A325–91c ASTM A607–91 ASTM E380–91 ASTM A354–91 ASTM A615–92b ASTM F436–91 ASTM A449–91a ASTM A616–92 AMERICAN INSTITUTE OF STEEL CONSTRUCTION vii American Welding Society (AWS) AWS A2.4–93 AWS A5.25–91 AWS A5.1–91 AWS A5.28–79 AWS A5.5–81 AWS A5.29–80 AWS A5.17–89 AWS B1.0–77 AWS A5.18–79 AWS D1.1–92 AWS A5.20–79 AWS D1.4–92 AWS A5.23–90 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1-1 PART 1 DIMENSIONS AND PROPERTIES OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 STRUCTURAL STEELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Selection of the Appropriate Structural Steel . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Brittle Fracture Considerations in Structural Design . . . . . . . . . . . . . . . . . . . . . 1-6 Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Jumbo Shapes and Heavy-Welded Built-Up Sections . . . . . . . . . . . . . . . . . . . . 1-8 FIRE-RESISTANT CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Effect of Shop Painting on Spray-Applied Fireproofing . . . . . . . . . . . . . . . . . . 1-11 EFFECT OF HEAT ON STRUCTURAL STEEL . . . . . . . . . . . . . . . . . . . . . . 1-11 Coefficient of Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 Use of Heat to Straighten, Camber, or Curve Members . . . . . . . . . . . . . . . . . . 1-12 EXPANSION JOINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 AISC Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 AISC for AutoCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 STRUCTURAL SHAPES: TABLES OF AVAILABILITY, SIZE GROUPINGS, PRINCIPAL PRODUCERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 STEEL PIPE AND STRUCTURAL TUBING: TABLES OF AVAILABILITY, PRINCIPAL PRODUCERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21 STRUCTURAL SHAPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Designations, Dimensions, and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Tables: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 M Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46 HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 American Standard Channels (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50 Miscellaneous Channels (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52 Angles (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56 STRUCTURAL TEES (WT, MT, ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1-2 DIMENSIONS AND PROPERTIES Use of Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 DOUBLE ANGLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-91 Use of Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-91 COMBINATION SECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105 STEEL PIPE AND STRUCTURAL TUBING . . . . . . . . . . . . . . . . . . . . . . . 1-120 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 BARS AND PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Product Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133 Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-134 CRANE RAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 Welded Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141 Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141 TORSION PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-145 SURFACE AREAS AND BOX AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . 1-175 CAMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 Trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-179 STANDARD MILL PRACTICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-183 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-183 Methods of Increasing Areas and Weights by Spreading Rolls . . . . . . . . . . . . . 1-183 Cambering of Rolled Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-185 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-199 AMERICAN INSTITUTE OF STEEL CONSTRUCTION OVERVIEW 1-3 OVERVIEW To facilitate reference to Part 1, the locations of frequently used tables are listed below. Dimensions and Properties W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 M Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44 S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46 HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 American Standard Channels (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50 Miscellaneous Channels (MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52 Angles (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-56 Structural Tees (WT, MT, ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-68 Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-92 Combination Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-106 Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-121 Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-122 Torsion Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-146 Surface Areas and Box Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-175 Availability Availability of Shapes, Plates, and Bars, Table 1-1 . . . . . . . . . . . . . . . . . . . . 1-15 Structural Shape Size Groupings, Table 1-2 . . . . . . . . . . . . . . . . . . . . . . . . 1-16 Principal Producers of Structural Shapes, Table 1-3 . . . . . . . . . . . . . . . . . . . . 1-18 Availability of Steel Pipe and Structural Tubing, Table 1-4 . . . . . . . . . . . . . . . . 1-21 Principal Producers of Structural Tubing (TS), Table 1-5 . . . . . . . . . . . . . . . . . 1-22 Principal Producers of Steel Tubing (Round), Table 1-6 . . . . . . . . . . . . . . . . . . 1-26 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1-4 DIMENSIONS AND PROPERTIES AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL STEELS 1-5 STRUCTURAL STEELS Availability Section A3.1 of the AISC Load and Resistance Factor Design Specification for Structural Steel Buildings lists fifteen ASTM specifications for structural steel approved for use in building construction. Five of these steels are available in hot-rolled structural shapes, plates, and bars. Two steels, ASTM A514 and A852, are available only in plates. Table 1-1 shows five groups of shapes and eleven ranges of thickness of plates and bars available in the various minimum yield stress* and tensile strength levels afforded by the seven steels. For complete information on each steel, reference should be made to the appropriate ASTM specification. A listing of shape sizes included in each of the five groups follows in Table 1-2, corresponding with the groupings given in Table A of ASTM Specification A6. Seven additional grades of steel, other than those covering hot-rolled shapes, plates, and bars, are listed in Section A3.1a of the LRFD Specification. These steels cover pipe, cold- and hot-formed tubing, and cold- and hot-rolled sheet and strip. The principal producers of shapes listed in Part 1 of this Manual are shown in Table 1-3. Availability and the principal producers of structural tubing are shown in Tables 1-4 through 1-6. For additional information on availability and classification of structural steel plates and bars, refer to the separate discussion beginning on page 1-129. Space does not permit inclusion in Table 1-3, or in the listing of shapes and plates in Part 1 of this Manual, of all rolled shapes or plates of greater thickness that are occasionally used in construction. For such products, reference should be made to the various producers’ catalogs. To obtain an economical structure, it is often advantageous to minimize the number of different sections. Cost per square foot can often be reduced by designing this way. Selection of the Appropriate Structural Steel Steels with 50 ksi yield stress are now widely used in construction, replacing ASTM A36 steel in many applications. The 50 ksi steels listed in Section A3.1a of the LRFD Specification are ASTM A572 high-strength low-alloy structural steel, ASTM A242 and A588 atmospheric-corrosion-resistant high-strength low-alloy structural steels, and ASTM A529 high-strength carbon-manganese structural steel. Yield stresses above 50 ksi can be obtained from two grades of ASTM A572 steel as well as ASTM A514 and A852 quenched and tempered structural steel plate. These higher-strength steels have certain advantages over 50 ksi steels in certain applications. They may be economical choices where lighter members, resulting from use of higher design strengths, are not penalized because of instability, local buckling, deflection, or other similar reasons. They may be used in tension members, beams in continuous and composite construction where deflections can be minimized, and columns having low slenderness ratios. The reduction of dead load and associated savings in shipping costs can be significant factors. However, higher strength steels are not to be used indiscriminately. Effective use of all steels depends on thorough cost and engineering analysis. Normally, connection material is specified as ASTM A36. The connection tables in this Manual are for A36 steel. *As used in the AISC LRFD Specification, “yield stress” denotes either the specified minimum yield point (for those that have a yield point) or specified minimum yield strength (for those steels that do not have a yield point). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1-6 DIMENSIONS AND PROPERTIES With appropriate procedures and precautions, all steels listed in the AISC Specification are suitable for welded fabrication. To provide for weldability of ASTM A529 steel, the specification of a maximum carbon equivalent is recommended. ASTM A242 and A588 atmospheric-corrosion-resistant, high-strength, low-alloy steels can be used in the bare (uncoated) condition in most atmospheres. Where boldly exposed under such conditions, exposure to the normal atmosphere causes a tightly adherent oxide to form on the surface which protects the steel from further atmospheric corrosion. To achieve the benefits of the enhanced atmospheric corrosion resistance of these bare steels, it is necessary that design, detailing, fabrication, erection, and maintenance practices proper for such steels be observed. Designers should consult with the steel producers on the atmospheric-corrosion-resistant properties and limitations of these steels prior to use in the bare condition. When either A242 or A588 steel is used in the coated condition, the coating life is typically longer than with other steels. Although A242 and A588 steels are more expensive than other high-strength, low-alloy steels, the reduction in maintenance resulting from the use of these steels usually offsets their higher initial cost. Brittle Fracture Considerations in Structural Design As the temperature decreases, an increase is generally noted in the yield stress, tensile strength, modulus of elasticity, and fatigue strength of the structural steels. In contrast, the ductility of these steels, as measured by reduction in area or by elongation, and the toughness of these steels, as determined from a Charpy V-notch impact test, decrease with decreasing temperatures. Furthermore, there is a temperature below which a structural steel subjected to tensile stresses may fracture by cleavage,* with little or no plastic deformation, rather than by shear,* which is usually preceded by a considerable amount of plastic deformation or yielding. Fracture that occurs by cleavage at a nominal tensile stress below the yield stress is commonly referred to as brittle fracture. Generally, a brittle fracture can occur in a structural steel when there is a sufficiently adverse combination of tensile stress, temperature, strain rate, and geometrical discontinuity (notch) present. Other design and fabrication factors may also have an important influence. Because of the interrelation of these effects, the exact combination of stress, temperature, notch, and other conditions that will cause brittle fracture in a given structure cannot be readily calculated. Consequently, designing against brittle fracture often consists mainly of (1) avoiding conditions that tend to cause brittle fracture and (2) selecting a steel appropriate for the application. A discussion of these factors is given in the following sections. Conditions Causing Brittle Fracture It has been established that plastic deformation can occur only in the presence of shear stresses. Shear stresses are always present in a uniaxial or biaxial state-of-stress. However, in a triaxial state-of-stress, the maximum shear stress approaches zero as the principal stresses approach a common value, and thus, under equal triaxial tensile stresses, failure occurs by cleavage rather than by shear. Consequently, triaxial tensile stresses tend to cause brittle fracture and should be avoided. A triaxial state-of-stress can result from a uniaxial loading when notches or geometrical discontinuities are present. *Shear and cleavage are used in the metallurgical sense (macroscopically) to denote different fracture mechanisms. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL STEELS 1-7 Increased strain rates tend to increase the possibility of brittle behavior. Thus, structures that are loaded at fast rates are more susceptible to brittle fracture. However, a rapid strain rate or impact load is not a required condition for a brittle fracture. Cold work and the strain aging that normally follows generally increase the likelihood of brittle fracture. This behavior is usually attributed to the previously mentioned reduction in ductility. The effect of cold work that occurs in cold forming operations can be minimized by selecting a generous forming radius and, thus, limiting the amount of strain. The amount of strain that can be tolerated depends on both the steel and the application. The use of welding in construction increases the concerns relative to brittle fracture. In the as-welded condition, residual stresses will be present in any weldment. These stresses are considered to be at the yield point of the material. To avoid brittle fracture, it may be required to utilize steels with higher toughness than would be required for bolted construction. Welds may also introduce geometric conditions or discontinuities that are crack-like in nature. These stress risers will additionally increase the requirement for notch toughness in the weldment. Avoidance of the intersection of welds from multiple directions reduces the likelihood of triaxial stresses. Properly sized weld-access holes prohibit the interaction of these various stress fields. As steels being welded become thicker and more highly restrained, welding procedure issues such as preheat, interpass temperature, heat input, and cooling rates become increasingly important. The residual stresses present in a weldment may be reduced by the use of fewer weld passes and peening of intermittent weld layers. In most cases, weld metal notch toughness exceeds that of the base materials. However, for fracture-sensitive applications, notch-tough base and weld metal should be specified. The residual stresses of welding can be greatly reduced through thermal stress relief. This reduces the driving force that causes brittle fracture, but if the toughness of the material is adversely affected by this thermal treatment, no increase in brittle fracture resistance will be experienced. Therefore, when weldments are to be stress relieved, investigation into the effects on the weld metal, heat-affected zone, and base material should be made. Selecting a Steel To Avoid Brittle Fracture The best guide in selecting a steel that is appropriate for a given application is experience with existing and past structures. A36 and Grade 50 (i.e., 50 ksi yield stress) steels have been used successfully in a great number of applications, such as buildings, transmission towers, transportation equipment, and bridges, even at the lowest atmospheric temperatures encountered in the U.S. Therefore, it appears that any of the structural steels, when designed and fabricated in an appropriate manner, could be used for similar applications with little likelihood of brittle fracture. Consequently, brittle fracture is not usually experienced in such structures unless unusual temperature, notch, and stress conditions are present. Nevertheless, it is always desirable to avoid or minimize the previously cited adverse conditions that increase the susceptibility of the steel to brittle fracture. In applications where notch toughness is considered important, it usually is required that steels must absorb a certain amount of energy, 15 ft-lb or higher (Charpy V-notch test), at a given temperature. The test temperature may be higher than the lowest operating temperature depending on the rate of loading. See Rolfe and Barsom (1986) and Rolfe (1977). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1-8 DIMENSIONS AND PROPERTIES Lamellar Tearing The information on strength and ductility presented in the previous sections generally pertains to loadings applied in the planar direction (longitudinal or transverse orientation) of the steel plate or shape. It should be noted that elongation and area reduction values may well be significantly lower in the through-thickness direction than in the planar direction. This inherent directionality is of small consequence in many applications, but does become important in the design and fabrication of structures containing massive members with highly restrained welded joints. With the increasing trend toward heavy welded-plate construction, there has been a broader recognition of the occurrence of lamellar tearing in some highly restrained joints of welded structures, especially those using thick plates and heavy structural shapes. The restraint induced by some joint designs in resisting weld deposit shrinkage can impose tensile strain sufficiently high to cause separation or tearing on planes parallel to the rolled surface of the structural member being joined. The incidence of this phenomenon can be reduced or eliminated through greater understanding by designers, detailers, and fabricators of (1) the inherent directionality of construction forms of steel, (2) the high restraint developed in certain types of connections, and (3) the need to adopt appropriate weld details and welding procedures with proper weld metal for through-thickness connections. Further, steels can be specified to be produced by special practices and/or processes to enhance through-thickness ductility and thus assist in reducing the incidence of lamellar tearing. Steels produced by such practices are available from several producers. However, unless precautions are taken in both design and fabrication, lamellar tearing may still occur in thick plates and heavy shapes of such steels at restrained through-thickness connections. Some guidelines in minimizing potential problems have been developed (AISC, 1973). See also Part 8 in Volume II of this LRFD Manual and ASTM A770, Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications. Jumbo Shapes and Heavy Welded Built-up Sections Although Group 4 and 5 W-shapes, commonly referred to as jumbo shapes, generally are contemplated as columns or compression members, their use in non-column applications has been increasing. These heavy shapes have been known to exhibit segregation and a coarse grain structure in the mid-thickness region of the flange and the web. Because these areas may have low toughness, cracking might occur as a result of thermal cutting or welding (Fisher and Pense, 1987). Similar problems may also occur in welded built-up sections. To minimize the potential of brittle failure, the current LRFD Specification includes provisions for material toughness requirements, methods of splicing, and fabrication methods for Group 4 and 5 hot-rolled shapes and welded built-up cross sections with an element of the cross section more than two inches in thickness intended for tension applications. FIRE-RESISTANT CONSTRUCTION Fire-resistant steel construction may be defined as structural members and assemblies which can maintain structural stability for the duration of building fire exposure and, in some cases, prevent the spread of fire to adjacent spaces. Fire resistance of a steel member is a function of its mass, its geometry, the load to which it is subjected, its structural support conditions, and the fire to which it is exposed. Many steel structures have inherent fire resistance through a combination of the above factors and do not require additional insulation from the effects of fire. However, in many AMERICAN INSTITUTE OF STEEL CONSTRUCTION FIRE-RESISTANT CONSTRUCTION 1-9 situations, building codes specify the use of fire-rated steel assemblies. In this case, ASTM Specification E119, Standard Methods of Fire Tests of Building Construction and Materials, outlines the procedures of fire testing of structural elements. Structural fire resistance is a major consideration in the design of modern buildings. In general, building codes define the level of fire protection that is required in specific applications and structural fire protection is typically implemented in design through code compliance. In the United States, with a few notable exceptions, the majority of cities and states now enforce one of the following model codes: • National Building Code, published by the Building Officials and Code Administrators International. • Standard Building Code, published by the Southern Building Code Congress International. • Uniform Building Code, published by the International Conference of Building Officials. Building codes specify fire-resistance requirements as a function of building occupancy, height, area, and whether or not other fire protection systems (e.g., sprinklers) are provided. Fire-resistance requirements are specified in terms of hourly ratings based upon tests conducted in accordance with ASTM E119. This test method specifies a “standard” fire for evaluating the relative fire-resistance of construction assemblies (i.e., floors, roofs, beams, girders, and columns). Specific end-point criteria for evaluating the ability of assemblies to prevent the spread of fire to adjacent spaces and/or to continue to sustain superimposed loads are included. In effect, ASTM E119 is used to evaluate the length of time that an assembly continues to perform these functions when exposed to the standard fire. Thus, code requirements and fire-resistance ratings are specified in terms of time (i.e., one hour, two hours, etc.). The design of fire-resistant buildings is typically accomplished in a very prescriptive fashion by selecting tested designs that satisfy specific building code requirements. Listings of fire-resistant designs are available from a number of sources including: • Fire-Resistance Directory, Underwriters Laboratories. • Fire-Resistance Ratings, American Insurance Services Group. • Fire-Resistance Design Manual, Gypsum Association. In general, due to the very prescriptive nature of fire-resistant design, changes in tested assemblies can be difficult to justify to the satisfaction of code officials and listing agencies. In the case of structural steel construction, however, the basic heat transfer and structural principles are well defined. As a result, relatively simple analytical techniques have been developed that enable designers to use a variety of different structural steel shapes in conjunction with tested assemblies. These analytical techniques are specifically recognized by North American building code authorities and are described in a series of booklets published by the American Iron and Steel Institute (AISI): Designing Fire Protection for Steel Columns (1980) Designing Fire Protection for Steel Beams (1984) Designing Fire Protection for Steel Trusses (1981) Since fire-resistant design is currently based on the use of tested assemblies, an important consideration is the degree to which a test assembly is “representative” of AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 10 DIMENSIONS AND PROPERTIES actual building construction. In reality, this consideration poses a number of technical difficulties due to the size of available testing facilities, most of which can only accommodate floor or roof specimens in the range of 15 ft by 18 ft in area. As a result, a test assembly represents a relatively small sample of a typical floor or roof structure. Most floor slabs and roof decks are physically, if not structurally, continuous over beams and girders. Beam and girder spans are often much larger than can be accommodated in available laboratory furnaces. A variety of connection details are used to frame beams, girders, and columns. In short, given the cost of testing, the complexity and variety of modern structural systems, and the size of available test facilities, it is unrealistic to assume that test assemblies accurately model real construction systems during fire exposure. In recognition of the practical difficulties associated with laboratory scale testing, ASTM E119 includes two specific test conditions, “restrained” and “unrestrained.” From a structural engineering standpoint, the choice of these two terms is unfortunate since the “restraint” that is contemplated in fire testing is restraint against the thermal expansion, not structural rotational restraint in the traditional sense. The “restrained” condition applies when the assembly is supported or surrounded by construction which is “capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures.” Otherwise, the assembly should be considered free to rotate and expand at the supports and should be considered “unrestrained.” Thus, a floor system that is simply supported from a structural standpoint will often be “restrained” from a fireresistance standpoint. In order to provide guidance on the use of restrained and unrestrained ratings, ASTM E119 includes an explanatory Appendix. It should be emphasized that most common types of steel framing can be considered “restrained” from a fire-resistance standpoint. The standard fire test also includes other arbitrary assumptions. The specific fire exposure, for example, is based on furnace capabilities with continuous fuel supply and does not model real building fires with exhaustible fuel. Also, the test method assumes that assemblies are fully loaded when a fire occurs. In reality, fires are infrequent, random events and their design requirements should be probability based. Rarely will design structural loads occur simultaneously with fire. In addition, many structural elements are sized for serviceability (i.e., drift, deflection, or vibration) rather than strength, thereby providing an additional reserve strength during a fire. As a result of these and other considerations, more rational engineering design standards for structural fire protection are now being developed (International Fire Engineering Design for Steel Structures: State-of-the-Art, International Iron and Steel Institute). Although not yet standardized or recognized in North American building codes, similar design methods have been used in specific cases, based on code variances. One such method has been developed by AISI for architecturally exposed structural steel elements on the exterior of buildings. In effect, ASTM E119 assumes that structural elements are located within a fire compartment and does not realistically characterize the fire exposure that will be seen by exterior structural elements. Fire-Safe Structural Steel: A Design Guide (American Iron and Steel Institute, 1979) defines a step-by-step analytical procedure for determining maximum steel temperatures, based on realistic fire exposures for exterior structural elements. Occasionally, structural engineers will be called upon to evaluate fire-damaged steel structures. Although it is well known that the prolonged exposure to high temperatures can affect the physical and metallurgical properties of structural steel, in most cases steel AMERICAN INSTITUTE OF STEEL CONSTRUCTION EFFECT OF HEAT ON STRUCTURAL STEEL 1 - 11 members that can be straightened in place will be suitable for continued use (Dill, 1960). Special attention should be given to heat-treated or cold-formed steel elements and high-strength bolts and welds. Effect of Shop Painting on Spray-Applied Fireproofing Spray-applied fireproofing has excellent adhesion to unpainted structural steel. Mechanical anchorage devices, bonding agents, or bond tests are not required to meet Underwriters Laboratories, Inc. (UL) guidelines. In fact, moderate rusting enhances the adhesion of the fireproofing material, providing the uncoated steel is free of loose rust and mill scale. Customarily, any loose rust or mill scale as well as any other debris which has accumulated during the construction process is removed by the fireproofing application contractor. In many cases, this may be as simple as blowing it off with compressed air. This ease of application is not realized when fireproofing is applied over painted steel. In order to meet UL requirements, bond tests in accordance with the ASTM E736 must be performed to determine if the fireproofing material has adequate adherence to the painted surface. Frequently, a bonding agent must be added to the fireproofing material and the bond test repeated to determine if the minimum bond strength can be met. Should the bond testing still not be satisfactory, mechanical anchorage devices are required to be applied to the steel before the fireproofing can be applied. The erected steel must still be cleaned free of any construction debris and scaling or peeling paint before the fireproofing may be applied. Once it is determined that the bond tests are adequate, UL guidelines require that if fireproofing is spray-applied over painted steel, the steel must be wrapped with steel lath or mechanical anchorage devices must be applied to the steel if the structural shape exceeds the following dimensional criteria: • For beam applications, the web depth cannot exceed 16 inches and the flange cannot exceed 12 inches. • For column applications, neither the web depth nor the flange width can exceed 16 inches. A significant number of structural shapes do not meet these restrictions. The use of primers under spray-applied fireproofing significantly increases the cost of the steel and the preparation for and the application of the fireproofing material. In an enclosed structure, primer is insignificant in either the short- or long-term protection of the steel. LRFD Specification Section M3.1 states that structural steelwork need not be painted unless required by the contract. For many years, the AISC specifications have not required that steelwork be painted when it will be concealed by interior building finish or will be in contact with concrete. The use of primers under spray-applied fireproofing is strongly discouraged unless there is a compelling reason to paint the steel to protect against corrosion. It is suggested that the designer refer to the UL Directory Fire Resistance—Volume 1, 1993, “Coating Materials,” for more specific information on this topic. EFFECT OF HEAT ON STRUCTURAL STEEL Short-time elevated-temperature tensile tests on the structural steels permitted by the AISC Specification indicate that the ratios of the elevated-temperature yield and tensile strengths to their respective room-temperature values are reasonably similar in the 300° to 700°F range, except for variations due to strain aging. (The tensile strength ratio may AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 12 DIMENSIONS AND PROPERTIES increase to a value greater than unity in the 300° to 700°F range when strain aging occurs.) Below 700°F the strength ratios decrease only slightly. Above 700°F the ratio of elevated-temperature to room-temperature strength decreases more rapidly as the temperature increases. The composition of the steels is usually such that the carbon steels (ASTM A36 and A529) exhibit strain aging with attendant reduced notch toughness. The high-strength low-alloy steels (ASTM A242, A572, and A588) and heat-treated alloy steels (ASTM A514 and A852) exhibit less-pronounced or little strain aging. As examples of the decreased ratio levels obtained at elevated temperature, the yield strength ratios for carbon and high-strength low-alloy steels are approximately 0.77 at 800°F, 0.63 at 1,000°F, and 0.37 at 1,200°F. Coefficient of Expansion The average coefficient of expansion for structural steel between 70°F and 100°F is 0.0000065 for each degree. For temperatures of 100°F to 1,200°F the coefficient is given by the approximate formula: ε = (6.1+0.0019t) × 10−6 in which ε is the coefficient of expansion (change in length per unit length) for each degree Fahrenheit and t is the temperature in degrees Fahrenheit. The modulus of elasticity of structural steel is approximately 29,000 ksi at 70°F. It decreases linearly to about 25,000 ksi at 900°F, and then begins to drop at an increasing rate at higher temperatures. Use of Heat to Straighten, Camber, or Curve Members With modern fabrication techniques, a controlled application of heat can be effectively used to either straighten or to intentionally curve structural members. By this process, the member is rapidly heated in selected areas; the heated areas tend to expand, but are restrained by adjacent cooler areas. This action causes a permanent plastic deformation or “upset” of the heated areas and, thus, a change of shape is developed in the cooled member. “Heat straightening” is used in both normal shop fabrication operations and in the field to remove relatively severe accidental bends in members. Conversely, “heat cambering” and “heat curving” of either rolled beams or welded girders are examples of the use of heat to effect a desired curvature. As with many other fabrication operations, the use of heat to straighten or curve will cause residual stresses in the member as a result of plastic deformations. These stresses are similar to those that develop in rolled structural shapes as they cool from the rolling temperature; in this case, the stresses arise because all parts of the shape do not cool at the same rate. In like manner, welded members develop residual stresses from the localized heat of welding. In general, the residual stresses from heating operations do not affect the ultimate strength of structural members. Any reduction in strength due to residual stresses is incorporated in the provisions of the LRFD Specification. The mechanical properties of steels are largely unaffected by heating operations, provided that the maximum temperature does not exceed 1,100°F for quenched and tempered alloy steels (ASTM A514 and A852), and 1,300°F for other steels. The AMERICAN INSTITUTE OF STEEL CONSTRUCTION EXPANSION JOINTS 1 - 13 temperature should be carefully checked by temperature-indicating crayons or other suitable means during the heating process. EXPANSION JOINTS Although buildings are typically constructed of flexible materials, expansion joints are required in roofs and the supporting structure when horizontal dimensions are large. The maximum distance between expansion joints is dependent upon many variables including ambient temperature during construction and the expected temperature range during the lifetime of the building. An excellent reference on the topic of thermal expansion in buildings and location of expansion joints is the Federal Construction Council’s Technical Report No. 65, Expansion Joints in Buildings. Taken from this report, Figure 1-1 provides a guide based on design temperature change for maximum spacing of structural expansion joints in beam-and-column-framed buildings with hinged-column bases and heated interiors. The report includes data for numerous cities and gives five modification factors which should be applied as appropriate: MAXIMUM SPACING OF EXPANSION JOINTS (ft) 1. If the building will be heated only and will have hinged-column bases, use the maximum spacing as specified; 2. If the building will be air-conditioned as well as heated, increase the maximum spacing by 15 percent provided the environmental control system will run continuously; 3. If the building will be unheated, decrease the maximum spacing by 33 percent; 4. If the building will have fixed column bases, decrease the maximum spacing by 15 percent; 600 500 Rectangular multiframed configuration with Symmetrical stiffness 400 Steel 300 200 Nonrectangular configuration (L, T, U type) Any material 100 10 20 30 40 50 60 70 70 80 90 DESIGN TEMPERATURE CHANGE (°F) Fig. 1-1. Expansion joint spacing. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 14 DIMENSIONS AND PROPERTIES 5. If the building will have substantially greater stiffness against lateral displacement in one of the plan dimensions, decrease the maximum spacing by 25 percent. When more than one of these design conditions prevail in a building, the percentile factor to be applied should be the algebraic sum of the adjustment factors of all the various applicable conditions. Additionally, most building codes include restrictions on location and spacing of fire walls. Such fire walls often become locations for expansion joints. The most effective expansion joint is a double line of columns which provides a complete and positive separation. When expansion joints other than the double-column type are employed, low-friction sliding elements are generally used. Such systems, however, are never totally free and will induce some level of inherent restraint to movement. COMPUTER SOFTWARE AISC Database The AISC Database contains the properties and dimensions of structural steel shapes, corresponding to Part 1 of this LRFD Manual. LRFD-related properties such as X1 and X2, as well as torsional properties, are included. Two versions, one in U.S. customary units and one in metric units, are available. Dimensions and properties of W, S, M, and HP shapes, American Standard Channels (C), Miscellaneous Channels (MC), Structural Tees cut from W, M, and S shapes (WT, MT, ST), Single and Double Angles, Structural Tubing, and Pipe are listed in ASCII format. Also included are: a BASIC read/write program, a sample search routine, and a routine to convert the file to Lotus *.PRN file format. AISC for AutoCAD * The program will draw the end, elevation, and plan views of W, S, M, and HP shapes, American Standard Channels (C), Miscellaneous Channels (MC), Structural Tees cut from W, M, and S shapes (WT, MT, ST), Single and Double Angles, Structural Tubing, and Pipe to full scale corresponding to data published in Part 1 of this LRFD Manual. Version 2.0 runs in AutoCAD Release 12 only; Version 1.0 runs in AutoCAD Releases 10 and 11. *AutoCAD is a registered trademark in the US Patent and Trademark Office by Autodesk, Inc. AISC for AutoCAD is copyrighted in the US Copyright Office by Bridgefarmer and Associates, Inc. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 15 Table 1-1. Availability of Shapes, Plates, and Bars According to ASTM Structural Steel Specifications Shapes Fy Steel Type A36 32 58–80 36 58–80c 42 42 60–85 50 50 70–100 42 42 60 50 50 65 60 60 75 65 65 80 A242 42 63 46 67 50 70 HighStrength Low-alloy Corrosion Resistant Highstrength Low-alloy A572 Grade A529f Grade Carbon Group per Over Over Mini1⁄ ″ 3⁄ ″ ASTM A6 Fu mum 2 4 ASTM Yield Tensile To to to a 1⁄ ″ 3 ⁄ ″ 11 ⁄ ″ Desig- Stress Stress 2 4 4 b nation (ksi) (ksi) 1 2 3 4 5 incl. incl. incl. A588 42 63 46 67 50 70 Quenched A852e & Tempered Alloy 70 90–110 Quenched A514e & Tempered A514e Low-Alloy 90 100–130 100 110–130 Plates and Bars Over Over Over Over Over Over Over 11⁄4″ 11⁄2″ 2″ 21⁄2″ 4″ 5″ 6″ to to to to to to to 11⁄2″ 2″ 21⁄2″ 4″ 5″ 6″ 8″ Over incl. incl. incl. incl. incl. incl. incl. 8″ d aMinimum unless a range is shown. bIncludes bar-size shapes cFor shapes over 426 lb / ft minimum of 58 ksi only applies. dPlates to 1 in. thick, 12 in. width; bars to 11⁄ in. 2 ePlates only. fTo improve the weldability of A529 steel, the specification of a maximum carbon equivalent (per ASTM Supplementary Requirement S78) is recommended. Available Not Available AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 16 DIMENSIONS AND PROPERTIES Table 1-2. Structural Shape Size Groupings for Tensile Property Classification Structural Shapes W shapes Group 1 Group 2 Group 3 W44× 290, 335 Group 4 W24× 55, 62 W44× 230, 262 W21× 44 to 57 incl. W40× 149 to 264 incl. W40× 431 W18× 35 to 71 incl. W36× 135 to 210 incl. W40× 277 to 372 incl. W36× 328 to 798 incl. W16× 26 to 57 incl. W33× 118 to 152 incl. W36× 230 to 300 incl. W33× 318 to 354 incl. W14× 22 to 53 incl. W30× 90 to 211 incl. W33× 169 to 291 incl. W30× 292 to 477 incl. W12× 14 to 58 incl. W27× 84 to 178 incl. W30× 235 to 261 incl. W27× 307 to 539 incl. W10× 12 to 45 incl. W24× 68 to 162 incl. W27× 194 to 258 incl. W24× 250 to 492 incl. Group 5 W40×466 to 593 incl. W36× 848 W40× 392 W8× 10 to 48 incl. W21× 62 to 147 incl. W24× 176 to 229 incl. W18× 211 to 311 incl. W6× 9 to 25 incl. W18× 76 to 143 incl. W21× 166 to 201 incl. W14× 233 to 550 incl. W5× 16,19 W16× 67 to 100 incl. W18× 158 to 192 incl. W12× 210 to 336 incl. W4× 13 W14× 61 to 132 incl. W14× 145 to 211 incl. W14× 605 to 808 incl. W12× 65 to 106 incl. W12× 120 to 190 incl. W10× 49 to 112 incl. W8× 58, 67 M Shapes all S Shapes to 35 lb/ft incl. over 35 lb/ft HP Shapes to 102 lb/ft incl. American to 20.7 lb/ft incl. Standard Channels (C) over 20.7 lb/ft Miscellane- to 28.5 lb/ft incl. ous Channels (MC) over 28.5 lb/ft Angles (L) to 1⁄2-in. incl. over 102 lb/ft over 1⁄2- to 3⁄4-in. incl. over 3⁄4-in. Notes: Structural tees from W, M, and S shapes fall into the same group as the structural shapes from which they are cut. Group 4 and Group 5 shapes are generally contemplated for application as columns or compression components. When used in other applications (e.g., trusses) and when thermal cutting or welding is required, special material specification and fabrication procedures apply to minimize the possibility of cracking (see Part 6, LRFD Specification, Sections A3.1c, J1.5, J1.6, J2.3, and M2.2, and corresponding Commentary sections). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 17 Structural Steel Shape Producers Bayou Steel Corp. P.O. Box 5000 Laplace, LA 70068 (800) 535-7692 Florida Steel Corp. P.O. Box 31328 Tampa, FL 33631 (800) 237-0230 Nucor-Yamato Steel P.O. Box 1228 Blytheville, AR 72316 (800) 289-6977 Bethlehem Steel Corp. 301 East Third St. Bethlehem, PA 18016-7699 (800) 633-0482 Northwestern Steel & Wire Co. 121 Wallace St. P.O. Box 618 Sterling, IL 61081-0618 (800) 793-2200 Roanoke Electric Steel Corp. P.O. Box 13948 Roanoke, VA 24038 (800) 753-3532 British Steel Inc. 475 N. Martingale Road #400 Schaumburg, IL 60173 (800) 542-6244 North Star Steel Co. 1380 Corporate Center Curve Suite 215 P.O. Box 21620 Eagan, MN 55121-0620 (800) 328-1944 Chaparral Steel Co. 300 Ward Road Midlothian, TX 76065-9501 (800) 529-7979 Nucor Steel P.O. Box 126 Jewett, TX 75846 (800) 527-6445 SMI Steel, Inc. 101 South 50th St. Birmingham, AL 35232 (800) 621-0262 TradeARBED 825 Third Ave. New York, NY 10022 (212) 486-9890 Structural Tube Producers American Institute for Hollow Structural Sections 929 McLaughlin Run Road Suite 8 Pittsburgh, PA 15017 (412) 221-8880 Acme Roll Forming Co. 812 North Beck St. Sebewaing, MI 48759-0706 (800) 937-8823 Dallas Tube & Rollform P.O. Box 540873 Dallas, TX 75354-0873 (214) 556-0234 Independence Tube Corp. 6226 West 74th St. Chicago, IL 60638 (708) 496-0380 Eugene Welding Co. P.O. Box 249 Marysville, MI 48040 (313) 364-7421 IPSCO Steel, Inc. P.O. Box 1670, Armour Road Regina, Saskatchewan S4P 3C7 CANADA (416) 271-2312 EXLTUBE, Inc. 905 Atlantic North Kansas City, MO 64116 (800) 892-8823 Bull Moose 57540 SR 19 S P.O. Box B-1027 Elkhart, IN 46515 (800) 348-7460 Hanna Steel Corp. 3812 Commerce Ave. P.O. Box 558 Fairfield, AL 35064 (800) 633-8252 Copperweld Corp. 7401 South Linder Ave. Chicago, IL 60638 (800) 327-8823 UNR-Leavitt, Div. of UNR Inc. 1717 West 115th St. Chicago, IL 60643 (800) 532-8488 Valmont Industries, Inc. P.O. Box 358 Valley, NE 68064 (800) 825-6668 Welded Tube Co. of America 1855 East 122nd St. Chicago, IL 60633 (800) 733-5683 Steel Pipe Producers National Association of Steel Pipe Distributors, Inc. 12651 Briar Forest Dr., Suite 130 Houston, TX 77077 (713) 531-7473 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 18 DIMENSIONS AND PROPERTIES Table 1-3. Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp. I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R—Roanoke Steel W—Northwestern Steel & Wire Y—Bayou Steel Corp. Section, Weight per ft Producer Code Section, Weight per ft Producer Code W44× all T W40× 321-593 W40× 297 W40× 278 W40× 277 W40× 264 W40× 249 W40× 235 W40× 215 W40× 211 W40× 199 W40× 183 W40× 174 W40× 149-167 T N T N,T B,T N,T B,T N,T B,T N,T B,I,N,T T B,I,N,T W24× 103 W24× 84-94 W24× 55-76 B,W B,I,N,W B,C,I,N,W W21× 182-201 W21× 166 W21× 83-147 W21× 44-73 I,W B,I,W B,I,N,W B,C,I,N,W W18× 258-311 W18× 175-234 W18× 130-158 W18× 76-119 W18× 65-71 W18× 35-60 B B,W B,N,W B,N,W B,I,N,W B,C,I,N,W W36× 439-848 W36× 393 W36× 328-359 W36× 260-300 W36× 256 W36× 245 W36× 232 W36× 135-230 T B,T B,I,T B,I,N,T B,I B,I,N,T B,I B,I,N,T W16× 67-100 W16× 57 W16× 26-50 B,N,W B,I,N,W B,C,I,N,W W33× 263-354 W33× 201-241 W33× 169 W33× 118-152 B,T B,N,T B,T B,I,N,T W30× 391-477 W30× 261-326 W30× 173-235 W30× 148 W30× 99-132 W30× 90 W14× 808 W14× 342-730 W14× 311 W14× 90-283 W14× 82 W14× 74 W14× 61-68 W14× 43-53 W14× 38 W14× 22-34 B B,I,T B,I,T,W B,I,N,T,W B,N,W B,C,I,N,W B,C,N,W B,C,I,N,W B,I,N,W B,C,I,N,W T B,T B,I,N,T B,I,T B,I,N,T B,N W27× 307-539 W27× 258 W27× 235 W27× 146-217 W27× 129 W27× 84-114 T N,T N B,N,T B,I,T,W B,I,N,T,W W12× 252-336 W12× 210-230 W12× 170-190 W12× 65-152 W12× 50-58 W12× 16-45 W12× 14 B B,T B,I,T,W B,I,N,T,W B,C,I,N,W B,C,N,W B,C,W W24× 279-492 W24× 250 W24× 229 W24× 207 W24× 192 W24× 104-176 T B,N,W B,N,T,W B,N,W B,I,N,T,W B,I,N,T,W W10× 88-112 W10× 49-77 W10× 33-45 W10× 22-30 W10× 15-19 W10× 12 B,I,N,W B,C,I,N,W B,C,N,W B,C,I,N,W B,C,I,W B,C,W W8× 31-67 W8× 18-28 W8× 15 B,C,I,N,W B,C,N,W B,C,W,Y Notes: For the most recent list of producers, please see the latest January or July issue of the AISC magazine Modern Steel Construction. Maximum lengths of shapes obtained vary with producer, but typically range from 60 ft to 75 ft. Lengths up to 100 ft are available for certain shapes. Please consult individual producers for length requirements. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 19 Table 1-3 (cont.). Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp. I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R-Roanoke Steel W—Northwestern Steel & Wire Y—Bayou Steel Corp. Section, Weight per ft Producer Code Section, Weight per ft Producer Code W8× 10-13 B,C,M,W,Y W6× 20-25 W6× 16 W6× 15 W6× 12 W6× 9 B,C,I,N,W B,C,W,Y B,C,I,N,W B,C,W,Y B,C,N,W,Y W5× 16-19 B W4× 13 B,C,M,Y M12× 10.8-11.8 M10× 8-9 M8× 6.5 M5× 18.9 MC18× 42.7-58 MC13× 31.8-50 MC12× 31-50 MC12× 10.6 MC10× 22-41.1 MC10× 8.4 MC9× 23.9-25.4 MC8× 18.7-22.8 MC8× 8.5 MC7× 19.1-22.7 MC6× 18 MC6× 12-16.3 B,N B,N B,N S,N B S B B,S M B B B,S C C C B S24× 80-121 S20× 66-96 S18× 54.7-70 S15× 42.9-50 S12× 31.8-50 S10× 25.4-35 S8× 18.4-23 S6× 12.5-17.25 S5× 10 S4× 9.5 S4× 7.7 S3× 7.5 S3× 5.7 B,W B,W B,W B,W B,W B,S B,C,S C,S,Y C,Y C C,Y C,Y C,M,Y HP14× 73-117 HP12× 53-84 HP10× 42-57 HP8× 36 B,I,N,W B,I,N,W B,C,I,N,W B,C,I,N,W C15× 33.9-50 C12× 30 C12× 20.7-25 C10× 25-30 C10× 15.3-20 C9× 20 C9× 13.4-15 C8× 18.75 C8× 11.5-13.75 C7× 12.25 C7× 9.8 C6× 13 C6× 10.5 C6× 8.2 C5× 9 C5× 6.7 C4× 5.4-7.25 C3× 6 C3× 4.1-5 Section by Leg Length & Thickness Producer Code L8× 8× B,N,W B,W B,C,S,W B,S,W B,C,S,W B B,S S,W,Y C,M,S,U,W,Y S,U,W M,S,U,W M,S,U,W,Y C,M,S,U,W,Y C,F,M,U,W,Y, M,U,W,Y F,M,U,W,Y F,M,U,W,Y M,U,W,Y F,M,R,U,W,Y 11 ⁄8 1 7⁄ 3⁄ 5⁄ 9⁄ 1⁄ L6× 6× 7⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄ 7⁄ 3⁄ 5⁄ 1⁄ 7⁄ 3⁄ 5⁄ L4× 4× 4 8 16 2 1 3⁄ L5× 5× 8 3⁄ 5⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ 8 4 8 16 2 16 8 16 8 4 8 2 16 8 16 4 8 2 16 8 16 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION B B,S B,S B,S B,S B,S B,S B,U,Y B,U,Y B,M,U,Y B,M,U,Y B,M,U,Y B,M,S,U,Y B,M,U,Y B,M,S,U,Y M,U,Y B,U,Y B,M,U,Y B,M,U,Y B,M,U,W,Y B,M,U,Y B,M,U,W,Y B,M,U,W,Y M,U,Y M,U,Y F,M,R,U,W,Y F,M,U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y 1 - 20 DIMENSIONS AND PROPERTIES Table 1-3 (cont.). Principal Producers of Structural Shapes B—Bethlehem Steel Corp. C—Chaparral Steel F—Florida Steel Corp. I—British Steel S—North Star Steel M—SMI Steel Inc. T—TradeARBED N—Nucor-Yamato Steel U—Nucor Steel R—Roanoke Steel W—Northwestern Steel & Wire Y—Bayou Steel Corp. Section by Leg Length Producer Code and Thickness Section by Leg Length Producer Code and Thickness L31 ⁄2 × 31 ⁄2 × L6× 31 ⁄2 × 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ L3× 3× 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ 3⁄ L21 ⁄2 × 21 ⁄2 × 1⁄ 3⁄ 5⁄ 1⁄ 3⁄ L2× 2× 3⁄ 5⁄ 1⁄ 3⁄ 1⁄ L8× 6× 7⁄ 5⁄ 9⁄ 1⁄ 7⁄ 7⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ 7⁄ 3⁄ L6× 4× 8 16 4 2 16 8 16 4 16 2 8 16 4 16 8 16 4 16 8 8 4 8 16 2 16 1 3⁄ L7× 4× 16 1 3⁄ L8× 4× 2 7⁄ 3⁄ 5⁄ 9⁄ 1⁄ 7⁄ 3⁄ 5⁄ 8 4 8 16 2 16 4 8 2 16 8 8 4 8 16 2 16 8 16 F,M,R,U,W,Y U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,U,W,Y U,Y F,M,R,S,U,W,Y F,M,R,S,U,W,Y F,M,R,S,U,W,Y F,M,R,U,W,Y F,U F,S,U F,S,U F,S,U F,U F,S,U F,S,U F,S,U F,S,U F,S,U B,S B B,S B B,S B,S B,S B,S B,S B,S B,S B,S B,S B,S B,Y B,Y B,S,Y B,Y B,S,Y B B,M,S,U,W,Y B,M,S,U,W,Y B,M,S,U,W,Y B,M,S,U,W,Y B,U,Y B,M,S,U,W,Y B,M,S,U,W,Y 1⁄ 3⁄ 5⁄ L5× 31 ⁄ 3⁄ 2× 5⁄ 1⁄ 3⁄ 5⁄ 1⁄ 1⁄ L5× 3× 7⁄ 3⁄ 5⁄ 1⁄ L4× 31 ⁄ 1⁄ 2× 3⁄ 5⁄ 1⁄ L4× 3× 5⁄ 1⁄ 7⁄ 3⁄ 5⁄ 1⁄ L31 ⁄2 × 3× 1⁄ 3⁄ 5⁄ 1⁄ L31 ⁄ 2 × 21 ⁄ 2× 1⁄ 3⁄ 1⁄ L3× 21 ⁄2 × 1⁄ 3⁄ 5⁄ 1⁄ 3⁄ L3× 2× 1⁄ 3⁄ 5⁄ 1⁄ 3⁄ L21 ⁄ 2 × 2× 3⁄ 5⁄ 1⁄ 3⁄ 2 8 16 4 8 2 8 16 4 2 16 8 16 4 2 8 16 4 8 2 16 8 16 4 2 8 16 4 2 8 4 2 8 16 4 16 2 8 16 4 16 8 16 4 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION M,U,W,Y B,M,U,W,Y B,M,U,W,Y M,U,Y M,U,Y M,U,W,Y M,U,W,Y M,U,W,Y M,U,W,Y F,M,U,W,Y F,Y F,M,U,W,Y F,M,U,W,Y F,M,U,W,Y F,M,U,W F,M,R,U,W F,M,R,U,W F,M,R,U,W M,U,Y F,M,U,W,Y U,Y F,M,R,U,W,Y F,M,R,U,W,Y F,M,R,U,W,Y U,W M,U,W M,U,W M,U,W U U U U U,W U,W,Y R,U,W U F F,S,U F,S,U F,R,S,U F,R,U R,S,U S,U R,S,U R,S,U 1 - 21 Table 1-4. Availability of Steel Pipe and Structural Tubing According to ASTM Material Specifications ASTM Specification Steel Fy Fu Grade Minimum Yield Stress (ksi) Minimum Tensile Stress (ksi) Shape Round Square & Rectangular Availability ElectricResistance Welded A53 Type E B 35 60 Note 3 Seamless Type S B 35 60 Note 3 A 33 45 Note 1 B 42 58 Note 1 C 46 62 Note 1 A 39 45 Note 1 B 46 58 Note 2 C 50 62 Note 1 — 36 58 Note 1 I 50 70 Note 1 II 50 70 Note 1 III 50 65 Note 1 Cold Formed Hot Formed HighStrength Low-Alloy A500 A501 A618 Notes: 1. Available in mill quantities only; consult with producers. 2. Normally stocked in local steel service centers. 3. Normally stocked by local pipe distributors. Available Not Available AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 22 DIMENSIONS AND PROPERTIES Table 1-5. Principal Producers of Structural Tubing (TS) A—Acme Rolling Forming Co. B—Bull Moose Tube Co. C—Copperweld Corp. D—Dallas Tube & I—Independence Tube Rollform Corp. E—Eugene Welding Co. P—IPSCO Steel H—Hanna Steel Corp. U—UNR-Leavitt, Div. of UNR, Inc. Nominal Size and Thickness Producer Code 30× 30× 5⁄8 28× 28× 5⁄8 26× 26× 5⁄8 24× 24× 5⁄8, 1⁄2, 3⁄8 22× 22× 5⁄8, 1⁄2, 3⁄8 20× 20× 5⁄8, 1⁄2, 3⁄8 18× 18× 5⁄8, 1⁄2, 3⁄8 V—Valmont Industries, Inc. W—Welded Tube Co. of America X—EXLTUBE Nominal Size and Thickness Producer Code V* V* V* V* V* V* V* 41⁄2× 41⁄2× 3⁄8, 5⁄16 41⁄2× 41⁄2× 1⁄4, 3⁄16 41⁄2× 41⁄2× 1⁄8 I,P,W A,B,C,D,I,P,W,X A,B,C,P,I,W 4× 4× 1⁄2 4× 4× 3⁄8, 5⁄16 4× 4× 1⁄4, 3⁄16 , 1⁄8 B,C,P,U,W A,B,C,D,E,I,P,U,W A,B,C,D,E,I,P,U,V,W,X 16× 16× 5⁄8 16× 16× 1⁄2, 3⁄8, 5⁄16 V* V*,W 31⁄2× 31⁄2× 5⁄16 31⁄2× 31⁄2× 1⁄4, 3⁄16 , 1⁄8 I,P,W A,B,C,D,E,I,P,U,W,X 14× 14× 5⁄8 14× 14× 1⁄2, 3⁄8 14× 14× 5⁄16 V* V*,W W 3× 3× 5⁄16 3× 3× 1⁄4, 3⁄16 3× 3× 1⁄8 I,P,W A,B,C,D,E,I,P,U,W,X A,B,C,D,E,I,P,U,W 12× 12× 5⁄8 12× 12× 1⁄2, 3⁄8 12× 12× 5⁄16 , 1⁄4 B B,V*,W B,W 21⁄2× 21⁄2× 5⁄16 21⁄2× 21⁄2× 1⁄4, 3⁄16 21⁄2× 21⁄2× 1⁄8 I A,B,C,D,E,I,P,U,V,W,X A,B,C,D,E,I,P,U,V,W 10× 10× 5⁄8 10× 10× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 10× 10× 3⁄16 B,C B,C,P,U,W B,C,P,W 2× 2× 5⁄16 2× 2× 1⁄4 2× 2× 3⁄16 , 1⁄8 I,V A,B,C,D,I,U,V,W,X A,B,C,D,E,I,P,U,V,W,X 8× 8× 5⁄8 8× 8× 1⁄2 8× 8× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 B,C B,C,P,U,W B,C,D,P,U,W 11⁄2× 11⁄2× 3⁄16 B,E,P,U,V 7× 7× 5⁄8 7× 7× 1⁄2 7× 7× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 B B,C,P,U,W B,C,D,P,U,W 30× 24× 1⁄2, 3⁄8, 5⁄16 28× 24× 1⁄2, 3⁄8, 5⁄16 26× 24× 1⁄2, 3⁄8, 5⁄16 24× 22× 1⁄2, 3⁄8, 5⁄16 22× 20× 1⁄2, 3⁄8, 5⁄16 V* V* V* V* V* 6× 6× 5⁄8 6× 6× 1⁄2 6× 6× 3⁄8, 5⁄16 6× 6× 1⁄4, 3⁄16 6× 6× 1⁄8 B B,C,P,U,W B,C,D,I,P,U,W A,B,C,D,I,P,U,W,X A,B,C,I,P 20× 18× 1⁄2, 3⁄8, 5⁄16 20× 12× 1⁄2, 3⁄8, 5⁄16 20× 8× 1⁄2, 3⁄8, 5⁄16 20× 4× 1⁄2, 3⁄8, 5⁄16 V* W W W 51⁄2× 51⁄2× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 , 1⁄8, B,I 18× 12× 1⁄2, 3⁄8, 5⁄16 18× 6× 1⁄2, 3⁄8, 5⁄16 18× 6× 1⁄4 V* B,W B 5× 5× 1⁄2 5× 5× 3⁄8, 5⁄16 5× 5× 1⁄4 5× 5× 3⁄16 5× 5× 1⁄8 B,C,P,U,W B,C,D,I,P,U,W A,B,C,D,I,P,U,W,X A,B,C,D,I,P,U,V,W,X A,B,C,I,P,V,W 16× 12× 1⁄2, 3⁄8, 5⁄16 16× 8× 1⁄2, 3⁄8, 5⁄16 16× 4× 1⁄2, 3⁄8, 5⁄16 V*,W B,W B,W *Size is manufactured by Submerged Arc Welding (SAW) process and is not stocked by steel service centers (contact producer for specific requirements). All other sizes are manufactured by Electric Resistance Welding and are available from steel service centers. For the most recent list of producers, please see the latest January or July issue of the AISC magazine Modern Steel Construction. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 23 Table 1-5 (cont.). Principal Producers of Structural Tubing (TS) A—Acme Rolling Forming Co. B—Bull Moose Tube Co. C—Copperweld Corp. D—Dallas Tube & I—Independence Tube Rollform Corp. E—Eugene Welding Co. P—IPSCO Steel H—Hanna Steel Corp. U—UNR-Leavitt, Div. of UNR, Inc. Nominal Size and Thickness Producer Code 14× 12× 1⁄2, 3⁄8 14× 10× 1⁄2, 3⁄8, 5⁄16 14× 6× 5⁄8 14× 6× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 14× 4× 5⁄8 14× 4× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 14× 4× 3⁄16 V* B,W B B,W B B,W B 12× 10× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 8× 5⁄8 12× 8× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 8× 3⁄16 12× 6× 5⁄8 12× 6× 1⁄2, 3⁄8, 5⁄16 , 1⁄4 12× 6× 3⁄16 12× 4× 5⁄8 12× 4× 1⁄2, 3⁄8, 5⁄16 , 1⁄4, 3⁄16 12× 3× 5⁄16 , 1⁄4, 3⁄16 12× 2× 1⁄4, 3⁄16 B B B,C,U,W B,C,W B B,C,U,W B,C,W B B,U,W B B,U 10× 8× 1⁄2, 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 6× 1⁄2 10× 6× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 5× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 4× 1⁄2 10× 4× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 10× 3× 3⁄8,5⁄16 10× 3× 1⁄4, 3⁄16 10× 2× 5⁄16 10× 2× 1⁄4, 3⁄16 B,C,U,W B,C,U,W B,C,D,P,U,W B,C,D B,C,P,U,W B,C,D,P,U,W D B,D D,P,W B,D,P,U,W 8× 6× 1⁄2 8× 6× 3⁄8, 5⁄16 , 1⁄4, 3⁄16 8× 4× 5⁄8 8× 4× 1⁄2 8× 4× 3⁄8, 5⁄16 8× 4× 1⁄4, 3⁄16 8× 4× 1⁄8 8× 3× 1⁄2 8× 3× 3⁄8, 5⁄16 8× 3× 1⁄4, 3⁄16 8× 3× 1⁄8 8× 2× 3⁄8 8× 2× 5⁄16 8× 2× 1⁄4, 3⁄16 8× 2× 1⁄8 B,C,P,U,W B,C,D,P,U,W B B,C,P,U,W B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W,X A,B,D,I,P C,P,U B,C,D,I,P,U,W A,B,C,D,I,P,U,W A,B,C,D,I,P H H,I,P,W A,B,D,I,P,U,W A,B,D,I,P V—Valmont Industries, Inc. W—Welded Tube Co. of America X—EXLTUBE Nominal Size and Thickness Producer Code 7× 5× 1⁄2 7× 5× 3⁄8, 5⁄16 7× 5× 1⁄4, 3⁄16 7× 5× 1⁄8 7× 4× 3⁄8, 5⁄16 7× 4× 1⁄4, 3⁄16 7× 4× 1⁄8 7× 3× 3⁄8, 5⁄16 7× 3× 1⁄4, 3⁄16 7× 3× 1⁄8 B,C,P,U,W B,C,I,P,U,W A,B,C,H,I,P,U,W A,B,C,I,P B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W A,B,C,H,I,P B,C,D,H,I,P,W A,B,C,D,H,I,P,W,X A,B,C,D,H,I,P 6× 4× 1⁄2 6× 4× 3⁄8, 5⁄16 6× 4× 1⁄4 6× 4× 3⁄16 6× 4× 1⁄8 6× 3× 1⁄2 6× 3× 3⁄8, 5⁄16 6× 3× 1⁄4 6× 3× 3⁄16 6× 3× 1⁄8 6× 2× 3⁄8 6× 2× 5⁄16 6× 2× 1⁄4, 3⁄16 6× 2× 1⁄8 B,C,P,U,W B,C,D,H,I,P,U,W A,B,C,D,H,I,P,U,W,X A,B,C,D,H,I,P,U,V,W,X A,B,C,D,H,I,P,V,W P,U B,D,H,I,P,U A,B,C,D,H,I,P,U,X A,B,C,D,H,I,P,U,W,X A,B,C,D,H,I,P,W H H,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W 5× 4× 3⁄8, 5⁄16 5× 4× 1⁄4, 3⁄16 5× 3× 1⁄2 5× 3× 3⁄8, 5⁄16 5× 3× 1⁄4, 3⁄16 5× 3× 1⁄8 5× 2× 5⁄16 5× 2× 1⁄4, 3⁄16 5× 2× 1⁄8 I,P,W B,C,D,I,P,U,W C,P,U B,C,D,H,I,P,U,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W 4× 3× 5⁄16 4× 3× 1⁄4, 3⁄16 4× 3× 1⁄8 4× 2× 3⁄8 4× 2× 5⁄16 4× 2× 1⁄4, 3⁄16 4× 2× 1⁄8 B,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,D,E,H,I,P,U,W H H,I,P,W A,B,C,D,E,H,I,P,U,W,X A,B,C,E,H,I,P,U,W 3× 2× 5⁄16 3× 2× 1⁄4, 3⁄16 3× 2× 1⁄8 I A,B,C,D,E,H,I,P,U,V,W,X A,B,C,D,E,H,I,P,U,V,W 21⁄2 × 11⁄2 × 1⁄4, 3⁄16 H,X AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 24 DIMENSIONS AND PROPERTIES Table 1-6. Principal Producers of Steel Tubing (Round) C—Copperweld Corp. P—IPSCO U—UNR-Leavitt, Div. of UNR, Inc. V—Valmont Industries, Inc. W—Welded Tube Co. of America X—EXLTUBE Outside Diameter and Thickness Producer Code Outside Diameter and Thickness Producer Code 20.000× .500,.375,.250 P*,W 6.626×.250,.188 6.625×.125 P,U,V,W P,V,W 18.000× .500,.375,.250 P*,W 16.000× .500 16.000× .375,.250 16.000× .188 16.000× .125 P*,W P,W P,V* V* 6.000×.500,.375,.312 6.000×.280 6.000×.250,.188,.125 W X V,W 14.000× .500,.438,.375,.250 14.000× .188 14.000× .125 P,W P,V* V* 5.563×.375 5.563×.258 5.563×.134 P,U P,U,V,W P,V,W 12.750× .500,.406,.375 12.750× .188× .125 P,W P,V* 5.000×.500,.375,.312 5.000×.258 5.000×.250,.188 5.000×.125 P,C,W P,X C,P,U,V,W P,U,V,W 10.750× .500,.365,.250 P,W 4.500×.237,.188,.125 P,U,V,W 10.000× .625,.500,.375,.312 10.000× .250,.188 10.000× .125 C C,V V 4.000×.337,.237 4.000×.266,.250,.188,.125 X U,V,W 9.625×.500 9.625×.375,.312,.250,.188 C,U C,P*,U 3.500×.318 3.500×.300 3.500×.250,.203,.188,.125 3.500×.226 X P,W P,U,V,W P,X 8.625×.500 8.625×.375,.322 8.625×.250,.188 8.625×.125 C,P,U C,P,U,W C,P,U,V,W P,V,W 3.000×.300,.216 X 2.875×.276 2.875×.250,.203,.188,.125 W P,U,V,W 7.000×.500 7.000×.375,.312,.250 7.000×.188 7.000×.125 C,P,U C,P,U,W C,P,U,V,W C,P,V,W 2.375,.250,.218,.188 2.375,.154,.125 P,V,W P,U,V,W 6.625×.500,.432 6.625×.375,.312,.280 P,U P,U,W *Size is manufactured by Submerged Arc Welding (SAW) Process and is typically not stocked by steel service centers. Other sizes are manufactured by Electric Resistance Welding and typically are available from steel service centers. For more information contact the manufacturer or the American Institute for Hollow Structural Sections. Also, other sizes and wall thicknesses may be available. Contact an individual manufacturer for more details. Steel Pipe: For availability contact the National Association of Steel Pipe Distributors, Inc. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 25 STRUCTURAL SHAPES Designations, Dimensions, and Properties The hot rolled shapes shown in Part 1 of this Manual are published in ASTM Specification A6/A6M, Standard Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use. W shapes have essentially parallel flange surfaces. The profile of a W shape of a given nominal depth and weight available from different producers is essentially the same except for the size of fillets between the web and flange. HP bearing pile shapes have essentially parallel flange surfaces and equal web and flange thicknesses. The profile of an HP shape of a given nominal depth and weight available from different producers is essentially the same. American Standard Beams (S) and American Standard Channels (C) have a slope of approximately 17 percent (2 in 12 inches) on the inner flange surfaces. The profiles of S and C shapes of a given nominal depth and weight available from different producers are essentially the same. The letter M designates shapes that cannot be classified as W, HP, or S shapes. Similarly, MC designates channels that cannot be classified as C shapes. Because many of the M and MC shapes are only available from a limited number of producers, or are infrequently rolled, their availability should be checked prior to specifying these shapes. They may or may not have slopes on their inner flange surfaces, dimensions for which may be obtained from the respective producing mills. The flange thickness given in the table from S, M, C, and MC shapes is the average flange thickness. In calculating the theoretical weights, properties, and dimensions of the rolled shapes listed in Part 1 of this Manual, fillets and roundings have been included for all shapes except angles. Because of differences in fillet radii among producers, actual properties of rolled shapes may vary slightly from those tabulated. Dimensions for detailing are generally based on the largest theoretical-size fillets produced. Equal leg and unequal leg angle (L) shapes of the same nominal size available from different producers have profiles which are essentially the same, except for the size of fillet between the legs and the shape of the ends of the legs. The k distance given in the tables for each angle is based on the theoretical largest size fillet available. Availability of certain angles is subject to rolling accumulation and geographical location, and should be checked with material suppliers. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 26 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Thickness tw tw 2 in. in. W44×335 W40×290 W40×262 W40×230 98.3 85.8 77.2 67.7 44.02 43.62 43.31 42.91 44 435⁄8 433⁄8 427⁄8 1.020 0.870 0.790 0.710 W40×593* W40×503* W40×431 W40×372 W40×321 W40×297 W40×277 W40×249 W40×215 W40×199 W40×174 174 148 127 109 94.1 87.4 81.3 73.3 63.3 58.4 51.1 42.99 42.05 41.26 40.63 40.08 39.84 39.69 39.38 38.98 38.67 38.20 43 421⁄16 411⁄4 405⁄8 401⁄16 397⁄8 393⁄4 393⁄8 39 385⁄8 381⁄4 1.790 113⁄16 1.540 19⁄16 1.340 15⁄16 1.160 13⁄16 1.000 1 0.930 15⁄16 0.830 13⁄16 3⁄ 0.750 4 5⁄ 0.650 8 5 0.650 ⁄8 5 0.650 ⁄8 W40×466* W40×392* W40×331 W40×278 W40×264 W40×235 W40×211 W40×183 W40×167 W40×149 137 115 97.6 81.8 77.6 68.9 62.0 53.7 49.1 43.8 42.44 427⁄16 41.57 419⁄16 40.79 4013⁄16 40.16 403⁄16 40.00 40 39.69 393⁄4 39.37 393⁄8 38.98 39 38.59 385⁄8 38.20 381⁄4 1.67 111⁄16 1.42 17⁄16 1.22 11⁄4 1.02 1 0.960 1 13 0.830 ⁄16 3 0.750 ⁄4 5 ⁄8 0.650 5⁄ 0.650 8 5⁄ 0.630 8 W36×848* W40×798* W40×650* W40×527* W40×439* W40×393* W40×359* W40×328* W40×300 W40×280 W40×260 W40×245 W40×230 249 234 190 154 128 115 105 96.4 88.3 82.4 76.5 72.1 67.6 42.45 41.97 40.47 39.21 38.26 37.80 37.40 37.09 36.74 36.52 36.26 36.08 35.90 421⁄2 42 401⁄2 391⁄4 381⁄4 373⁄4 373⁄8 371⁄8 363⁄4 361⁄2 361⁄4 361⁄8 357⁄8 Flange 2.520 2.380 1.970 1.610 1.360 1.220 1.120 1.020 0.945 0.885 0.840 0.800 0.760 1 7⁄ 8 13⁄ 16 11⁄ 16 21⁄2 23⁄8 2 15⁄8 13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4 Width bf Thickness tf k in. k1 in. in. 1.770 1.580 1.420 1.220 13⁄4 19⁄16 17⁄16 11⁄4 387⁄16 29⁄16 387⁄16 23⁄8 387⁄16 23⁄16 387⁄16 2 15⁄16 11⁄4 13⁄16 11⁄8 3⁄ 4 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 16.690 163⁄4 16.420 167⁄16 16.220 161⁄4 16.060 161⁄16 15.910 157⁄8 15.825 157⁄8 15.830 157⁄8 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 3.230 2.760 2.360 2.050 1.770 1.650 1.575 1.420 1.220 1.065 0.830 31⁄4 23⁄4 23⁄8 21⁄16 13⁄4 15⁄8 19⁄16 17⁄16 11⁄4 11⁄16 13⁄ 16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 47⁄16 21⁄16 315⁄16 115⁄16 39⁄16 17⁄8 31⁄4 13⁄4 215⁄16 111⁄16 31⁄16 111⁄16 23⁄4 15⁄8 25⁄8 19⁄16 23⁄8 11⁄2 21⁄4 11⁄2 2 11⁄2 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 12.640 125⁄8 12.360 123⁄8 12.170 123⁄16 11.970 12 11.930 12 11.890 117⁄8 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 2.950 215⁄16 2.520 21⁄2 2.130 21⁄8 1.810 113⁄16 1.730 13⁄4 1.575 17⁄16 1.415 19⁄16 1.220 11⁄4 1.025 1 0.830 13⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 343⁄16 41⁄8 2 311⁄16 17⁄8 35⁄16 113⁄16 3 111⁄16 215⁄16 111⁄16 23⁄4 15⁄8 25⁄8 19⁄16 23⁄8 11⁄2 23⁄16 11⁄2 2 11⁄2 11⁄4 13⁄16 1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 7⁄ 16 3⁄ 8 18.130 17.990 17.575 17.220 16.965 16.830 16.730 16.630 16.655 16.595 16.550 16.510 16.470 181⁄8 18 175⁄8 171⁄4 17 167⁄8 163⁄4 165⁄8 165⁄8 165⁄8 161⁄2 161⁄2 161⁄2 4.530 41⁄2 4.290 45⁄16 3.540 39⁄16 2.910 215⁄16 2.440 27⁄16 2.200 23⁄16 2.010 2 1.850 17⁄8 1.680 111⁄16 1.570 19⁄16 1.440 17⁄16 1.350 13⁄8 1.260 11⁄4 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 311⁄8 511⁄16 57⁄16 411⁄16 41⁄16 39⁄16 35⁄16 31⁄8 3 213⁄16 211⁄16 29⁄16 21⁄2 23⁄8 1 15.950 15.830 15.750 15.750 in. T 153⁄4 157⁄8 153⁄4 153⁄4 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 in. Distance *Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 21⁄4 23⁄16 2 13⁄4 15⁄8 15⁄8 19⁄16 11⁄2 11⁄2 11⁄2 11⁄2 17⁄16 17⁄16 STRUCTURAL SHAPES 1 - 27 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 335 290 262 230 4.5 5.0 5.5 6.5 593 503 431 372 321 297 277 249 215 199 174 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 (1/ksi) in. 38.1 44.7 49.2 54.8 44 32 26 21 2430 2140 1930 1690 5110 8220 12300 21200 31100 27100 24200 20800 2.6 3.0 3.4 3.9 4.5 4.8 5.0 5.5 6.5 7.4 9.5 19.1 22.2 25.5 29.5 34.2 36.8 41.2 45.6 52.6 52.6 52.6 — — — — — 47 38 31 23 23 23 4790 4110 3550 3100 2690 2500 2350 2120 1830 1690 1500 337 620 1100 1860 3240 4240 5370 7940 14000 20300 36000 466 392 331 278 264 235 211 183 167 149 2.1 2.5 2.9 3.3 3.4 3.8 4.2 4.8 5.8 7.1 20.5 24.1 28.0 33.5 35.6 41.2 45.6 52.6 52.6 54.3 — — — 57 50 38 31 23 23 22 4560 3920 3360 2860 2720 2430 2200 1900 1750 1610 848 798 650 527 439 393 359 328 300 280 260 245 230 2.0 2.1 2.5 3.0 3.5 3.8 4.2 4.5 5.0 5.3 5.7 6.1 6.5 12.5 13.2 16.0 19.6 23.1 25.8 28.1 30.9 33.3 35.6 37.5 39.4 41.4 — — — — — — — — 58 51 46 41 37 7100 6720 5590 4630 3900 3540 3240 2980 2720 2560 2370 2230 2100 S I 4 Axis Y-Y r S I 4 r 3 Zx in. in. in. in. in.3 1410 1240 1120 969 17.8 17.8 17.7 17.5 1200 1050 927 796 150 133 118 101 3.49 3.50 3.46 3.43 1620 1420 1270 1100 236 206 183 157 50400 41700 34800 29600 25100 23200 21900 19500 16700 14900 12200 2340 1980 1690 1460 1250 1170 1100 992 858 769 639 17.0 16.8 16.6 16.4 16.3 16.3 16.4 16.3 16.2 16.0 15.5 2520 2050 1690 1420 1190 1090 1040 926 796 695 541 302 250 208 177 150 138 132 118 101 88.2 68.8 3.81 3.72 3.65 3.60 3.56 3.54 3.58 3.56 3.54 3.45 3.26 2760 2300 1950 1670 1420 1330 1250 1120 963 868 715 481 394 327 277 234 215 204 182 156 137 107 473 851 1560 2910 3510 5310 7890 13700 20500 31400 36300 29900 24700 20500 19400 17400 15500 13300 11600 9780 1710 1440 1210 1020 971 874 785 682 599 512 16.3 16.1 15.9 15.8 15.8 15.9 15.8 15.7 15.3 14.9 1010 803 646 521 493 444 390 336 283 229 160 130 106 87.1 82.6 74.6 66.1 56.9 47.9 38.8 2.72 2.64 2.57 2.52 2.52 2.54 2.51 2.50 2.40 2.29 2050 1710 1430 1190 1130 1010 905 781 692 597 262 212 172 140 132 118 105 89.6 76.0 62.2 71 87 175 365 704 1040 1470 2040 2930 3730 5100 6430 8190 67400 62600 48900 38300 31000 27500 24800 22500 20300 18900 17300 16100 15000 3170 2980 2420 1950 1620 1450 1320 1210 1110 1030 953 895 837 16.4 16.4 16.0 15.8 15.6 15.5 15.4 15.3 15.2 15.1 15.0 15.0 14.9 4550 4200 3230 2490 1990 1750 1570 1420 1300 1200 1090 1010 940 501 467 367 289 235 208 188 171 156 144 132 123 114 4.27 4.24 4.12 4.02 3.95 3.90 3.87 3.84 3.83 3.81 3.78 3.75 3.73 3830 3570 2840 2270 1860 1660 1510 1380 1260 1170 1080 1010 943 799 743 580 454 367 325 292 265 241 223 204 190 176 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 Zy in. in. 3 1 - 28 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Flange Thickness tw tw 2 in. in. Width bf in. Distance Thickness tf in. T k k1 in. in. in. W36×256 W40×232 W40×210 W40×194 W40×182 W40×170 W40×160 W40×150 W40×135 75.4 68.1 61.8 57.0 53.6 50.0 47.0 44.2 39.7 37.43 37.12 36.69 36.49 36.33 36.17 36.01 35.85 35.55 373⁄8 371⁄8 363⁄4 361⁄2 363⁄8 361⁄8 36 357⁄8 351⁄2 0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600 1 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 12.215 12.120 12.180 12.115 12.075 12.030 12.000 11.975 11.950 121⁄4 121⁄8 121⁄8 121⁄8 121⁄8 12 12 12 12 1.730 1.570 1.360 1.260 1.180 1.100 1.020 0.940 0.790 13⁄4 19⁄16 13⁄8 11⁄4 13⁄16 11⁄8 1 15⁄ 16 13⁄ 16 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 321⁄8 25⁄8 21⁄2 25⁄16 23⁄16 21⁄8 2 115⁄16 17⁄8 111⁄16 15⁄16 11⁄4 11⁄4 13⁄16 13⁄16 13⁄16 11⁄8 11⁄8 11⁄8 W33×354* W40×318* W40×291* W40×263* W40×241 W40×221 W40×201 104 93.5 85.6 77.4 70.9 65.0 59.1 35.55 35.16 34.84 34.53 34.18 33.93 33.68 351⁄2 351⁄8 347⁄8 341⁄2 341⁄8 337⁄8 335⁄8 1.160 1.040 0.960 0.870 0.830 0.775 0.715 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 16.100 15.985 15.905 15.805 15.860 15.805 15.745 161⁄8 16 157⁄8 153⁄4 157⁄8 153⁄4 153⁄4 2.090 1.890 1.730 1.570 1.400 1.275 1.150 21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 27⁄8 211⁄16 29⁄16 23⁄8 23⁄16 21⁄16 115⁄16 13⁄8 15⁄16 11⁄4 13⁄16 13⁄16 13⁄16 11⁄8 W33×169 W40×152 W40×141 W40×130 W40×118 49.5 44.7 41.6 38.3 34.7 33.82 33.49 33.30 33.09 32.86 337⁄8 331⁄2 331⁄4 331⁄8 327⁄8 0.670 0.635 0.605 0.580 0.550 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 11.500 11.565 11.535 11.510 11.480 111⁄2 115⁄8 111⁄2 111⁄2 111⁄2 1.220 1.055 0.960 0.855 0.740 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 293⁄4 293⁄4 293⁄4 293⁄4 293⁄4 21⁄16 17⁄8 13⁄4 111⁄16 19⁄16 11⁄8 11⁄8 11⁄16 11⁄16 11⁄16 W30×477* W40×391* W40×326* W40×292* W40×261 W40×235 W40×211 W40×191 W40×173 140 114 95.7 85.7 76.7 69.0 62.0 56.1 50.8 34.21 33.19 32.40 32.01 31.61 31.30 30.94 30.68 30.44 341⁄4 331⁄4 323⁄8 32 315⁄8 311⁄4 31 305⁄8 301⁄2 1.630 1.360 1.140 1.020 0.930 0.830 0.775 0.710 0.655 15⁄8 13⁄8 11⁄8 1 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 15.865 15.590 15.370 15.255 15.155 15.055 15.105 15.040 14.985 157⁄8 155⁄8 153⁄8 151⁄2 151⁄8 15 151⁄8 15 15 2.950 2.440 2.050 1.850 1.650 1.500 1.315 1.185 1.065 3 27⁄16 21⁄16 17⁄8 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 33⁄4 31⁄4 213⁄16 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 11⁄16 19⁄16 17⁄16 15⁄16 11⁄4 13⁄16 11⁄8 11⁄8 11⁄16 11⁄16 W30×148 W40×132 W40×124 W40×116 W40×108 W40×99 W40×90 43.5 38.9 36.5 34.2 31.7 29.1 26.4 30.67 30.31 30.17 30.01 29.83 29.65 29.53 305⁄8 301⁄4 301⁄8 30 297⁄8 295⁄8 291⁄2 0.650 0.615 0.585 0.565 0.545 0.520 0.470 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 10.480 10.545 10.515 10.495 10.475 10.450 10.400 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 103⁄8 1.180 1.000 0.930 0.850 0.760 0.670 0.610 13⁄16 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 263⁄4 2 13⁄4 111⁄16 15⁄8 19⁄16 17⁄16 15⁄16 1 11⁄16 1 1 1 1 1 *Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 29 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 256 232 210 194 182 170 160 150 135 3.5 3.9 4.5 4.8 5.1 5.5 5.9 6.4 7.6 354 318 291 263 241 221 201 k Plastic Modulus Elastic Properties Axis X-X Axis Y-Y X1 X2 × 106 ksi ksi 2 (1/ksi) in. 33.8 37.3 39.1 42.4 44.8 47.8 50.0 52.0 54.1 56 46 42 36 32 28 26 24 22 2840 2580 2320 2140 2020 1900 1780 1680 1520 2870 4160 6560 8850 11300 14500 18600 24200 38000 16800 15000 13200 12100 11300 10500 9750 9040 7800 895 809 719 664 623 580 542 504 439 14.9 14.8 14.6 14.6 14.5 14.5 14.4 14.3 14.0 528 468 411 375 347 320 295 270 225 3.8 4.2 4.6 5.0 5.7 6.2 6.8 25.8 28.8 31.2 34.5 36.1 38.7 41.9 — — — 54 49 43 36 3540 3200 2940 2670 2430 2240 2040 1030 1530 2130 3100 4590 6440 9390 21900 19500 17700 15800 14200 12800 11500 1230 1110 1010 917 829 757 684 14.5 14.4 14.4 14.3 14.1 14.1 14.0 169 152 141 130 118 4.7 5.5 6.0 6.7 7.8 44.7 47.2 49.6 51.7 54.5 32 29 26 24 22 2160 1940 1800 1660 1510 8150 12900 17800 25100 37700 9290 8160 7450 6710 5900 549 487 448 406 359 477 391 326 292 261 235 211 191 173 2.7 3.2 3.7 4.1 4.6 5.0 5.7 6.3 7.0 16.6 19.9 23.7 26.5 29.0 32.5 34.9 38.0 41.2 — — — — — 61 53 44 38 5420 4510 3860 3460 3110 2820 2510 2280 2070 193 386 735 1110 1690 2460 3950 5840 8540 26100 20700 16800 14900 13100 11700 10300 9170 8200 148 132 124 116 108 99 90 4.4 5.3 5.7 6.2 6.9 7.8 8.5 41.5 43.9 46.2 47.8 49.6 51.9 57.5 37 33 30 28 26 24 19 2310 2050 1930 1800 1680 1560 1430 6180 10500 13500 17700 24200 34100 47000 6680 5770 5360 4930 4470 3990 3620 S I 4 r S I 86.5 77.2 67.5 61.9 57.6 53.2 49.1 45.1 37.7 2.65 2.62 2.58 2.56 2.55 2.53 2.50 2.47 2.38 1040 936 833 767 718 668 624 581 509 137 122 107 97.7 90.7 83.8 77.3 70.9 59.7 1460 1290 1160 1030 932 840 749 181 161 146 131 118 106 95.2 3.74 3.71 3.69 3.66 3.63 3.59 3.56 1420 1270 1150 1040 939 855 772 282 250 226 202 182 164 147 13.7 13.5 13.4 13.2 13.0 310 273 246 218 187 53.9 47.2 42.7 37.9 32.6 2.50 2.47 2.43 2.39 2.32 629 559 514 467 415 1530 1250 1030 928 827 746 663 598 539 13.7 13.5 13.2 13.2 13.1 13.0 12.9 12.8 12.7 1970 1550 1240 1100 959 855 757 673 598 249 198 162 144 127 114 100 89.5 79.8 3.75 3.68 3.61 3.58 3.54 3.52 3.49 3.46 3.43 1790 1430 1190 1060 941 845 749 673 605 436 380 355 329 299 269 245 12.4 12.2 12.1 12.0 11.9 11.7 11.7 227 196 181 164 146 128 115 43.3 37.2 34.4 31.3 27.9 24.5 22.1 2.28 2.25 2.23 2.19 2.15 2.10 2.09 500 437 408 378 346 312 283 in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 Zy in.3 in. 3 Zx in. in. 4 r in. in. 3 84.4 73.9 66.9 59.5 51.3 390 310 252 223 196 175 154 138 123 68.0 58.4 54.0 49.2 43.9 38.6 34.7 1 - 30 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Flange Thickness tw tw 2 in. in. Width bf in. Distance Thickness tf T in. k k1 in. in. in. W27×539* W40×448* W40×368* W40×307* W40×258 W40×235 W40×217 W40×194 W40×178 W40×161 W40×146 158 131 108 90.2 75.7 69.1 63.8 57.0 52.3 47.4 42.9 32.52 31.42 30.39 29.61 28.98 28.66 28.43 28.11 27.81 27.59 27.38 321⁄2 313⁄8 303⁄8 295⁄8 29 285⁄8 283⁄8 281⁄8 273⁄4 275⁄8 273⁄8 1.970 1.650 1.380 1.160 0.980 0.910 0.830 0.750 0.725 0.660 0.605 2 15⁄8 13⁄8 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 1 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 15.255 14.940 14.665 14.445 14.270 14.190 14.115 14.035 14.085 14.020 13.965 151⁄4 15 145⁄8 141⁄2 141⁄4 141⁄4 141⁄8 14 141⁄8 14 14 3.540 2.990 2.480 2.090 1.770 1.610 1.500 1.340 1.190 1.080 0.975 39⁄16 3 21⁄2 21⁄16 13⁄4 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 1 24 24 24 24 24 24 24 24 24 24 24 41⁄4 311⁄16 33⁄16 213⁄16 21⁄2 25⁄16 23⁄16 21⁄16 17⁄8 113⁄16 111⁄16 15⁄8 11⁄2 15⁄16 11⁄4 11⁄8 11⁄8 11⁄16 1 11⁄16 1 1 W27×129 W40×114 W40×102 W40×94 W40×84 37.8 33.5 30.0 27.7 24.8 27.63 27.29 27.09 26.92 26.71 275⁄8 271⁄4 271⁄8 267⁄8 263⁄4 0.610 0.570 0.515 0.490 0.460 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 10.010 10.070 10.015 9.990 9.960 10 101⁄8 10 10 10 1.100 0.930 0.830 0.745 0.640 11⁄8 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8 24 24 24 24 24 113⁄16 15⁄8 19⁄16 17⁄16 13⁄8 15⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16 W24×492* W40×408* W40×335* W40×279* W40×250* W40×229 W40×207 W40×192 W40×176 W40×162 W40×146 W40×131 W40×117 W40×104 144 119 98.4 82.0 73.5 67.2 60.7 56.3 51.7 47.7 43.0 38.5 34.4 30.6 29.65 28.54 27.52 26.73 26.34 26.02 25.71 25.47 25.24 25.00 24.74 24.48 24.26 24.06 295⁄8 281⁄2 271⁄2 263⁄4 263⁄8 26 253⁄4 251⁄2 251⁄4 25 243⁄4 241⁄2 241⁄4 24 1.970 1.650 1.380 1.160 1.040 0.960 0.870 0.810 0.750 0.705 0.650 0.605 0.550 0.500 2 15⁄8 13⁄8 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 14.115 13.800 13.520 13.305 13.185 13.110 13.010 12.950 12.890 12.955 12.900 12.855 12.800 12.750 141⁄8 133⁄4 131⁄2 131⁄4 131⁄8 131⁄8 13 13 127⁄8 13 127⁄8 127⁄8 123⁄4 123⁄4 3.540 2.990 2.480 2.090 1.890 1.730 1.570 1.460 1.340 1.220 1.090 0.960 0.850 0.750 39⁄16 3 21⁄2 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 21 21 21 21 21 21 21 21 21 21 21 21 21 21 45⁄16 33⁄4 31⁄4 27⁄8 211⁄16 21⁄2 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4 15⁄8 11⁄2 19⁄16 13⁄8 11⁄4 11⁄8 11⁄8 1 1 1 15⁄ 16 11⁄16 1 1 ⁄16 11⁄16 1 1 W24×103 W40×94 W40×84 W40×76 W40×68 30.3 27.7 24.7 22.4 20.1 24.53 24.31 24.10 23.92 23.73 241⁄2 241⁄4 241⁄8 237⁄8 233⁄4 0.550 0.515 0.470 0.440 0.415 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 1⁄ 4 9.000 9.065 9.020 8.990 8.965 9 91⁄8 9 9 9 0.980 0.875 0.770 0.680 0.585 1 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16 21 21 21 21 21 13⁄4 15⁄8 19⁄16 17⁄16 13⁄8 13⁄ 16 15⁄ 16 15⁄ 16 15⁄ 16 W24×62 W40×55 18.2 16.2 23.74 23.57 233⁄4 235⁄8 0.430 0.395 7⁄ 16 3⁄ 8 1⁄ 4 3⁄ 16 7.040 7.005 7 7 0.590 0.505 9⁄ 16 1⁄ 2 21 21 13⁄8 15⁄16 15⁄ 16 15⁄ 16 * Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 STRUCTURAL SHAPES 1 - 31 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 539 448 368 307 258 235 217 194 178 161 146 2.2 2.5 3.0 3.5 4.0 4.4 4.7 5.2 5.9 6.5 7.2 129 114 102 94 84 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 12.3 14.7 17.6 20.9 24.7 26.6 29.2 32.3 33.4 36.7 40.0 — — — — — — — 61 57 47 40 7160 6070 5100 4320 3670 3360 3120 2800 2550 2320 2110 66 123 243 463 873 1230 1640 2520 3740 5370 7900 25500 20400 16100 13100 10800 9660 8870 7820 6990 6280 5630 4.5 5.4 6.0 6.7 7.8 39.7 42.5 47.0 49.4 52.7 41 35 29 26 23 2390 2100 1890 1740 1570 5340 9220 14000 19900 31100 492 408 335 279 250 229 207 192 176 162 146 131 117 104 2.0 2.3 2.7 3.2 3.5 3.8 4.1 4.4 4.8 5.3 5.9 6.7 7.5 8.5 10.9 13.1 15.6 18.6 20.7 22.5 24.8 26.6 28.7 30.6 33.2 35.6 39.2 43.1 — — — — — — — — — — 58 50 42 34 7950 6780 5700 4840 4370 4020 3650 3410 3140 2870 2590 2330 2090 1860 103 94 84 76 68 4.6 5.2 5.9 6.6 7.7 39.2 41.9 45.9 49.0 52.0 42 37 30 27 24 62 55 6.0 6.9 50.1 54.6 25 21 S I r S 3 Zx in. in. in.3 1570 1300 1060 884 742 674 624 556 502 455 411 12.7 12.5 12.2 12.0 11.9 11.8 11.8 11.7 11.6 11.5 11.4 2110 1670 1310 1050 859 768 704 618 555 497 443 277 224 179 146 120 108 99.8 88.1 78.8 70.9 63.5 3.66 3.57 3.48 3.42 3.37 3.33 3.32 3.29 3.26 3.24 3.21 1880 1530 1240 1020 850 769 708 628 567 512 461 437 351 279 227 187 168 154 136 122 109 97.5 4760 4090 3620 3270 2850 345 299 267 243 213 11.2 11.0 11.0 10.9 10.7 184 159 139 124 106 36.8 31.5 27.8 24.8 21.2 2.21 2.18 2.15 2.12 2.07 395 343 305 278 244 57.6 49.3 43.4 38.8 33.2 43 79 156 297 436 605 876 1150 1590 2260 3420 5290 8190 12900 19100 15100 11900 9600 8490 7650 6820 6260 5680 5170 4580 4020 3540 3100 1290 1060 864 718 644 588 531 491 450 414 371 329 291 258 11.5 11.3 11.0 10.8 10.7 10.7 10.6 10.5 10.5 10.4 10.3 10.2 10.1 10.1 1670 1320 1030 823 724 651 578 530 479 443 391 340 297 259 237 191 152 124 110 99.4 88.8 81.8 74.3 68.4 60.5 53.0 46.5 40.7 3.41 3.33 3.23 3.17 3.14 3.11 3.08 3.07 3.04 3.05 3.01 2.97 2.94 2.91 1550 1250 1020 835 744 676 606 559 511 468 418 370 327 289 375 300 238 193 171 154 137 126 115 105 93.2 81.5 71.4 62.4 2400 2180 1950 1760 1590 5280 7800 12200 18600 29000 3000 2700 2370 2100 1830 245 222 196 176 154 9.96 9.87 9.79 9.69 9.55 119 109 94.4 82.5 70.4 26.5 24.0 20.9 18.4 15.7 1.99 1.98 1.95 1.92 1.87 280 254 224 200 177 41.5 37.5 32.6 28.6 24.5 1700 1540 25100 39600 1550 1350 131 114 9.23 9.11 34.5 29.1 1.38 1.34 153 134 15.7 13.3 9.80 8.30 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 Zy in. in. 4 r in. in. 3 I in. (1/ksi) 4 Axis Y-Y 1 - 32 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Flange Thickness tw tw 2 in. in. Width bf Distance Thickness tf in. in. T k k1 in. in. in. W21×201 W40×182 W40×166 W40×147 W40×132 W40×122 W40×111 W40×101 59.2 53.6 48.8 43.2 38.8 35.9 32.7 29.8 23.03 22.72 22.48 22.06 21.83 21.68 21.51 21.36 23 223⁄4 221⁄2 22 217⁄8 215⁄8 211⁄2 213⁄8 0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 12.575 12.500 12.420 12.510 12.440 12.390 12.340 12.290 125⁄8 121⁄2 123⁄8 121⁄2 121⁄2 123⁄8 123⁄8 121⁄4 1.630 1.480 1.360 1.150 1.035 0.960 0.875 0.800 15⁄8 11⁄2 13⁄8 11⁄8 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 23⁄8 21⁄4 21⁄8 17⁄8 113⁄16 111⁄16 15⁄8 19⁄16 1 1 15⁄ 16 11⁄16 1 1 15⁄ 16 15⁄ 16 W21×93 W40×83 W40×73 W40×68 W40×62 27.3 24.3 21.5 20.0 18.3 21.62 21.43 21.24 21.13 20.99 215⁄8 213⁄8 211⁄4 211⁄8 21 0.580 0.515 0.455 0.430 0.400 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 8.420 8.355 8.295 8.270 8.240 83⁄8 83⁄8 81⁄4 81⁄4 81⁄4 0.930 0.835 0.740 0.685 0.615 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 181⁄4 181⁄4 181⁄4 181⁄4 181⁄4 111⁄16 19⁄16 11⁄2 17⁄16 13⁄8 15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8 W21×57 W40×50 W40×44 16.7 14.7 13.0 21.06 20.83 20.66 21 207⁄8 205⁄8 0.405 0.380 0.350 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 16 3⁄ 16 3⁄ 16 6.555 6.530 6.500 61⁄2 61⁄2 61⁄2 0.650 0.535 0.450 5⁄ 8 9⁄ 16 7⁄ 16 181⁄4 181⁄4 181⁄4 13⁄8 15⁄16 13⁄16 7⁄ 8 7⁄ 8 7⁄ 8 W18×311* W40×283* W40×258* W40×234* W40×211* W40×192 W40×175 W40×158 W40×143 W40×130 91.5 83.2 75.9 68.8 62.1 56.4 51.3 46.3 42.1 38.2 22.32 21.85 21.46 21.06 20.67 20.35 20.04 19.72 19.49 19.25 223⁄8 217⁄8 211⁄2 21 205⁄8 203⁄8 20 193⁄4 191⁄2 191⁄4 1.520 1.400 1.280 1.160 1.060 0.960 0.890 0.810 0.730 0.670 11⁄2 13⁄8 11⁄4 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 12.005 11.890 11.770 11.650 11.555 11.455 11.375 11.300 11.220 11.160 12 117⁄8 113⁄4 115⁄8 111⁄2 111⁄2 113⁄8 111⁄4 111⁄4 111⁄8 2.740 23⁄4 2.500 21⁄2 2.300 25⁄16 2.110 21⁄8 1.910 115⁄16 1.750 13⁄4 1.590 19⁄16 1.440 17⁄16 1.320 15⁄16 1.200 13⁄16 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 37⁄16 33⁄16 3 23⁄4 9 2 ⁄16 27⁄16 21⁄4 21⁄8 2 17⁄8 13⁄16 13⁄16 11⁄8 1 1 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 13⁄ 16 W18×119 W40×106 W40×97 W40×86 W40×76 35.1 31.1 28.5 25.3 22.3 18.97 18.73 18.59 18.39 18.21 19 183⁄4 185⁄8 183⁄8 181⁄4 0.655 0.590 0.535 0.480 0.425 5⁄ 8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 11.265 11.200 11.145 11.090 11.035 111⁄4 111⁄4 111⁄8 111⁄8 11 1.060 0.940 0.870 0.770 0.680 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 13⁄4 15⁄8 19⁄16 17⁄16 13⁄8 15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 W18×71 W40×65 W40×60 W40×55 W40×50 20.8 19.1 17.6 16.2 14.7 18.47 18.35 18.24 18.11 17.99 181⁄2 183⁄8 181⁄4 181⁄8 18 0.495 0.450 0.415 0.390 0.355 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16 7.635 7.590 7.555 7.530 7.495 75⁄8 75⁄8 71⁄2 71⁄2 71⁄2 0.810 0.750 0.695 0.630 0.570 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 151⁄2 151⁄2 151⁄2 151⁄2 151⁄2 11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 7⁄ 8 7⁄ 8 13⁄ 16 13⁄ 16 13⁄ 16 W18×46 W40×40 W40×35 13.5 11.8 10.3 18.06 17.90 17.70 18 177⁄8 173⁄4 0.360 0.315 0.300 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 6.060 6.015 6.000 6 6 6 0.605 0.525 0.425 5⁄ 8 1⁄ 2 7⁄ 16 151⁄2 151⁄2 151⁄2 11⁄4 13⁄16 11⁄8 13⁄ 16 13⁄ 16 3⁄ 4 *Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 STRUCTURAL SHAPES 1 - 33 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 201 182 166 147 132 122 111 101 3.9 4.2 4.6 5.4 6.0 6.5 7.1 7.7 93 83 73 68 62 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 20.6 22.6 24.9 26.1 28.9 31.3 34.1 37.5 — — — — — — 55 45 4290 3910 3590 3140 2840 2630 2400 2200 4.5 5.0 5.6 6.0 6.7 32.3 36.4 41.2 43.6 46.9 61 48 38 34 29 57 50 44 5.0 6.1 7.2 46.3 49.4 53.6 311 283 258 234 211 192 175 158 143 130 2.2 2.4 2.6 2.8 3.0 3.3 3.6 3.9 4.2 4.6 119 106 97 86 76 S I 4 in. in. 453 649 904 1590 2350 3160 4510 6400 5310 4730 4280 3630 3220 2960 2670 2420 2680 2400 2140 2000 1820 3460 5250 8380 10900 15900 30 26 22 1960 1730 1550 10.6 11.5 12.5 13.8 15.1 16.7 18.0 19.8 21.9 23.9 — — — — — — — — — — 5.3 6.0 6.4 7.2 8.1 24.5 27.2 30.0 33.4 37.8 71 65 60 55 50 4.7 5.1 5.4 6.0 6.6 46 40 35 5.0 5.7 7.1 Axis Y-Y r S I 4 r 3 Zx in. in. in. in. in.3 461 417 380 329 295 273 249 227 9.47 9.40 9.36 9.17 9.12 9.09 9.05 9.02 542 483 435 376 333 305 274 248 86.1 77.2 70.1 60.1 53.5 49.2 44.5 40.3 3.02 3.00 2.98 2.95 2.93 2.92 2.90 2.89 530 476 432 373 333 307 279 253 133 119 108 92.6 82.3 75.6 68.2 61.7 2070 1830 1600 1480 1330 192 171 151 140 127 8.70 8.67 8.64 8.60 8.54 92.9 81.4 70.6 64.7 57.5 22.1 19.5 17.0 15.7 13.9 1.84 1.83 1.81 1.80 1.77 221 196 172 160 144 34.7 30.5 26.6 24.4 21.7 13100 22600 36600 1170 984 843 111 94.5 81.6 8.36 8.18 8.06 30.6 24.9 20.7 1.35 1.30 1.26 129 110 95.4 14.8 12.2 10.2 8160 7520 6920 6360 5800 5320 4870 4430 4060 3710 38 52 71 97 140 194 274 396 557 789 6960 6160 5510 4900 4330 3870 3450 3060 2750 2460 624 564 514 466 419 380 344 310 282 256 8.72 8.61 8.53 8.44 8.35 8.28 8.20 8.12 8.09 8.03 795 704 628 558 493 440 391 347 311 278 132 118 107 95.8 85.3 76.8 68.8 61.4 55.5 49.9 2.95 2.91 2.88 2.85 2.82 2.79 2.76 2.74 2.72 2.70 753 676 611 549 490 442 398 356 322 291 207 185 166 149 132 119 106 94.8 85.4 76.7 — — — 57 45 3340 2990 2750 2460 2180 1210 1880 2580 4060 6520 2190 1910 1750 1530 1330 231 204 188 166 146 7.90 7.84 7.82 7.77 7.73 253 220 201 175 152 44.9 39.4 36.1 31.6 27.6 2.69 2.66 2.65 2.63 2.61 261 230 211 186 163 69.1 60.5 55.3 48.4 42.2 32.4 35.7 38.7 41.2 45.2 61 50 43 38 31 2680 2470 2290 2110 1920 3310 4540 6080 8540 12400 1170 1070 984 890 800 127 117 108 98.3 88.9 7.50 7.49 7.47 7.41 7.38 60.3 54.8 50.1 44.9 40.1 15.8 14.4 13.3 11.9 10.7 1.70 1.69 1.69 1.67 1.65 145 133 123 112 101 24.7 22.5 20.6 18.5 16.6 44.6 51.0 53.5 32 25 22 2060 1810 1590 10100 17200 30300 712 612 510 78.8 68.4 57.6 7.25 7.21 7.04 22.5 19.1 15.3 9.35 7.64 6.36 7.43 6.35 5.12 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.29 1.27 1.22 3 Zy in. (1/ksi) 3 90.7 78.4 66.5 11.7 9.95 8.06 1 - 34 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Thickness tw in. Flange tw 2 in. Width bf in. Distance Thickness tf in. T k in. in. k1 in. W16×100 W16×89 W16×77 W16×67 29.4 26.2 22.6 19.7 16.97 16.75 16.52 16.33 17 163⁄4 161⁄2 163⁄8 0.585 0.525 0.455 0.395 9⁄ 16 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 10.425 10.365 10.295 10.235 103⁄8 103⁄8 101⁄4 101⁄4 0.985 0.875 0.760 0.665 1 7⁄ 8 3⁄ 4 11⁄ 16 135⁄8 111⁄16 135⁄8 19⁄16 135⁄8 17⁄16 135⁄8 13⁄8 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 W16×57 W16×50 W16×45 W16×40 W16×36 16.8 14.7 13.3 11.8 10.6 16.43 16.26 16.13 16.01 15.86 163⁄8 161⁄4 161⁄8 16 157⁄8 0.430 0.380 0.345 0.305 0.295 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 7.120 7.070 7.035 6.995 6.985 71⁄8 71⁄8 7 7 7 0.715 0.630 0.565 0.505 0.430 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 135⁄8 135⁄8 135⁄8 135⁄8 135⁄8 13⁄8 15⁄16 11⁄4 13⁄16 11⁄8 7⁄ 8 13⁄ 16 13⁄ 16 13⁄ 16 3⁄ 4 9.12 15.88 7.68 15.69 157⁄8 153⁄4 0.275 0.250 1⁄ 4 1⁄ 4 1⁄ 5.525 5.500 51⁄2 51⁄2 0.440 0.345 7⁄ 16 3⁄ 8 135⁄8 135⁄8 11⁄8 11⁄16 3⁄ 4 3⁄ 4 17⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄8 1 18.560 17.890 17.650 17.415 17.200 17.010 16.835 181⁄2 177⁄8 175⁄8 173⁄8 171⁄4 17 167⁄8 5.120 51⁄8 4.910 415⁄16 4.520 41⁄2 4.160 43⁄16 3.820 313⁄16 3.500 31⁄2 3.210 33⁄16 111⁄4 513⁄16 21⁄2 111⁄4 59⁄16 23⁄16 111⁄4 53⁄16 21⁄16 111⁄4 413⁄16 115⁄16 111⁄4 41⁄2 113⁄16 111⁄4 43⁄16 13⁄4 111⁄4 37⁄8 15⁄8 15⁄ 16.695 16.590 16.475 16.360 16.230 16.110 15.995 15.890 15.800 15.710 15.650 15.565 15.500 163⁄4 165⁄8 161⁄2 163⁄8 161⁄4 161⁄8 16 157⁄8 153⁄4 153⁄4 155⁄8 155⁄8 151⁄2 3.035 31⁄16 2.845 27⁄8 2.660 211⁄16 2.470 21⁄2 2.260 21⁄4 2.070 21⁄16 1.890 17⁄8 1.720 13⁄4 1.560 19⁄16 1.440 17⁄16 1.310 15⁄16 1.190 13⁄16 1.090 11⁄16 111⁄4 311⁄16 111⁄4 31⁄2 111⁄4 35⁄16 111⁄4 31⁄8 111⁄4 215⁄16 111⁄4 23⁄4 111⁄4 29⁄16 111⁄4 23⁄8 111⁄4 21⁄4 111⁄4 21⁄8 111⁄4 2 111⁄4 17⁄8 111⁄4 13⁄4 W16×31 W16×26 W14×808* W16×730* W16×665* W16×605* W16×550* W16×500* W16×455* 237 215 196 178 162 147 134 22.84 22.42 21.64 20.92 20.24 19.60 19.02 227⁄8 223⁄8 215⁄8 207⁄8 201⁄4 195⁄8 19 3.740 33⁄4 3.070 31⁄16 2.830 213⁄16 2.595 25⁄8 2.380 23⁄8 2.190 23⁄16 2.015 2 W14×426* W16×398* W16×370* W16×342* W16×311* W16×283* W16×257* W16×233* W16×211 W16×193 W16×176 W16×159 W16×145 125 117 109 101 91.4 83.3 75.6 68.5 62.0 56.8 51.8 46.7 42.7 18.67 18.29 17.92 17.54 17.12 16.74 16.38 16.04 15.72 15.48 15.22 14.98 14.78 185⁄8 181⁄4 177⁄8 171⁄2 171⁄8 163⁄4 163⁄8 16 153⁄4 151⁄2 151⁄4 15 143⁄4 1.875 1.770 1.655 1.540 1.410 1.290 1.175 1.070 0.980 0.890 0.830 0.745 0.680 17⁄8 13⁄4 15⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 1⁄ 7⁄ 13⁄ 13⁄ 3⁄ 8 8 16 8 16 16 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 *Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 19⁄16 11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 13⁄16 13⁄16 11⁄8 11⁄16 11⁄16 1 1 STRUCTURAL SHAPES 1 - 35 W SHAPES Properties Y tf d k k1 X X T tw Y bf Compact NomSection inal Criteria Wt. per Fy′′′ bf h ft 2tf tw lb ksi k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi 2 (1/ksi) S I 4 Axis Y-Y r 3 in. in. 175 155 134 117 S I 4 r 3 Zx 3 Zy in.3 in. in. in. in. in. 7.10 7.05 7.00 6.96 186 163 138 119 35.7 31.4 26.9 23.2 2.51 2.49 2.47 2.46 198 175 150 130 54.9 48.1 41.1 35.5 12.1 10.5 9.34 8.25 7.00 1.60 1.59 1.57 1.57 1.52 105 92.0 82.3 72.9 64.0 18.9 16.3 14.5 12.7 10.8 4.49 1.17 3.49 1.12 54.0 44.2 100 89 77 67 5.3 5.9 6.8 7.7 24.3 27.0 31.2 35.9 — — — 50 3450 3090 2680 2350 1040 1630 2790 4690 1490 1300 1110 954 57 50 45 40 36 5.0 5.6 6.2 6.9 8.1 33.0 37.4 41.2 46.6 48.1 59 46 38 30 28 2650 3400 2340 5530 2120 8280 1890 12900 1700 20800 758 659 586 518 448 92.2 81.0 72.7 64.7 56.5 6.72 6.68 6.65 6.63 6.51 43.1 37.2 32.8 28.9 24.5 31 26 6.3 8.0 51.6 56.8 24 20 1740 20000 1470 40900 375 301 47.2 38.4 6.41 6.26 12.4 9.59 808 730 665 605 550 500 455 1.8 1.8 2.0 2.1 2.3 2.4 2.6 3.4 3.7 4.0 4.4 4.8 5.2 5.7 — — — — — — — 18900 17500 16300 15100 14200 13100 12200 1.45 1.90 2.50 3.20 4.20 5.50 7.30 16000 14300 12400 10800 9430 8210 7190 1400 1280 1150 1040 931 838 756 8.21 8.17 7.98 7.80 7.63 7.48 7.33 5510 4720 4170 3680 3250 2880 2560 594 527 472 423 378 339 304 4.82 4.69 4.62 4.55 4.49 4.43 4.38 1834 1660 1480 1320 1180 1050 936 927 816 730 652 583 522 468 426 398 370 342 311 283 257 233 211 193 176 159 145 2.8 2.9 3.1 3.3 3.6 3.9 4.2 4.6 5.1 5.5 6.0 6.5 7.1 6.1 6.4 6.9 7.4 8.1 8.8 9.7 10.7 11.6 12.8 13.7 15.3 16.8 — — — — — — — — — — — — — 11500 10900 10300 9600 8820 8120 7460 6820 6230 5740 5280 4790 4400 8.90 11.0 13.9 17.9 24.4 33.4 46.1 64.9 91.8 125 173 249 348 6600 6000 5440 4900 4330 3840 3400 3010 2660 2400 2140 1900 1710 707 656 607 559 506 459 415 375 338 310 281 254 232 7.26 7.16 7.07 6.98 6.88 6.79 6.71 6.63 6.55 6.50 6.43 6.38 6.33 2360 2170 1990 1810 1610 1440 1290 1150 1030 931 838 748 677 283 262 241 221 199 179 161 145 130 119 107 96.2 87.3 4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98 869 801 736 672 603 542 487 436 390 355 320 287 260 434 402 370 338 304 274 246 221 198 180 163 146 133 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 7.03 5.48 1 - 36 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Thickness tw in. Flange tw 2 in. Width bf Distance Thickness tf in. in. T k k1 in. in. in. W14×132 W16×120 W16×109 W16×99 W16×90 38.8 35.3 32.0 29.1 26.5 14.66 14.48 14.32 14.16 14.02 145⁄8 141⁄2 143⁄8 141⁄8 14 0.645 0.590 0.525 0.485 0.440 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 14.725 14.670 14.605 14.565 14.520 143⁄4 145⁄8 145⁄8 145⁄8 141⁄2 1.030 0.940 0.860 0.780 0.710 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 111⁄4 111⁄4 111⁄4 111⁄4 111⁄4 111⁄16 15⁄8 19⁄16 17⁄16 13⁄8 15⁄ 16 15⁄ 16 7⁄ 8 7⁄ 8 7⁄ 8 W14×82 W16×74 W16×68 W16×61 24.1 21.8 20.0 17.9 14.31 14.17 14.04 13.89 141⁄4 141⁄8 14 137⁄8 0.510 0.450 0.415 0.375 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 10.130 10.070 10.035 9.995 101⁄8 101⁄8 10 10 0.855 0.785 0.720 0.645 7⁄ 8 13⁄ 16 3⁄ 4 5⁄ 8 11 11 11 11 15⁄8 19⁄16 11⁄2 17⁄16 15⁄ 16 15⁄ 16 15⁄ 16 W14×53 W16×48 W16×43 15.6 14.1 12.6 13.92 13.79 13.66 137⁄8 133⁄4 135⁄8 0.370 0.340 0.305 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 8.060 8.030 7.995 8 8 8 0.660 0.595 0.530 11⁄ 16 5⁄ 8 1⁄ 2 11 11 11 17⁄16 13⁄8 15⁄16 15⁄ 16 7⁄ 8 7⁄ 8 W14×38 W16×34 W16×30 11.2 10.0 8.85 14.10 13.98 13.84 141⁄8 14 137⁄8 0.310 0.285 0.270 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 1⁄ 8 6.770 6.745 6.730 63⁄4 63⁄4 63⁄4 0.515 0.455 0.385 1⁄ 2 7⁄ 16 3⁄ 8 12 12 12 11⁄16 1 15⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 W14×26 W16×22 7.69 6.49 13.91 13.74 137⁄8 133⁄4 0.255 0.230 1⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 5.025 5.000 5 5 0.420 0.335 7⁄ 16 5⁄ 16 12 12 15⁄ 16 7⁄ 8 9⁄ 16 9⁄ 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 STRUCTURAL SHAPES 1 - 37 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 132 120 109 99 90 7.1 7.8 8.5 9.3 10.2 82 74 68 61 5.9 6.4 7.0 7.7 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 17.7 19.3 21.7 23.5 25.9 — — — — — 4180 3830 3490 3190 2900 22.4 25.3 27.5 30.4 — — — — 53 48 43 6.1 30.8 6.7 33.5 7.5 37.4 38 34 30 26 22 S I Axis Y-Y r S in. in. 428 601 853 1220 1750 1530 1380 1240 1110 999 209 190 173 157 143 6.28 6.24 6.22 6.17 6.14 3600 3290 3020 2720 846 1190 1650 2460 882 796 723 640 123 112 103 92.2 6.05 6.04 6.01 5.98 — 57 46 2830 2580 2320 2250 3220 4900 541 485 428 77.8 70.3 62.7 5.89 5.85 5.82 57.7 51.4 45.2 6.6 39.6 7.4 43.1 8.7 45.4 41 35 31 2190 1970 1750 6850 10600 17600 385 340 291 54.6 48.6 42.0 5.87 5.83 5.73 26.7 23.3 19.6 6.0 48.1 7.5 53.3 28 22 1890 1610 13900 27300 245 199 35.3 29.0 5.65 5.54 (1/ksi) 3 I 4 in. 4 r Zx in. in. in.3 548 495 447 402 362 74.5 67.5 61.2 55.2 49.9 3.76 3.74 3.73 3.71 3.70 234 212 192 173 157 113 102 92.7 83.6 75.6 148 134 121 107 29.3 26.6 24.2 21.5 2.48 2.48 2.46 2.45 139 126 115 102 44.8 40.6 36.9 32.8 14.3 12.8 11.3 1.92 1.91 1.89 87.1 78.4 69.6 22.0 19.6 17.3 7.88 6.91 5.82 1.55 1.53 1.49 61.5 54.6 47.3 12.1 10.6 8.99 3.54 2.80 1.08 1.04 40.2 33.2 5.54 4.39 8.91 7.00 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 Zy in. in. 3 1 - 38 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Flange Thickness tw tw 2 in. in. Width bf Distance Thickness tf in. T k k1 in. in. in. in. 2.955 215⁄16 2.705 211⁄16 2.470 21⁄2 2.250 21⁄4 2.070 21⁄16 1.900 17⁄8 1.735 13⁄4 1.560 19⁄16 1.400 13⁄8 1.250 11⁄4 1.105 11⁄8 0.990 1 7⁄ 0.900 8 0.810 13⁄16 3 0.735 ⁄4 0.670 11⁄16 5⁄ 0.605 8 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 91⁄2 311⁄16 37⁄16 33⁄16 215⁄16 23⁄4 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 113⁄16 111⁄16 15⁄8 11⁄2 17⁄16 13⁄8 15⁄16 11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 11⁄4 13⁄16 11⁄8 11⁄16 1 1 15⁄ 16 7⁄ 8 7⁄ 8 7⁄ 8 7⁄ 8 13⁄ 16 5⁄ 8 9⁄ 16 91⁄2 91⁄2 13⁄8 11⁄4 13⁄ 16 13⁄ 16 0.640 0.575 0.515 5⁄ 8 9⁄ 16 1⁄ 2 91⁄2 91⁄2 91⁄2 13⁄8 11⁄4 11⁄4 13⁄ 16 13⁄ 16 3⁄ 4 61⁄2 61⁄2 61⁄2 0.520 0.440 0.380 1⁄ 2 7⁄ 16 3⁄ 8 101⁄2 101⁄2 101⁄2 15⁄ 16 7⁄ 8 1 9⁄ 16 1⁄ 2 1⁄ 2 4 4 4 4 0.425 0.350 0.265 0.225 7⁄ 16 3⁄ 8 1⁄ 4 1⁄ 4 101⁄2 101⁄2 101⁄2 101⁄2 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 W12×336* W16×305* W16×279* W16×252* W16×230* W16×210* W16×190 W16×170 W16×152 W16×136 W16×120 W16×106 W16×96 W16×87 W16×79 W16×72 W16×65 98.8 89.6 81.9 74.1 67.7 61.8 55.8 50.0 44.7 39.9 35.3 31.2 28.2 25.6 23.2 21.1 19.1 16.82 16.32 15.85 15.41 15.05 14.71 14.38 14.03 13.71 13.41 13.12 12.89 12.71 12.53 12.38 12.25 12.12 167⁄8 163⁄8 157⁄8 153⁄8 15 143⁄4 143⁄8 14 133⁄4 133⁄8 131⁄8 127⁄8 123⁄4 121⁄2 123⁄8 121⁄4 121⁄8 1.775 1.625 1.530 1.395 1.285 1.180 1.060 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 13⁄16 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 13.385 13.235 13.140 13.005 12.895 12.790 12.670 12.570 12.480 12.400 12.320 12.220 12.160 12.125 12.080 12.040 12.000 133⁄8 131⁄4 131⁄8 13 127⁄8 123⁄4 125⁄8 125⁄8 121⁄2 123⁄8 123⁄8 121⁄4 121⁄8 121⁄8 121⁄8 12 12 W12×58 W16×53 17.0 15.6 12.19 12.06 121⁄4 12 0.360 0.345 3⁄ 8 3⁄ 8 3⁄ 16 3⁄ 16 10.010 9.995 10 10 0.640 0.575 W12×50 W16×45 W16×40 14.7 13.2 11.8 12.19 12.06 11.94 121⁄4 12 12 0.370 0.335 0.295 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 8.080 8.045 8.005 81⁄8 8 8 W12×35 W16×30 W16×26 10.3 8.79 7.65 12.50 12.34 12.22 121⁄2 123⁄8 121⁄4 0.300 0.260 0.230 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 6.560 6.520 6.490 W12×22 W16×19 W16×16 W16×14 6.48 5.57 4.71 4.16 12.31 12.16 11.99 11.91 121⁄4 121⁄8 12 117⁄8 0.260 0.235 0.220 0.200 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8 4.030 4.005 3.990 3.970 *Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 39 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 336 305 279 252 230 210 190 170 152 136 120 106 96 87 79 72 65 2.3 2.4 2.7 2.9 3.1 3.4 3.7 4.0 4.5 5.0 5.6 6.2 6.8 7.5 8.2 9.0 9.9 58 53 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 5.5 6.0 6.3 7.0 7.6 8.2 9.2 10.1 11.2 12.3 13.7 15.9 17.7 18.9 20.7 22.6 24.9 — — — — — — — — — — — — — — — — — 12800 11800 11000 10100 9390 8670 7940 7190 6510 5850 5240 4660 4250 3880 3530 3230 2940 7.8 8.7 27.0 28.1 — — 3070 2820 50 45 40 6.3 7.0 7.8 26.2 29.0 32.9 — — 59 3170 2870 2580 35 30 26 6.3 7.4 8.5 36.2 41.8 47.2 22 19 16 14 4.7 5.7 7.5 8.8 41.8 46.2 49.4 54.3 (1/ksi) S I 4 Axis Y-Y r 3 S I 4 Zx 3 Zy in. in. 177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1 3.47 3.42 3.38 3.34 3.31 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02 603 537 481 428 386 348 311 275 243 214 186 164 147 132 119 108 96.8 274 244 220 196 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1 in. in. 4060 3550 3110 2720 2420 2140 1890 1650 1430 1240 1070 933 833 740 662 597 533 483 435 393 353 321 292 263 235 209 186 163 145 131 118 107 97.4 87.9 6.41 1190 6.29 1050 6.16 937 6.06 828 5.97 742 5.89 664 5.82 589 5.74 517 5.66 454 5.58 398 5.51 345 5.47 301 5.44 270 5.38 241 5.34 216 5.31 195 5.28 174 1470 2100 475 425 78.0 70.6 5.28 5.23 107 95.8 21.4 19.2 2.51 2.48 86.4 77.9 32.5 29.1 1410 2070 3110 394 350 310 64.7 58.1 51.9 5.18 5.15 5.13 56.3 50.0 44.1 13.9 12.4 11.0 1.96 1.94 1.93 72.4 64.7 57.5 21.4 19.0 16.8 49 37 29 2420 4340 2090 7950 1820 13900 285 238 204 45.6 38.6 33.4 5.25 5.21 5.17 24.5 20.3 17.3 7.47 1.54 6.24 1.52 5.34 1.51 51.2 43.1 37.2 11.5 9.56 8.17 37 30 26 22 2160 8640 1880 15600 1610 32000 1450 49300 156 130 103 88.6 25.4 21.3 17.1 14.9 4.91 4.82 4.67 4.62 2.31 1.88 1.41 1.19 29.3 24.7 20.1 17.4 3.66 2.98 2.26 1.90 4.66 3.76 2.82 2.36 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 0.847 0.822 0.773 0.753 in. in.3 in. 6.05 8.17 10.8 14.7 19.7 26.6 37.0 54.0 79.3 119 184 285 405 586 839 1180 1720 in. r 3 1 - 40 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Flange Thickness tw tw 2 in. in. Width bf Distance Thickness tf k1 in. in. in. 32.9 29.4 25.9 22.6 20.0 17.6 15.8 14.4 11.36 11.10 10.84 10.60 10.40 10.22 10.09 9.98 113⁄8 111⁄8 107⁄8 105⁄8 103⁄8 101⁄4 101⁄8 10 0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340 3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16 10.415 10.340 10.265 10.190 10.130 10.080 10.030 10.000 103⁄8 103⁄8 101⁄4 101⁄4 101⁄8 101⁄8 10 10 1.250 1.120 0.990 0.870 0.770 0.680 0.615 0.560 11⁄4 11⁄8 1 7⁄ 8 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 75⁄8 17⁄8 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 11⁄4 13⁄16 15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 11⁄ 16 W10×45 W10×39 W10×33 13.3 11.5 9.71 10.10 9.92 9.73 101⁄8 97⁄8 93⁄4 0.350 0.315 0.290 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 8.020 7.985 7.960 8 8 8 0.620 0.530 0.435 5⁄ 8 1⁄ 2 7⁄ 16 75⁄8 75⁄8 75⁄8 11⁄4 11⁄8 11⁄16 11⁄ 0.300 0.260 0.240 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 5.810 5.770 5.750 53⁄4 53⁄4 53⁄4 0.510 0.440 0.360 1⁄ 2 7⁄ 16 3⁄ 8 85⁄8 85⁄8 85⁄8 15⁄ 16 7⁄ 8 3⁄ 4 1⁄ 2 1⁄ 2 1⁄ 2 0.250 0.240 0.230 0.190 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8 4.020 4.010 4.000 3.960 4 4 4 4 0.395 0.330 0.270 0.210 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 85⁄8 85⁄8 85⁄8 85⁄8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 W10×30 W10×26 W10×22 8.84 7.61 6.49 10.47 10.33 10.17 W10×19 W10×17 W10×15 W10×12 5.62 4.99 4.41 3.54 10.24 10.11 9.99 9.87 101⁄4 101⁄8 10 97⁄8 in. k W10×112 W10×100 W10×88 W10×77 W10×68 W10×60 W10×54 W10×49 101⁄2 103⁄8 101⁄8 in. T AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11⁄ 11⁄ 16 16 16 STRUCTURAL SHAPES 1 - 41 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 112 100 88 77 68 60 54 49 4.2 4.6 5.2 5.9 6.6 7.4 8.2 8.9 45 39 33 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 in. in. 10.4 11.6 13.0 14.8 16.7 18.7 21.2 23.1 — — — — — — — — 7080 6400 5680 5010 4460 3970 3580 3280 56.7 83.8 132 213 334 525 778 1090 716 623 534 455 394 341 303 272 6.5 7.5 9.1 22.5 25.0 27.1 — — — 3650 3190 2710 758 1300 2510 30 26 22 5.7 6.6 8.0 29.5 34.0 36.9 — 55 47 2890 2500 2150 2160 3790 7170 19 17 15 12 5.1 6.1 7.4 9.4 35.4 36.9 38.5 46.6 51 47 43 30 2420 2210 1930 1550 5160 7820 14300 35400 (1/ksi) S I 4 Axis Y-Y r 3 S I 4 r 3 in.3 2.68 2.65 2.63 2.60 2.59 2.57 2.56 2.54 147 130 113 97.6 85.3 74.6 66.6 60.4 69.2 61.0 53.1 45.9 40.1 35.0 31.3 28.3 13.3 11.3 9.20 2.01 1.98 1.94 54.9 46.8 38.8 20.3 17.2 14.0 5.75 4.89 3.97 1.37 1.36 1.33 36.6 31.3 26.0 8.84 7.50 6.10 2.14 1.78 1.45 1.10 0.874 0.844 0.810 0.785 21.6 18.7 16.0 12.6 3.35 2.80 2.30 1.74 in. in. in. 126 112 98.5 85.9 75.7 66.7 60.0 54.6 4.66 4.60 4.54 4.49 4.44 4.39 4.37 4.35 236 207 179 154 134 116 103 93.4 45.3 40.0 34.8 30.1 26.4 23.0 20.6 18.7 248 209 170 49.1 42.1 35.0 4.32 4.27 4.19 53.4 45.0 36.6 170 144 118 32.4 27.9 23.2 4.38 4.35 4.27 16.7 14.1 11.4 18.8 16.2 13.8 10.9 4.14 4.05 3.95 3.90 4.29 3.56 2.89 2.18 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 Zy in. in. 96.3 81.9 68.9 53.8 Zx 1 - 42 DIMENSIONS AND PROPERTIES Y tf d X W SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A Depth d 2 in. in. Thickness tw in. Flange tw 2 in. Width bf Distance Thickness tf in. in. T k k1 in. in. W8×67 W8×58 W8×48 W8×40 W8×35 W8×31 19.7 17.1 14.1 11.7 10.3 9.13 9.00 8.75 8.50 8.25 8.12 8.00 9 83⁄4 81⁄2 81⁄4 81⁄8 8 0.570 0.510 0.400 0.360 0.310 0.285 9⁄ 16 1⁄ 2 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 8.280 8.220 8.110 8.070 8.020 7.995 81⁄4 81⁄4 81⁄8 81⁄8 8 8 0.935 0.810 0.685 0.560 0.495 0.435 15⁄ 16 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 61⁄8 61⁄8 61⁄8 61⁄8 61⁄8 61⁄8 17⁄16 15⁄16 13⁄16 11⁄16 1 15⁄ 16 11⁄ W8×28 W8×24 8.25 7.08 8.06 7.93 8 77⁄8 0.285 0.245 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 6.535 6.495 61⁄2 61⁄2 0.465 0.400 7⁄ 16 3⁄ 8 61⁄8 61⁄8 15⁄ 16 7⁄ 8 9⁄ 16 9⁄ 16 W8×21 W8×18 6.16 5.26 8.28 8.14 81⁄4 81⁄8 0.250 0.230 1⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 5.270 5.250 51⁄4 51⁄4 0.400 0.330 3⁄ 8 5⁄ 16 65⁄8 65⁄8 13⁄ 16 3⁄ 4 1⁄ 2 7⁄ 16 W8×15 W8×13 W8×10 4.44 3.84 2.96 8.11 7.99 7.89 81⁄8 8 77⁄8 0.245 0.230 0.170 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 4.015 4.000 3.940 4 4 4 0.315 0.255 0.205 5⁄ 16 1⁄ 4 3⁄ 16 65⁄8 65⁄8 65⁄8 3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16 7⁄ 16 W6×25 W8×20 W8×15 7.34 5.87 4.43 6.38 6.20 5.99 63⁄8 61⁄4 6 0.320 0.260 0.230 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 6.080 6.020 5.990 61⁄8 6 6 0.455 0.365 0.260 7⁄ 16 3⁄ 8 1⁄ 4 43⁄4 43⁄4 43⁄4 13⁄ 16 3⁄ 4 5⁄ 8 7⁄ 16 7⁄ 16 3⁄ 8 W6×16 W8×12 W8×9 4.74 3.55 2.68 6.28 6.03 5.90 61⁄4 6 57⁄8 0.260 0.230 0.170 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 4.030 4.000 3.940 4 4 4 0.405 0.280 0.215 3⁄ 8 1⁄ 4 3⁄ 16 43⁄4 43⁄4 43⁄4 3⁄ 4 5⁄ 8 9⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 W5×19 W8×16 5.54 4.68 5.15 5.01 51⁄8 5 0.270 0.240 1⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 5.030 5.000 5 5 0.430 0.360 7⁄ 16 3⁄ 8 31⁄2 31⁄2 13⁄ 16 3⁄ 4 7⁄ 16 7⁄ 16 W4×13 3.83 4.16 41⁄8 0.280 1⁄ 4 1⁄ 8 4.060 4 0.345 3⁄ 8 23⁄4 11⁄ 16 7⁄ 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. 11⁄ 16 16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 STRUCTURAL SHAPES 1 - 43 W SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 67 58 48 40 35 31 4.4 5.1 5.9 7.2 8.1 9.2 28 24 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 in. in. 11.1 12.4 15.8 17.6 20.4 22.2 — — — — — — 6620 5820 4860 4080 3610 3230 73.9 122 238 474 761 1180 272 228 184 146 127 110 7.0 8.1 22.2 25.8 — — 3480 3020 931 1610 21 18 6.6 8.0 27.5 29.9 — — 2890 2490 15 13 10 6.4 7.8 9.6 28.1 29.9 40.5 — — 39 25 20 15 6.7 15.5 8.2 19.1 11.5 21.6 16 12 9 5.0 7.1 9.2 19 16 13 (1/ksi) S I 4 Axis Y-Y r 3 S I 4 r 3 Zx Zy in. 3 in. in.3 in. in. in. 60.4 52.0 43.3 35.5 31.2 27.5 3.72 3.65 3.61 3.53 3.51 3.47 88.6 75.1 60.9 49.1 42.6 37.1 21.4 18.3 15.0 12.2 10.6 9.27 2.12 2.10 2.08 2.04 2.03 2.02 70.2 59.8 49.0 39.8 34.7 30.4 32.7 27.9 22.9 18.5 16.1 14.1 98.0 82.8 24.3 20.9 3.45 3.42 21.7 18.3 6.63 5.63 1.62 1.61 27.2 23.2 10.1 8.57 2090 3890 75.3 61.9 18.2 15.2 3.49 3.43 9.77 7.97 3.71 3.04 1.26 1.23 20.4 17.0 5.69 4.66 2670 2370 1760 3440 5780 17900 48.0 39.6 30.8 11.8 9.91 7.81 3.29 3.21 3.22 3.41 2.73 2.09 1.70 1.37 1.06 0.876 0.843 0.841 13.6 11.4 8.87 2.67 2.15 1.66 — — — 4410 3550 2740 369 846 2470 53.4 41.4 29.1 16.7 13.4 9.72 2.70 2.66 2.56 17.1 13.3 9.32 5.61 4.41 3.11 1.52 1.50 1.46 18.9 14.9 10.8 8.56 6.72 4.75 19.1 21.6 29.2 — — — 4010 3100 2360 591 1740 4980 32.1 22.1 16.4 10.2 7.31 5.56 2.60 2.49 2.47 4.43 2.99 2.19 2.20 1.50 1.11 0.966 0.918 0.905 11.7 8.30 6.23 3.39 2.32 1.72 5.8 6.9 14.0 15.8 — — 5140 4440 192 346 26.2 21.3 10.2 8.51 2.17 2.13 9.13 7.51 3.63 3.00 1.28 1.27 11.6 9.59 5.53 4.57 5.9 10.6 — 5560 154 11.3 5.46 1.72 3.86 1.90 1.00 6.28 2.92 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 44 DIMENSIONS AND PROPERTIES Y tf d X M SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d Thickness tw in. in. Flange tw 2 Width bf Thickness tf in. in. T k k1 in. in. in. 11.91 1115⁄16 0.177 11.87 117⁄8 0.162 3⁄ 16 3⁄ 16 1⁄ 16 1⁄ 16 3.065 31⁄16 0.225 3.065 31⁄16 0.206 1⁄ 4 3⁄ 16 1015⁄16 107⁄8 1⁄ 2 1⁄ 2 3⁄ 8 3⁄ 8 97⁄8 0.157 913⁄16 0.139 3⁄ 16 1⁄ 8 1⁄ 16 1⁄ 16 2.690 211⁄16 0.206 2.690 211⁄16 0.183 3⁄ 16 3⁄ 16 87⁄8 813⁄16 1⁄ 2 1⁄ 2 3⁄ 8 3⁄ 8 0.133 1⁄ 8 1⁄ 16 2.280 21⁄4 0.186 3⁄ 16 67⁄8 1⁄ 2 3⁄ 8 0.316 5⁄ 16 3⁄ 16 5.003 5 0.416 7⁄ 16 31⁄4 7⁄ 8 1⁄ 2 M12×11.8 M12×10.8 3.48 3.20 M10×9 M12×8 2.67 2.38 9.86 9.81 M8×6.5 1.92 7.85 77⁄8 M5×18.9* 5.55 5.00 5 in. Distance *This shape has tapered flanges while all other M shapes have parallel flanges. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 45 M SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 11.8 10.8 6.8 7.4 9 8 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 (1/ksi) 61.4 67.0 17 14 1420 1320 6.5 7.3 56.4 63.7 20 16 6.5 6.1 51.7 18.9 6.0 11.2 S I 4 Axis Y-Y r 3 in. in. 56700 75800 71.7 65.8 12.1 11.1 1570 1400 37100 57800 38.5 34.3 24 1780 20700 — 5710 134 S I 4 r 3 Zx Zy in. 3 in. in.3 14.3 13.1 1.16 1.05 in. in. in. 4.54 4.54 1.09 0.995 0.709 0.649 0.559 0.558 7.82 6.99 3.80 3.80 0.673 0.597 0.501 0.444 0.502 0.502 9.21 8.20 0.815 0.718 18.1 4.62 3.07 0.371 0.325 0.439 5.40 0.527 24.1 9.63 2.08 7.86 3.14 1.19 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11.0 5.02 1 - 46 DIMENSIONS AND PROPERTIES Y tf d S SHAPES Dimensions k X X T tw grip Y bf k Web Designation Flange Distance Max. Flge. FasGrip tener Area A Depth d Thickness tw tw 2 Width bf Thickness tf T k in.2 in. in. in. in. in. in. in. in. in. 1 1 S24×121 S24×106 35.6 31.2 24.50 24.50 241⁄2 241⁄2 0.800 0.620 13⁄ 16 5⁄ 8 7⁄ 16 5⁄ 16 8.050 7.870 8 77⁄8 S24×100 S24×90 S24×80 29.3 26.5 23.5 24.00 24.00 24.00 24 24 24 0.745 0.625 0.500 3⁄ 4 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 7.245 7.125 7.000 S20×96 S24×86 28.2 25.3 20.30 201⁄4 0.800 20.30 201⁄4 0.660 13⁄ 16 11⁄ 16 7⁄ 16 3⁄ 8 S20×75 S24×66 22.0 19.4 20.00 20.00 20 20 0.635 0.505 5⁄ 8 1⁄ 2 5⁄ 16 1⁄ 4 6.385 6.255 63⁄8 61⁄4 0.795 0.795 13⁄ 16 13⁄ 16 163⁄4 163⁄4 15⁄8 15⁄8 13⁄ 16 13⁄ 16 7⁄ 8 7⁄ 8 S18×70 20.6 S24×54.7 16.1 18.00 18.00 18 18 0.711 0.461 11⁄ 16 7⁄ 16 3⁄ 4 6.251 6.001 61⁄4 6 0.691 0.691 11⁄ 16 11⁄ 16 15 15 11⁄2 11⁄2 11⁄ 16 11⁄ 16 7⁄ 8 7⁄ 8 S15×50 14.7 S24×42.9 12.6 15.00 15.00 15 15 0.550 0.411 9⁄ 16 7⁄ 16 5⁄ 16 1⁄ 4 5.640 5.501 55⁄8 51⁄2 0.622 0.622 5⁄ 8 5⁄ 8 121⁄4 121⁄4 13⁄8 13⁄8 9⁄ 16 9⁄ 16 3⁄ 4 3⁄ 4 S12×50 14.7 S24×40.8 12.0 12.00 12.00 12 12 0.687 0.462 11⁄ 16 7⁄ 16 3⁄ 4 5.477 5.252 51⁄2 51⁄4 0.659 0.659 11⁄ 16 11⁄ 16 91⁄8 91⁄8 17⁄16 17⁄16 11⁄ 16 5⁄ 8 3⁄ 4 3⁄ 4 S12×35 10.3 12.00 S24×31.8 9.35 12.00 12 12 0.428 0.350 7⁄ 16 3⁄ 8 1⁄ 4 3⁄ 16 5.078 5.000 51⁄8 5 0.544 0.544 9⁄ 16 9⁄ 16 95⁄8 95⁄8 13⁄16 13⁄16 1⁄ 2 1⁄ 2 3⁄ 4 3⁄ 4 S10×35 10.3 10.00 S24×25.4 7.46 10.00 10 10 0.594 0.311 5⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 4.944 4.661 5 45⁄8 0.491 0.491 1⁄ 2 1⁄ 2 73⁄4 73⁄4 11⁄8 11⁄8 1⁄ 2 1⁄ 2 3⁄ 4 3⁄ 4 4.171 4.001 41⁄8 4 0.426 0.426 7⁄ 16 7⁄ 16 6 6 1 1 7⁄ 16 7⁄ 16 3⁄ 4 3⁄ 4 8 3.565 3.332 35⁄8 33⁄8 0.359 0.359 3⁄ 8 3⁄ 8 41⁄4 41⁄4 7⁄ 8 7⁄ 8 3⁄ 8 3⁄ 8 5⁄ 8 — 8 3.004 3 0.326 5⁄ 16 33⁄8 13⁄ 16 5⁄ 16 — 0.293 0.293 5⁄ 16 5⁄ 16 21⁄2 21⁄2 3⁄ 4 3⁄ 4 5⁄ 16 5⁄ 16 — — 0.260 0.260 1⁄ 4 1⁄ 4 15⁄8 15⁄8 11⁄ 16 11⁄ 16 1⁄ 4 1⁄ 4 — — 1⁄ 1⁄ 8 8 1.090 1.090 11⁄16 11⁄16 201⁄2 201⁄2 2 2 11⁄8 11⁄8 71⁄4 71⁄8 7 0.870 0.870 0.870 7⁄ 8 7⁄ 8 7⁄ 8 201⁄2 201⁄2 201⁄2 13⁄4 13⁄4 13⁄4 7⁄ 8 7⁄ 8 7⁄ 8 1 1 1 7.200 7.060 71⁄4 7 0.920 0.920 15⁄ 16 15⁄ 16 163⁄4 163⁄4 13⁄4 13⁄4 15⁄ 16 15⁄ 16 1 1 S8×23 S8×18.4 6.77 5.41 8.00 8.00 8 8 0.441 0.271 7⁄ 16 1⁄ 4 1⁄ S6×17.25 S8×12.5 5.07 3.67 6.00 6.00 6 6 0.465 0.232 7⁄ 16 1⁄ 4 1⁄ S5×10 2.94 5.00 5 0.214 3⁄ 16 1⁄ 3⁄ 16 1⁄ 8 2.796 2.663 23⁄4 25⁄8 3⁄ 16 1⁄ 8 2.509 2.330 21⁄2 23⁄8 S4×9.5 S8×7.7 2.79 2.26 4.00 4.00 4 4 0.326 0.193 5⁄ 16 3⁄ 16 S3×7.5 S8×5.7 2.21 1.67 3.00 3.00 3 3 0.349 0.170 3⁄ 8 3⁄ 16 1⁄ 1⁄ 4 8 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 47 S SHAPES Properties Y tf d k X X T tw Y bf grip Nominal Wt. per ft Compact Section Criteria bf 2tf h tw Fy′′′ 121 106 3.7 3.6 100 90 80 Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 (1/ksi) 36.4 34.1 — 55 3310 2960 4.2 4.1 4.0 28.3 33.7 42.1 — 56 36 96 86 3.9 3.8 21.6 26.2 75 66 4.0 3.9 70 54.7 lb k S I 4 Axis Y-Y r 3 in. in. 1770 2470 3160 2940 3000 2710 2450 2940 4090 5480 — — 3730 3350 27.1 34.1 — 55 4.5 4.3 21.8 33.6 50 42.9 4.5 4.4 50 40.8 S I 4 r 3 Zx 3 Zy in.3 in. in. in. in. in. 258 240 9.43 9.71 83.3 77.1 20.7 19.6 1.53 1.57 306 279 36.2 33.2 2390 2250 2100 199 187 175 9.02 9.21 9.47 47.7 44.9 42.2 13.2 12.6 12.1 1.27 1.30 1.34 240 222 204 23.9 22.3 20.7 1160 1630 1670 1580 165 155 7.71 7.89 50.2 46.8 13.9 13.3 1.33 1.36 198 183 24.9 23.0 3140 2800 2290 3250 1280 1190 128 119 7.62 7.83 29.8 27.7 9.32 8.85 1.16 1.19 153 140 16.7 15.3 — 57 3590 2770 1470 3400 926 804 103 89.4 6.71 7.07 24.1 20.8 7.72 6.94 1.08 1.14 125 105 14.4 12.1 23.2 31.0 — — 3450 2960 1540 2470 486 447 64.8 59.6 5.75 5.95 15.7 14.4 5.57 5.23 1.03 1.07 77.1 69.3 9.97 9.02 4.2 4.0 13.9 20.7 — — 5070 4050 333 682 305 272 50.8 45.4 4.55 4.77 15.7 13.6 5.74 5.16 1.03 1.06 61.2 53.1 10.3 8.85 35 31.8 4.7 4.6 23.4 28.6 — — 3500 3190 1310 1710 229 218 38.2 36.4 4.72 4.83 9.87 9.36 3.89 3.74 0.980 1.00 44.8 42.0 6.79 6.40 35 25.4 5.0 4.7 13.8 26.4 — — 4960 3430 374 1220 147 124 29.4 24.7 3.78 4.07 8.36 6.79 3.38 2.91 0.901 0.954 35.4 28.4 6.22 4.96 23 18.4 4.9 4.7 14.5 23.7 — — 4770 3770 397 821 64.9 57.6 16.2 14.4 3.10 3.26 4.31 3.73 2.07 1.86 0.798 0.831 19.3 16.5 3.68 3.16 17.25 5.0 12.5 4.6 9.9 19.9 — — 6250 4290 143 477 26.3 22.1 8.77 7.37 2.28 2.45 2.31 1.82 1.30 1.09 0.675 0.705 10.6 8.47 2.36 1.85 10 4.6 17.4 — 4630 348 12.3 4.92 2.05 1.22 0.809 0.643 5.67 1.37 9.5 7.7 4.8 4.5 8.7 14.7 — — 6830 5240 87.4 207 6.79 6.08 3.39 3.04 1.56 1.64 0.903 0.764 0.646 0.569 0.574 0.581 4.04 3.51 1.13 0.964 7.5 5.7 4.8 4.5 5.6 11.4 — — 9160 6160 28.1 106 2.93 2.52 1.95 1.68 1.15 1.23 0.586 0.455 0.468 0.516 0.390 0.522 2.36 1.95 0.826 0.653 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 48 DIMENSIONS AND PROPERTIES Y tf d X HP SHAPES Dimensions k k1 X T tw Y bf k Web Designation Area A 2 in. Depth d in. Thickness tw in. Flange tw 2 in. Width bf in. Distance Thickness tf in. T k k1 in. in. in. HP14×117 HP14×102 HP14×89 HP14×73 34.4 30.0 26.1 21.4 14.21 14.01 13.83 13.61 141⁄4 14 137⁄8 135⁄8 0.805 0.705 0.615 0.505 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 14.885 14.785 14.695 14.585 147⁄8 143⁄4 143⁄4 145⁄8 0.805 0.705 0.615 0.505 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 111⁄4 111⁄4 111⁄4 111⁄4 11⁄2 13⁄8 15⁄16 13⁄16 11⁄16 1 15⁄ 16 7⁄ 8 HP12×84 HP14×74 HP14×63 HP14×53 24.6 21.8 18.4 15.5 12.28 12.13 11.94 11.78 121⁄4 121⁄8 12 113⁄4 0.685 0.605 0.515 0.435 11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 12.295 12.215 12.125 12.045 121⁄4 121⁄4 121⁄8 12 0.685 0.610 0.515 0.435 11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16 91⁄2 91⁄2 91⁄2 91⁄2 13⁄8 15⁄16 11⁄4 11⁄8 15⁄ 16 7⁄ 8 7⁄ 8 HP10×57 HP14×42 16.8 12.4 9.99 9.70 10 93⁄4 0.565 0.415 9⁄ 16 7⁄ 16 5⁄ 16 1⁄ 4 10.225 10.075 101⁄4 101⁄8 0.565 0.420 9⁄ 16 7⁄ 16 75⁄8 75⁄8 13⁄16 11⁄16 13⁄ 16 3⁄ 4 HP8×36 10.6 8.02 8 0.445 7⁄ 16 1⁄ 4 8.155 81⁄8 0.445 7⁄ 16 61⁄8 15⁄ 16 5⁄ 8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 STRUCTURAL SHAPES 1 - 49 HP SHAPES Properties Y tf d k k1 X X T tw Y bf Nominal Wt. per ft Compact Section Criteria h tw Fy′′′ lb bf 2tf 117 102 89 73 9.2 10.5 11.9 14.4 84 74 63 53 9.0 10.0 11.8 13.8 k Plastic Modulus Elastic Properties Axis X-X X1 X2 × 106 ksi ksi 2 14.2 16.2 18.5 22.6 — — — — 14.2 16.0 18.9 22.3 57 42 36 S I Axis Y-Y r 3 S I (1/ksi) 4 in. in. in. in. 3870 3400 2960 2450 659 1090 1840 3880 1220 1050 904 729 172 150 131 107 5.96 5.92 5.88 5.84 — — — — 3860 3440 2940 2500 670 1050 1940 3650 650 569 472 393 106 93.8 79.1 66.8 9.0 13.9 12.0 18.9 — — 3920 2920 631 1970 294 210 9.2 14.2 — 3840 685 119 4 r 3 Zx Zy in. in. in. in.3 443 380 326 261 59.5 51.4 44.3 35.8 3.59 3.56 3.53 3.49 194 169 146 118 91.4 78.8 67.7 54.6 5.14 5.11 5.06 5.03 213 186 153 127 34.6 30.4 25.3 21.1 2.94 2.92 2.88 2.86 120 105 88.3 74.0 53.2 46.6 38.7 32.2 58.8 43.4 4.18 4.13 101 71.7 19.7 14.2 2.45 2.41 66.5 48.3 30.3 21.8 29.8 3.36 40.3 1.95 33.6 15.2 9.88 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 1 - 50 DIMENSIONS AND PROPERTIES k T x Y X CHANNELS AMERICAN STANDARD Dimensions tf xp d X tw k Y grip bf eo Web Designation Area Depth Thickness A d tw in.2 in. in. Flange Distance Max. Flge. FasGrip tener tw 2 Width bf Thickness tf T k in. in. in. in. in. 121⁄8 121⁄8 121⁄8 17⁄16 17⁄16 17⁄16 5⁄ 93⁄4 93⁄4 93⁄4 11⁄8 11⁄8 11⁄8 1⁄ 2 7⁄ 8 7⁄ 8 7⁄ 8 3⁄ 4 3⁄ 4 3⁄ 4 3⁄ 4 3⁄ 8 1⁄ 4 3⁄ 16 in. 3.716 3.520 3.400 33⁄4 31⁄2 33⁄8 0.650 0.650 0.650 5⁄ 8 5⁄ 8 5⁄ 8 3.170 3.047 2.942 31⁄8 3 3 0.501 0.501 0.501 1⁄ 2 1⁄ 2 1⁄ 2 8 8 8 8 1 1 1 1 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 in. C15×50 C15×40 C15×33.9 14.7 11.8 9.96 15.00 15.00 15.00 0.716 0.520 0.400 11⁄ 16 1⁄ 2 3⁄ 8 C12×30 C15×25 C15×20.7 8.82 7.35 6.09 12.00 12.00 12.00 0.510 0.387 0.282 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 3.033 2.886 2.739 2.600 3 27⁄8 23⁄4 25⁄8 0.436 0.436 0.436 0.436 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 1⁄ 4 1⁄ 8 1⁄ 8 2.648 2.485 2.433 25⁄8 21⁄2 23⁄8 0.413 0.413 0.413 7⁄ 16 7⁄ 16 7⁄ 16 71⁄8 71⁄8 71⁄8 15⁄ 16 15⁄ 16 15⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 3⁄ 4 3⁄ 4 3⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 2.527 2.343 2.260 21⁄2 23⁄8 21⁄4 0.390 0.390 0.390 3⁄ 8 3⁄ 8 3⁄ 8 61⁄8 61⁄8 61⁄8 15⁄ 16 15⁄ 16 15⁄ 16 3⁄ 3⁄ 4 3⁄ 4 3⁄ 4 3⁄ 16 1⁄ 8 2.194 2.090 21⁄4 21⁄8 0.366 0.366 3⁄ 8 3⁄ 8 51⁄4 51⁄4 7⁄ 8 7⁄ 8 3⁄ 8 5⁄ 8 5⁄ 8 3⁄ 16 3⁄ 16 1⁄ 8 2.157 2.034 1.920 21⁄8 2 17⁄8 0.343 0.343 0.343 5⁄ 16 5⁄ 16 5⁄ 16 43⁄8 43⁄8 43⁄8 13⁄ 16 13⁄ 16 13⁄ 16 5⁄ 16 3⁄ 8 5⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 3⁄ 16 1⁄ 8 1.885 1.750 17⁄8 13⁄4 0.320 0.320 5⁄ 16 5⁄ 16 31⁄2 31⁄2 3⁄ 4 3⁄ 4 5⁄ 16 5⁄ 8 — 5⁄ 5⁄ 1⁄ 1⁄ 8 8 8 2 2 1 1 1 C10×30 C15×25 C15×20 C15×15.3 8.82 7.35 5.88 4.49 10.00 10.00 10.00 10.00 0.673 0.526 0.379 0.240 11⁄ 16 1⁄ 2 3⁄ 8 1⁄ 4 C9×20 C5×15 C5×13.4 5.88 4.41 3.94 9.00 9.00 9.00 0.448 0.285 0.233 7⁄ C8×18.75 C8×13.75 C8×11.5 5.51 4.04 3.38 8.00 8.00 8.00 0.487 0.303 0.220 C7×12.25 C8×9.8 3.60 2.87 7.00 7.00 0.314 0.210 5⁄ C6×13 C8×10.5 C8×8.2 3.83 3.09 2.40 6.00 6.00 6.00 0.437 0.314 0.200 7⁄ C5×9 C8×6.7 2.64 1.97 5.00 5.00 0.325 0.190 5⁄ C4×7.25 C8×5.4 2.13 1.59 4.00 4.00 0.321 0.184 5⁄ 3⁄ 16 1⁄ 16 1.721 1.584 13⁄4 15⁄8 0.296 0.296 5⁄ 16 5⁄ 16 25⁄8 25⁄8 11⁄ 16 11⁄ 16 5⁄ 16 16 — 5⁄ 8 — C3×6 C8×5 C8×4.1 1.76 1.47 1.21 3.00 3.00 3.00 0.356 0.258 0.170 3⁄ 8 1⁄ 4 3⁄ 16 3⁄ 16 1⁄ 8 1⁄ 16 1.596 1.498 1.410 15⁄8 11⁄2 13⁄8 0.273 0.273 0.273 1⁄ 4 1⁄ 4 1⁄ 4 15⁄8 15⁄8 15⁄8 11⁄ 16 11⁄ 16 11⁄ 16 — — — — — — 5⁄ 16 16 1⁄ 4 1⁄ 2 5⁄ 16 1⁄ 4 3⁄ 5⁄ 3⁄ 3⁄ 3⁄ 16 16 16 16 16 16 16 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3⁄ 3⁄ 3⁄ 8 8 8 8 — STRUCTURAL SHAPES 1 - 51 CHANNELS AMERICAN STANDARD Properties k x Y xp X T tf d X tw Y k Nominal Wt. per ft _ x Shear Center PNA Loca- Location tion eo xp Axis X-X Z I 4 in. Axis Y-Y S 3 grip bf eo r 3 Z I 4 S 3 r 3 lb in. in. in. in. in. in. in. in. in. in. 50 40 33.9 0.798 0.777 0.787 0.583 0.767 0.896 0.488 0.390 0.330 404 349 315 68.2 57.2 50.4 53.8 46.5 42.0 5.24 5.44 5.62 11.0 9.23 8.13 8.17 6.87 6.23 3.78 3.37 3.11 0.867 0.886 0.904 30 25 20.7 0.674 0.674 0.698 0.618 0.746 0.870 0.366 0.305 0.252 162 144 129 33.6 29.2 25.4 27.0 24.1 21.5 4.29 4.43 4.61 5.14 4.47 3.88 4.33 3.84 3.49 2.06 1.88 1.73 0.763 0.780 0.799 30 25 20 15.3 0.649 0.617 0.606 0.634 0.369 0.494 0.637 0.796 0.439 0.366 0.292 0.223 103 91.2 78.9 67.4 26.6 23.0 19.3 15.8 20.7 18.2 15.8 13.5 3.42 3.52 3.66 3.87 3.94 3.36 2.81 2.28 3.78 3.19 2.71 2.35 1.65 1.48 1.32 1.16 0.669 0.676 0.692 0.713 20 15 13.4 0.583 0.586 0.601 0.515 0.682 0.743 0.325 0.243 0.217 60.9 51.0 47.9 16.8 13.5 12.5 13.5 11.3 10.6 3.22 3.40 3.48 2.42 1.93 1.76 2.47 2.05 1.95 1.17 1.01 0.962 0.642 0.661 0.669 18.75 13.75 11.5 0.565 0.553 0.571 0.431 0.604 0.697 0.343 0.251 0.209 44.0 36.1 32.6 13.8 10.9 9.55 11.0 9.03 8.14 2.82 2.99 3.11 1.98 1.53 1.32 2.17 1.73 1.58 1.01 0.854 0.781 0.599 0.615 0.625 12.25 9.8 0.525 0.540 0.538 0.647 0.255 0.203 24.2 21.3 8.40 7.12 6.93 6.08 2.60 2.72 1.17 0.968 1.43 1.26 0.703 0.625 0.571 0.581 13 10.5 8.2 0.514 0.499 0.511 0.380 0.486 0.599 0.317 0.255 0.198 17.4 15.2 13.1 7.26 6.15 5.13 5.80 5.06 4.38 2.13 2.22 2.34 1.05 0.866 0.693 1.36 1.15 0.993 0.642 0.564 0.492 0.525 0.529 0.537 9 6.7 0.478 0.484 0.427 0.552 0.262 0.217 8.90 7.49 4.36 3.51 3.56 3.00 1.83 1.95 0.632 0.479 0.918 0.763 0.450 0.378 0.489 0.493 7.25 5.4 0.459 0.457 0.386 0.502 0.264 0.241 4.59 3.85 2.81 2.26 2.29 1.93 1.47 1.56 0.433 0.319 0.697 0.569 0.343 0.283 0.450 0.449 6 5 4.1 0.455 0.438 0.436 0.322 0.392 0.461 0.291 0.242 0.284 2.07 1.85 1.66 1.72 1.50 1.30 1.38 1.24 1.10 1.08 1.12 1.17 0.305 0.247 0.197 0.544 0.466 0.401 0.268 0.233 0.202 0.416 0.410 0.404 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 52 DIMENSIONS AND PROPERTIES k T x Y X CHANNELS MISCELLANEOUS Dimensions tf xp d X tw k Y eo grip bf Web Designation Area Depth Thickness A d tw in.2 in. in. Flange Distance Max. Flge. FasGrip tener tw 2 Width bf Thickness tf T k in. in. in. in. in. in. in. 151⁄4 151⁄4 151⁄4 151⁄4 13⁄8 13⁄8 13⁄8 13⁄8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 1 1 1 1 101⁄4 101⁄4 101⁄4 101⁄4 13⁄8 13⁄8 13⁄8 13⁄8 5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16 1 1 1 1 15⁄16 15⁄16 15⁄16 15⁄16 15⁄16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 1 1 1 1 1 MC18×58 MC18×51.9 MC18×45.8 MC18×42.7 17.1 15.3 13.5 12.6 18.00 18.00 18.00 18.00 0.700 0.600 0.500 0.450 11⁄ 16 5⁄ 8 1⁄ 2 7⁄ 16 MC13×50 MC18×40 MC18×35 MC18×31.8 14.7 11.8 10.3 9.35 13.00 13.00 13.00 13.00 0.787 0.560 0.447 0.375 3⁄ 16 9⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 1⁄ 4 1⁄ 4 3⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 4.135 4.012 3.890 3.767 3.670 41⁄ 4 37⁄8 33⁄4 35⁄8 0.700 0.700 0.700 0.700 0.700 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 1.500 11⁄2 0.309 5⁄ 16 105⁄8 16 — — 71⁄2 71⁄2 71⁄2 11⁄4 11⁄4 11⁄4 9⁄ 16 9⁄ 16 9⁄ 16 7⁄ 8 7⁄ 8 7⁄ 8 MC12×50 MC18×45 MC18×40 MC18×35 MC18×31 MC12×10.6 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 4.200 4.100 4.000 3.950 41⁄ 41⁄8 4 4 0.625 0.625 0.625 0.625 5⁄ 4.412 4.185 4.072 4.000 43⁄8 41⁄8 41⁄8 4 0.610 0.610 0.610 0.610 5⁄ 93⁄8 93⁄8 93⁄8 93⁄8 93⁄8 4 5⁄ 5⁄ 5⁄ 5⁄ 5⁄ 5⁄ 8 8 8 8 8 8 8 8 14.7 13.2 11.8 10.3 9.12 12.00 12.00 12.00 12.00 12.00 0.835 0.712 0.590 0.467 0.370 13⁄ 16 11⁄ 16 9⁄ 16 7⁄ 16 3⁄ 8 3.10 12.00 0.190 3⁄ 16 1⁄ 8 3⁄ 8 5⁄ 16 3⁄ 16 4.321 4.100 3.950 43⁄ 41⁄8 4 8 0.575 0.575 0.575 9⁄ 16 9⁄ 16 9⁄ 16 8 11⁄ 12.1 9.87 8.37 10.00 10.00 10.00 0.796 0.575 0.425 13⁄ 16 9⁄ 16 7⁄ 16 MC10×25 MC18×22 7.35 6.45 10.00 10.00 0.380 0.290 3⁄ 8 5⁄ 16 3⁄ 16 1⁄ 8 3.405 3.315 33⁄8 33⁄8 0.575 0.575 9⁄ 16 9⁄ 16 71⁄2 71⁄2 11⁄4 11⁄4 9⁄ 16 9⁄ 16 7⁄ 8 7⁄ 8 MC10×8.4 2.46 10.00 0.170 3⁄ 16 1⁄ 1.500 11⁄2 0.280 1⁄ 85⁄8 11⁄ — — MC10×41.1 MC18×33.6 MC18×28.5 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 16 STRUCTURAL SHAPES 1 - 53 CHANNELS MISCELLANEOUS Properties k x Y xp X T tf d X tw Y k Nominal Wt. per ft _ x Shear Center PNA Loca- Location tion eo xp Axis X-X Z I 4 Axis Y-Y S 3 grip bf eo r 3 Z I 4 S 3 r 3 lb in. in. in. in. in. in. in. in. in. in. in. 58 51.9 45.8 42.7 0.862 0.858 0.866 0.877 0.695 0.797 0.909 0.969 0.472 0.422 0.372 0.347 676 627 578 554 94.6 86.5 78.4 74.4 75.1 69.7 64.3 61.6 6.29 6.41 6.56 6.64 17.8 16.4 15.1 14.4 9.94 9.13 8.42 8.10 5.32 5.07 4.82 4.69 1.02 1.04 1.06 1.07 50 40 35 31.8 0.974 0.963 0.980 1.00 0.815 1.03 1.16 1.24 0.564 0.450 0.394 0.358 314 273 252 239 60.5 50.9 46.2 43.1 48.4 42.0 38.8 36.8 4.62 4.82 4.95 5.06 16.5 13.7 12.3 11.4 10.1 8.57 7.95 7.60 4.79 4.26 3.99 3.81 1.06 1.08 1.10 1.11 50 45 40 35 31 1.05 1.04 1.04 1.05 1.08 0.741 0.844 0.952 1.07 1.18 0.610 0.549 0.488 0.426 0.416 269 252 234 216 203 56.1 51.7 47.3 42.8 39.3 44.9 42.0 39.0 36.1 33.8 4.28 4.36 4.46 4.59 4.71 17.4 15.8 14.3 12.7 11.3 10.2 9.35 8.59 7.91 7.44 5.65 5.33 5.00 4.67 4.39 1.09 1.09 1.10 1.11 1.12 10.6 0.269 0.284 0.129 0.639 0.310 0.351 41.1 33.6 28.5 1.09 1.08 1.12 0.864 1.06 1.21 0.601 0.490 0.415 158 139 127 38.9 33.4 29.6 31.5 27.8 25.3 3.61 3.75 3.89 8.71 7.51 6.83 4.88 4.38 4.02 1.14 1.16 1.17 25 22 0.953 0.990 1.03 1.13 0.364 0.468 110 103 25.8 23.6 22.0 20.5 3.87 3.99 7.35 6.50 5.21 4.86 3.00 2.80 1.00 1.00 0.284 0.332 0.122 3.61 0.328 0.552 0.270 0.365 8.4 55.4 32.0 11.6 7.86 9.23 6.40 4.22 0.382 15.8 13.2 11.4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 54 DIMENSIONS AND PROPERTIES k T x Y X CHANNELS MISCELLANEOUS Dimensions tf xp d X tw k Y eo grip bf Web Designation Area Depth Thickness A d tw in.2 in. in. Flange Distance Max. Flge. FasGrip tener tw 2 Width bf Thickness tf T k in. in. in. in. in. in. in. 65⁄8 65⁄8 13⁄16 13⁄16 9⁄ 16 9⁄ 16 7⁄ 8 7⁄ 8 55⁄8 55⁄8 13⁄16 13⁄16 1⁄ 2 1⁄ 2 7⁄ 8 7⁄ 8 MC9×25.4 MC9×23.9 7.47 7.02 9.00 9.00 0.450 0.400 7⁄ 16 3⁄ 8 1⁄ 4 3⁄ 16 3.500 3.450 31⁄ 31⁄2 2 0.550 0.550 9⁄ 16 9⁄ 16 MC8×22.8 MC9×21.4 6.70 6.28 8.00 8.00 0.427 0.375 7⁄ 16 3⁄ 8 3⁄ 3⁄ 3.502 3.450 31⁄2 31⁄2 0.525 0.525 1⁄ MC8×20 MC9×18.7 5.88 5.50 8.00 8.00 0.400 0.353 3⁄ 8 3⁄ 8 3⁄ 3.025 2.978 3 3 0.500 0.500 1⁄ 16 2 53⁄4 53⁄4 11⁄8 11⁄8 1⁄ 2 1⁄ 2 7⁄ 8 7⁄ 8 MC8×8.5 2.50 8.00 0.179 3⁄ 16 1⁄ 16 1.874 17⁄8 0.311 5⁄ 16 61⁄2 3⁄ 4 5⁄ 16 5⁄ 8 MC7×22.7 MC9×19.1 6.67 5.61 7.00 7.00 0.503 0.352 1⁄ 2 3⁄ 8 3⁄ 1⁄ 4 3.603 3.452 35⁄8 31⁄2 0.500 0.500 1⁄ 16 2 43⁄4 43⁄4 11⁄8 11⁄8 1⁄ 2 1⁄ 2 7⁄ 8 7⁄ 8 MC6×18 5.29 6.00 0.379 3⁄ 8 3⁄ 16 3.504 31⁄2 0.475 1⁄ 2 37⁄8 11⁄16 1⁄ 2 7⁄ 8 MC6×16.3 MC9×15.1 4.79 4.44 6.00 6.00 0.375 0.316 3⁄ 8 5⁄ 16 3⁄ 16 3.000 2.941 3 3 0.475 0.475 1⁄ 2 16 2 37⁄8 37⁄8 11⁄16 11⁄16 1⁄ 2 1⁄ 2 3⁄ 4 3⁄ 4 MC6×12 3.53 6.00 0.310 5⁄ 16 1⁄ 8 2.497 21⁄2 0.375 3⁄ 8 43⁄8 13⁄ 16 3⁄ 8 5⁄ 8 3⁄ 3⁄ 16 16 16 1⁄ 1⁄ AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1⁄ 1⁄ 2 2 2 2 STRUCTURAL SHAPES 1 - 55 CHANNELS MISCELLANEOUS Properties k x Y xp X T tf d X tw Y k Nominal Wt. per ft _ x Shear Center PNA Loca- Location tion eo xp Axis X-X Z I 4 Axis Y-Y S 3 grip bf eo r 3 Z I 4 S 3 r 3 lb in. in. in. in. in. in. in. in. in. in. in. 25.4 23.9 0.970 0.981 0.986 1.04 0.411 0.386 88.0 85.0 23.2 22.2 19.6 18.9 3.43 3.48 7.65 7.22 5.23 5.05 3.02 2.93 1.01 1.01 22.8 21.4 1.01 1.02 1.04 1.09 0.415 0.449 63.8 61.6 18.8 18.0 16.0 15.4 3.09 3.13 7.07 6.64 4.88 4.71 2.84 2.74 1.03 1.03 20 18.7 0.840 0.849 0.843 0.889 0.364 0.341 54.5 52.5 16.2 15.4 13.6 13.1 3.05 3.09 4.47 4.20 3.57 3.44 2.05 1.97 0.872 0.874 8.5 0.428 0.542 0.155 23.3 6.91 3.05 0.628 0.882 0.434 0.501 22.7 19.1 1.04 1.08 1.01 1.15 0.473 0.567 47.5 43.2 16.2 14.3 2.67 2.77 7.29 6.11 4.86 4.34 2.85 2.57 1.05 1.04 18 1.12 1.17 0.622 29.7 11.5 9.91 2.37 5.93 4.14 2.48 1.06 16.3 15.1 0.927 0.940 0.930 0.982 0.464 0.537 26.0 25.0 10.2 9.69 8.68 8.32 2.33 2.37 3.82 3.51 3.18 3.00 1.84 1.75 0.892 0.889 12 0.704 0.725 0.292 18.7 7.38 6.24 2.30 1.87 1.79 1.04 0.728 5.83 13.6 12.3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 56 DIMENSIONS AND PROPERTIES Y ANGLES Equal legs and unequal legs Properties for designing xp x Z X X y, yp k α Y Size and Thickness in. Z k Weight per ft Axis X-X Area 2 S I 4 r 3 y Z yp 3 in. lb in. in. in. in. in. in. in. L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 13⁄4 15⁄8 11⁄2 13⁄8 11⁄4 13⁄16 11⁄8 56.9 51.0 45.0 38.9 32.7 29.6 26.4 16.7 15.0 13.2 11.4 9.61 8.68 7.75 98.0 89.0 79.6 69.7 59.4 54.1 48.6 17.5 15.8 14.0 12.2 10.3 9.34 8.36 2.42 2.44 2.45 2.47 2.49 2.50 2.50 2.41 2.37 2.33 2.28 2.23 2.21 2.19 31.6 28.5 25.3 22.0 18.6 16.8 15.1 1.05 0.938 0.827 0.715 0.601 0.543 0.484 L8×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×8×17⁄16 11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 44.2 39.1 33.8 28.5 25.7 23.0 20.2 13.0 11.5 9.94 8.36 7.56 6.75 5.93 80.8 72.3 63.4 54.1 49.3 44.3 39.2 15.1 13.4 11.7 9.87 8.95 8.02 7.07 2.49 2.51 2.53 2.54 2.55 2.56 2.57 2.65 2.61 2.56 2.52 2.50 2.47 2.45 27.3 24.2 21.1 17.9 16.2 14.5 12.8 1.50 1.44 1.38 1.31 1.28 1.25 1.22 L8×4×1 L8×8×17⁄8 L8×8×13⁄4 L8×4×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×4×17⁄16 L7×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×7⁄16 L7×4×3⁄8 11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 37.4 33.1 28.7 24.2 21.9 19.6 17.2 26.2 22.1 17.9 15.7 13.6 11.0 9.73 8.44 7.11 6.43 5.75 5.06 7.69 6.48 5.25 4.62 3.98 69.6 62.5 54.9 46.9 42.8 38.5 34.1 37.8 32.4 26.7 23.7 20.6 14.1 12.5 10.9 9.21 8.35 7.49 6.60 8.42 7.14 5.81 5.13 4.44 2.52 2.53 2.55 2.57 2.58 2.59 2.60 2.22 2.24 2.25 2.26 2.27 3.05 3.00 2.95 2.91 2.88 2.86 2.83 2.51 2.46 2.42 2.39 2.37 24.3 21.6 18.9 16.0 14.5 13.0 11.5 14.8 12.6 10.3 9.09 7.87 2.50 2.44 2.38 2.31 2.28 2.25 2.22 1.88 1.81 1.75 1.72 1.69 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 57 Y ANGLES Equal legs and unequal legs Properties for designing x xp Z X X y, yp k α Y Size and Thickness Z Axis Y-Y S I r Axis Z-Z x Z xp r Tan in. in. in. in. in. in. in. α L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 98.0 89.0 79.6 69.7 59.4 54.1 48.6 17.5 15.8 14.0 12.2 10.3 9.34 8.36 2.42 2.44 2.45 2.47 2.49 2.50 2.50 2.41 2.37 2.33 2.28 2.23 2.21 2.19 31.6 28.5 25.3 22.0 18.6 16.8 15.1 1.05 0.938 0.827 0.715 0.601 0.543 0.484 1.56 1.56 1.57 1.58 1.58 1.59 1.59 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L8×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×8×17⁄16 38.8 34.9 30.7 26.3 24.0 21.7 19.3 8.92 7.94 6.92 5.88 5.34 4.79 4.23 1.73 1.74 1.76 1.77 1.78 1.79 1.80 1.65 1.61 1.56 1.52 1.50 1.47 1.45 16.2 14.4 12.5 10.5 9.52 8.51 7.50 0.813 0.718 0.621 0.522 0.472 0.422 0.371 1.28 1.28 1.29 1.29 1.30 1.30 1.31 0.543 0.547 0.551 0.554 0.556 0.558 0.560 L8×4×1 L8×4×17⁄8 L8×8×13⁄4 L8×4×15⁄8 L8×8×19⁄16 L8×8×11⁄2 L8×4×17⁄16 11.6 10.5 9.36 8.10 7.43 6.74 6.02 3.94 3.51 3.07 2.62 2.38 2.15 1.90 1.03 1.04 1.05 1.07 1.07 1.08 1.09 1.05 0.999 0.953 0.905 0.882 0.859 0.835 7.72 6.77 5.81 4.86 4.38 3.90 3.42 0.688 0.608 0.527 0.444 0.402 0.359 0.316 0.846 0.848 0.852 0.857 0.861 0.865 0.869 0.247 0.253 0.258 0.262 0.265 0.267 0.269 L7×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×7⁄16 L7×4×3⁄8 9.05 7.84 6.53 5.83 5.10 3.03 2.58 2.12 1.88 1.63 1.09 1.10 1.11 1.12 1.13 1.01 0.963 0.917 0.893 0.870 5.65 4.74 3.83 3.37 2.90 0.549 0.463 0.375 0.330 0.285 0.860 0.865 0.872 0.875 0.880 0.324 0.329 0.335 0.337 0.340 in. 4 3 3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 58 DIMENSIONS AND PROPERTIES Y ANGLES Equal legs and unequal legs Properties for designing xp x Z X X y, yp k α Y Size and Thickness in. Z k Weight per ft Axis X-X Area 2 S I 4 r 3 y Z yp 3 in. lb in. in. in. in. in. in. in. L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16 11⁄2 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 7⁄ 8 13⁄ 16 37.4 33.1 28.7 24.2 21.9 19.6 17.2 14.9 12.4 11.0 9.73 8.44 7.11 6.43 5.75 5.06 4.36 3.65 35.5 31.9 28.2 24.2 22.1 19.9 17.7 15.4 13.0 8.57 7.63 6.66 5.66 5.14 4.61 4.08 3.53 2.97 1.80 1.81 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.86 1.82 1.78 1.73 1.71 1.68 1.66 1.64 1.62 15.5 13.8 12.0 10.2 9.26 8.31 7.34 6.35 5.35 0.917 0.811 0.703 0.592 0.536 0.479 0.422 0.363 0.304 L6×4×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16 13⁄8 11⁄4 11⁄8 11⁄16 1 15⁄ 16 7⁄ 8 13⁄ 16 27.2 23.6 20.0 18.1 16.2 14.3 12.3 10.3 7.98 6.94 5.86 5.31 4.75 4.18 3.61 3.03 27.7 24.5 21.1 19.3 17.4 15.5 13.5 11.4 7.15 6.25 5.31 4.83 4.33 3.83 3.32 2.79 1.86 1.88 1.90 1.90 1.91 1.92 1.93 1.94 2.12 2.08 2.03 2.01 1.99 1.96 1.94 1.92 12.7 11.2 9.51 8.66 7.78 6.88 5.97 5.03 1.44 1.38 1.31 1.28 1.25 1.22 1.19 1.16 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 1 7⁄ 8 13⁄ 16 15.3 11.7 9.80 4.50 3.42 2.87 16.6 12.9 10.9 4.24 3.24 2.73 1.92 1.94 1.95 2.08 2.04 2.01 7.50 5.76 4.85 1.50 1.44 1.41 L5×5×7⁄8 L5×5×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×7⁄16 L5×5×3⁄8 L5×5×5⁄16 13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16 27.2 23.6 20.0 16.2 14.3 12.3 10.3 7.98 6.94 5.86 4.75 4.18 3.61 3.03 17.8 15.7 13.6 11.3 10.0 8.74 7.42 5.17 4.53 3.86 3.16 2.79 2.42 2.04 1.49 1.51 1.52 1.54 1.55 1.56 1.57 1.57 1.52 1.48 1.43 1.41 1.39 1.37 9.33 8.16 6.95 5.68 5.03 4.36 3.68 0.798 0.694 0.586 0.475 0.418 0.361 0.303 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL SHAPES 1 - 59 Y ANGLES Equal legs and unequal legs Properties for designing x xp Z X X y, yp k α Y Size and Thickness in. L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16 Z Axis Y-Y S I 4 r Axis Z-Z x xp r in. in. in. α 1.86 1.82 1.78 1.73 1.71 1.68 1.66 1.64 1.62 15.5 13.8 12.0 10.2 9.26 8.31 7.34 6.35 5.35 0.917 0.811 0.703 0.592 0.536 0.479 0.422 0.363 0.304 1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 1.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 in. 3 in. in. in. 35.5 31.9 28.2 24.2 22.1 19.9 17.7 15.4 13.0 8.57 7.63 6.66 5.66 5.14 4.61 4.08 3.53 2.97 1.80 1.81 1.83 1.84 1.85 1.86 1.87 1.88 1.89 Z 3 Tan L6×4×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16 9.75 8.68 7.52 6.91 6.27 5.60 4.90 4.18 3.39 2.97 2.54 2.31 2.08 1.85 1.60 1.35 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.17 1.12 1.08 1.03 1.01 0.987 0.964 0.941 0.918 6.31 5.47 4.62 4.19 3.75 3.30 2.85 2.40 0.665 0.578 0.488 0.442 0.396 0.349 0.301 0.252 0.857 0.860 0.864 0.866 0.870 0.873 0.877 0.882 0.421 0.428 0.435 0.438 0.440 0.443 0.446 0.448 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 4.25 3.34 2.85 1.59 1.23 1.04 0.972 0.988 0.996 0.833 0.787 0.763 2.91 2.20 1.85 0.375 0.285 0.239 0.759 0.767 0.772 0.344 0.350 0.352 17.8 15.7 13.6 11.3 10.0 8.74 7.42 5.17 4.53 3.86 3.16 2.79 2.42 2.04 1.49 1.51 1.52 1.54 1.55 1.56 1.57 1.57 1.52 1.48 1.43 1.41 1.39 1.37 9.33 8.16 6.95 5.68 5.03 4.36 3.68 0.798 0.694 0.586 0.475 0.418 0.361 0.303 0.973 0.975 0.978 0.983 0.986 0.990 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L5×5×7⁄8 L5×5×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×7⁄16 L5×5×3⁄8 L5×5×5⁄16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 60 DIMENSIONS AND PROPERTIES Y ANGLES Equal legs and unequal legs Properties for designing xp x Z X X y, yp k α Y Size and Thickness in. Z k Weight per ft Axis X-X Area 2 S I 4 r 3 y Z yp 3 in. lb in. in. in. in. in. in. L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 11⁄4 11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4 19.8 16.8 13.6 10.4 8.70 7.00 5.81 4.92 4.00 3.05 2.56 2.06 13.9 12.0 9.99 7.78 6.60 5.39 4.28 3.65 2.99 2.29 1.94 1.57 1.55 1.56 1.58 1.60 1.61 1.62 1.75 1.70 1.66 1.61 1.59 1.56 7.65 6.55 5.38 4.14 3.49 2.83 1.13 1.06 1.00 0.938 0.906 0.875 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 1 15⁄ 16 7⁄ 8 13⁄ 16 3⁄ 4 12.8 11.3 9.80 8.20 6.60 3.75 3.31 2.86 2.40 1.94 9.45 8.43 7.37 6.26 5.11 2.91 2.58 2.24 1.89 1.53 1.59 1.60 1.61 1.61 1.62 1.75 1.73 1.70 1.68 1.66 5.16 4.57 3.97 3.36 2.72 1.25 1.22 1.19 1.16 1.13 L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 18.5 15.7 12.8 11.3 9.80 8.20 6.60 5.44 4.61 3.75 3.31 2.86 2.40 1.94 7.67 6.66 5.56 4.97 4.36 3.71 3.04 2.81 2.40 1.97 1.75 1.52 1.29 1.05 1.19 1.20 1.22 1.23 1.23 1.24 1.25 1.27 1.23 1.18 1.16 1.14 1.12 1.09 5.07 4.33 3.56 3.16 2.74 2.32 1.88 0.680 0.576 0.469 0.414 0.357 0.300 0.242 L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 11.9 9.10 7.70 6.20 3.50 2.67 2.25 1.81 5.32 4.18 3.56 2.91 1.94 1.49 1.26 1.03 1.23 1.25 1.26 1.27 1.25 1.21 1.18 1.16 3.50 2.71 2.29 1.86 0.500 0.438 0.406 0.375 AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. STRUCTURAL SHAPES 1 - 61 Y ANGLES Equal legs and unequal legs Properties for designing x xp Z X X y, yp k α Y Size and Thickness Z Axis Y-Y S I r Axis Z-Z x Z xp r Tan in. in. in. in. in. in. in. α L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 5.55 4.83 4.05 3.18 2.72 2.23 2.22 1.90 1.56 1.21 1.02 0.830 0.977 0.991 1.01 1.02 1.03 1.04 0.996 0.951 0.906 0.861 0.838 0.814 4.10 3.47 2.83 2.16 1.82 1.47 0.581 0.492 0.400 0.305 0.256 0.206 0.748 0.751 0.755 0.762 0.766 0.770 0.464 0.472 0.479 0.486 0.489 0.492 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 2.58 2.32 2.04 1.75 1.44 1.15 1.02 0.888 0.753 0.614 0.829 0.837 0.845 0.853 0.861 0.750 0.727 0.704 0.681 0.657 2.11 1.86 1.60 1.35 1.09 0.375 0.331 0.286 0.240 0.194 0.648 0.651 0.654 0.658 0.663 0.357 0.361 0.364 0.368 0.371 L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 7.67 6.66 5.56 4.97 4.36 3.71 3.04 2.81 2.40 1.97 1.75 1.52 1.29 1.05 1.19 1.20 1.22 1.23 1.23 1.24 1.25 1.27 1.23 1.18 1.16 1.14 1.12 1.09 5.07 4.33 3.56 3.16 2.74 2.32 1.88 0.680 0.576 0.469 0.414 0.357 0.300 0.242 0.778 0.779 0.782 0.785 0.788 0.791 0.795 1.000 1.000 1.000 1.000 1.000 1.000 1.000 L4×31⁄2×1⁄2 4×31⁄2×3⁄8 4×31⁄2×5⁄16 4×31⁄2×1⁄4 3.79 2.95 2.55 2.09 1.52 1.16 0.994 0.808 1.04 1.06 1.07 1.07 1.00 0.955 0.932 0.909 2.73 2.11 1.78 1.44 0.438 0.334 0.281 0.227 0.722 0.727 0.730 0.734 0.750 0.755 0.757 0.759 in. 4 3 3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 62 DIMENSIONS AND PROPERTIES Y ANGLES Equal legs and unequal legs Properties for designing xp x Z X X y, yp k α Y Size and Thickness Z k Weight per ft Axis X-X Area S I 2 r 4 y 3 Z yp 3 in. in. lb in. in. in. in. in. in. L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 13.6 11.1 9.80 8.50 7.20 5.80 3.98 3.25 2.87 2.48 2.09 1.69 6.03 5.05 4.52 3.96 3.38 2.77 2.30 1.89 1.68 1.46 1.23 1.00 1.23 1.25 1.25 1.26 1.27 1.28 1.37 1.33 1.30 1.28 1.26 1.24 4.12 3.41 3.03 2.64 2.23 1.82 0.813 0.750 0.719 0.688 0.656 0.625 L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 11.1 9.80 8.50 7.20 5.80 3.25 2.87 2.48 2.09 1.69 3.64 3.26 2.87 2.45 2.01 1.49 1.32 1.15 0.976 0.794 1.06 1.07 1.07 1.08 1.09 1.06 1.04 1.01 0.990 0.968 2.68 2.38 2.08 1.76 1.43 0.464 0.410 0.355 0.299 0.241 L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 10.2 7.90 6.60 5.40 3.00 2.30 1.93 1.56 3.45 2.72 2.33 1.91 1.45 1.13 0.954 0.776 1.07 1.09 1.10 1.11 1.13 1.08 1.06 1.04 2.63 2.04 1.73 1.41 0.500 0.438 0.406 0.375 L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4 15⁄ 16 13⁄ 16 11⁄ 16 9.40 7.20 4.90 2.75 2.11 1.44 3.24 2.56 1.80 1.41 1.09 0.755 1.09 1.10 1.12 1.20 1.16 1.11 2.53 1.97 1.36 0.750 0.688 0.625 L3×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 9.40 8.30 7.20 6.10 4.90 3.71 2.75 2.43 2.11 1.78 1.44 1.09 2.22 1.99 1.76 1.51 1.24 0.962 1.07 0.954 0.833 0.707 0.577 0.441 0.898 0.905 0.913 0.922 0.930 0.939 0.932 0.910 0.888 0.865 0.842 0.820 1.93 1.72 1.50 1.27 1.04 0.794 0.458 0.406 0.352 0.296 0.240 0.182 AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. STRUCTURAL SHAPES 1 - 63 Y ANGLES Equal legs and unequal legs Properties for designing x xp Z X X y, yp k α Y Size and Thickness Z Axis Y-Y S I r Axis Z-Z x Z xp r Tan in. in. in. in. in. in. in. in. α L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 2.87 2.42 2.18 1.92 1.65 1.36 1.35 1.12 0.992 0.866 0.734 0.599 0.849 0.864 0.871 0.879 0.887 0.896 0.871 0.827 0.804 0.782 0.759 0.736 2.48 2.03 1.79 1.56 1.31 1.06 0.498 0.406 0.359 0.311 0.261 0.211 0.637 0.639 0.641 0.644 0.647 0.651 0.534 0.543 0.547 0.551 0.554 0.558 L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 3.64 3.26 2.87 2.45 2.01 1.49 1.32 1.15 0.976 0.794 1.06 1.07 1.07 1.08 1.09 1.06 1.04 1.01 0.990 0.968 2.68 2.38 2.08 1.76 1.43 0.464 0.410 0.355 0.299 0.241 0.683 0.684 0.687 0.690 0.694 1.000 1.000 1.000 1.000 1.000 L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4 2.33 1.85 1.58 1.30 1.10 0.851 0.722 0.589 0.881 0.897 0.905 0.914 0.875 0.830 0.808 0.785 1.98 1.53 1.30 1.05 0.429 0.328 0.276 0.223 0.621 0.625 0.627 0.631 0.714 0.721 0.724 0.727 L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4 1.36 1.09 0.777 0.760 0.592 0.412 0.704 0.719 0.735 0.705 0.660 0.614 1.40 1.07 0.735 0.393 0.301 0.205 0.534 0.537 0.544 0.486 0.496 0.506 L3×3×1⁄2 L3×3×7⁄16 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 2.22 1.99 1.76 1.51 1.24 0.962 1.07 0.954 0.833 0.707 0.577 0.441 0.898 0.905 0.913 0.922 0.930 0.939 0.932 0.910 0.888 0.865 0.842 0.820 1.93 1.72 1.50 1.27 1.04 0.794 0.458 0.406 0.352 0.296 0.240 0.182 0.584 0.585 0.587 0.589 0.592 0.596 1.000 1.000 1.000 1.000 1.000 1.000 4 3 3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 64 DIMENSIONS AND PROPERTIES Y ANGLES Equal legs and unequal legs Properties for designing xp x Z X X y, yp k α Y Size and Thickness in. Z k Weight per ft Axis X-X Area 2 S I 4 r 3 y Z yp 3 in. lb in. in. in. in. in. L3×21⁄2×1⁄2 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 7⁄ 8 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 8.50 6.60 5.60 4.50 3.39 2.50 1.92 1.62 1.31 0.996 2.08 1.66 1.42 1.17 0.907 1.04 0.810 0.688 0.561 0.430 0.913 0.928 0.937 0.945 0.954 1.000 0.956 0.933 0.911 0.888 1.88 1.47 1.25 1.02 0.781 0.500 0.438 0.406 0.375 0.344 L3×2×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7.70 5.90 5.00 4.10 3.07 2.25 1.73 1.46 1.19 0.902 1.92 1.53 1.32 1.09 0.842 1.00 0.781 0.664 0.542 0.415 0.924 0.940 0.948 0.957 0.966 1.08 1.04 1.02 0.993 0.970 1.78 1.40 1.19 0.973 0.746 0.750 0.688 0.656 0.625 0.594 L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7.70 5.90 5.00 4.10 3.07 2.25 1.73 1.46 1.19 0.902 1.23 0.984 0.849 0.703 0.547 0.724 0.566 0.482 0.394 0.303 0.739 0.753 0.761 0.769 0.778 0.806 0.762 0.740 0.717 0.694 1.31 1.02 0.869 0.711 0.545 0.450 0.347 0.293 0.238 0.180 L21⁄2×2×3⁄8 L21⁄2×2×5⁄16 L21⁄2×2×1⁄4 L21⁄2×2×3⁄16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 5.30 4.50 3.62 2.75 1.55 1.31 1.06 0.809 0.912 0.788 0.654 0.509 0.547 0.466 0.381 0.293 0.768 0.776 0.784 0.793 0.831 0.809 0.787 0.764 0.986 0.843 0.691 0.532 0.438 0.406 0.375 0.344 L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 4.70 3.92 3.19 2.44 1.65 1.36 1.15 0.938 0.715 0.484 0.479 0.416 0.348 0.272 0.190 0.351 0.300 0.247 0.190 0.131 0.594 0.601 0.609 0.617 0.626 0.636 0.614 0.592 0.569 0.546 0.633 0.541 0.445 0.343 0.235 0.340 0.288 0.234 0.179 0.121 AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. STRUCTURAL SHAPES 1 - 65 ANGLES Equal legs and unequal legs Properties for designing Y x xp Z X X y, yp k α Y Size and Thickness Z Axis Y-Y S I r Axis Z-Z x Z xp r Tan in. in. in. in. in. in. in. α L3×21⁄2×1⁄2 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 1.30 1.04 0.898 0.743 0.577 0.744 0.581 0.494 0.404 0.310 0.722 0.736 0.744 0.753 0.761 0.750 0.706 0.683 0.661 0.638 1.35 1.05 0.889 0.724 0.553 0.417 0.320 0.270 0.219 0.166 0.520 0.522 0.525 0.528 0.533 0.667 0.676 0.680 0.684 0.688 L3×2×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 0.672 0.543 0.470 0.392 0.307 0.474 0.371 0.317 0.260 0.200 0.546 0.559 0.567 0.574 0.583 0.583 0.539 0.516 0.493 0.470 0.891 0.684 0.577 0.468 0.357 0.375 0.289 0.244 0.198 0.150 0.428 0.430 0.432 0.435 0.439 0.414 0.428 0.435 0.440 0.446 L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16 1.23 0.984 0.849 0.703 0.547 0.724 0.566 0.482 0.394 0.303 0.739 0.753 0.761 0.769 0.778 0.806 0.762 0.740 0.717 0.694 1.31 1.02 0.869 0.711 0.545 0.450 0.347 0.293 0.238 0.180 0.487 0.487 0.489 0.491 0.495 1.000 1.000 1.000 1.000 1.000 L21⁄2×2×3⁄8 L21⁄2×2×5⁄16 L21⁄2×2×1⁄4 L21⁄2×2×3⁄16 0.514 0.446 0.372 0.291 0.363 0.310 0.254 0.196 0.577 0.584 0.592 0.600 0.581 0.559 0.537 0.514 0.660 0.561 0.457 0.350 0.309 0.262 0.213 0.162 0.420 0.422 0.424 0.427 0.614 0.620 0.626 0.631 L2×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 L3×2×1⁄8 0.479 0.416 0.348 0.272 0.190 0.351 0.300 0.247 0.190 0.131 0.594 0.601 0.609 0.617 0.626 0.636 0.614 0.592 0.569 0.546 0.633 0.541 0.445 0.343 0.235 0.340 0.288 0.234 0.179 0.121 0.389 0.390 0.391 0.394 0.398 1.000 1.000 1.000 1.000 1.000 in. 4 3 3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 66 DIMENSIONS AND PROPERTIES AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 67 STRUCTURAL TEES (WT, MT, ST) Structural tees are obtained by splitting the webs of various beams, generally with the aid of rotary shears, and straightening to meet established permissible variations listed in Standard Mill Practice in Part 1 of this Manual. Although structural tees may be obtained by off-center splitting, or by splitting at two lines, as specified on order, the Dimensions and Properties are based on a depth of tee equal to one-half the published beam depth. Values of Qs are given for Fy = 36 ksi and Fy = 50 ksi, for those tees having stems which exceed the limiting width-thickness ratio λr of LRFD Specification Section B5. Since the cross section is comprised entirely of unstiffened elements, Qa = 1.0 and Q = Qs for _ all tee sections. The Flexural-Torsional Properties Table lists the dimensional values (ro and H) and cross-section constants (J and Cw) needed for checking flexural-torsional buckling. Use of Table The table may be used as follows for checking the limit states of (1) flexural buckling about the x-axis and (2) flexural-torsional buckling. The lower of the two limit states must be used for design. See also Part 3 of this LRFD Manual. (1) Flexural Buckling About the X-Axis Where no value of Qs is shown, the design compressive strength for this limit state is given by LRFD Specification Section E2. Where a value of Qs is shown, the strength must be reduced in accordance with Appendix B5 of the LRFD Specification. (2) Flexural-Torsional Buckling The design compressive strength for this limit _ state is given by LRFD Specification Section E3. This involves calculations with J, ro, and H. Refer to the Flexural-Torsional Properties Tables, later in Part 1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 68 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area Designation in.2 Area of Stem Depth of Tee d Thickness tw tw 2 in. in. in. in.2 Flange Width bf in. Thickness tf in. Distance k in. WT22×167.5 WT22×145 WT22×131 WT22×115 49.1 42.9 38.6 33.8 22.010 22 1.020 21.810 2113⁄16 0.870 21.655 2111⁄16 0.790 21.455 217⁄16 0.710 1 7⁄ 8 13⁄ 16 11⁄ 16 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 22.5 19.0 17.1 15.2 15.950 15.830 15.750 15.750 153⁄4 157⁄8 153⁄4 153⁄4 1.770 1.580 1.420 1.220 13⁄4 19⁄16 17⁄16 11⁄4 29⁄16 23⁄8 23⁄16 2 WT20×296.5 WT22×251.5 WT22×215.5 WT22×186 WT22×160.5 WT22×148.5 WT22×138.5 WT22×124.5 WT22×107.5 WT22×99.5 WT22×87 87.0 74.0 63.4 54.7 47.0 43.7 40.7 36.7 31.7 29.2 25.5 21.495 21.025 20.630 20.315 20.040 19.920 19.845 19.690 19.490 19.335 19.100 211⁄2 21 205⁄8 205⁄16 20 1915⁄16 197⁄8 1911⁄16 191⁄2 195⁄16 191⁄8 1.790 1.540 1.340 1.160 1.000 0.930 0.830 0.750 0.650 0.650 0.650 113⁄16 19⁄16 15⁄16 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8 5⁄ 8 5⁄ 8 1 3⁄ 4 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 38.5 32.4 27.6 23.6 20.0 18.5 16.5 14.8 12.7 12.6 12.4 16.690 163⁄4 16.420 167⁄16 16.220 161⁄4 16.060 161⁄16 15.910 157⁄8 15.825 157⁄8 15.830 157⁄8 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 15.750 153⁄4 3.230 2.760 2.360 2.050 1.770 1.650 1.575 1.420 1.220 1.065 0.830 31⁄4 23⁄4 23⁄8 21⁄16 13⁄4 15⁄8 19⁄16 17⁄16 11⁄4 11⁄16 13⁄ 16 47⁄16 315⁄16 39⁄16 31⁄4 215⁄16 31⁄16 23⁄4 25⁄8 23⁄8 21⁄4 2 WT20×233 WT22×196 WT22×165.5 WT22×139 WT22×132 WT22×117.5 WT22×105.5 WT22×91.5 WT22×83.5 WT22×74.5 68.4 57.7 48.8 40.9 38.8 34.5 31.0 26.9 24.6 21.9 21.220 213⁄16 20.785 203⁄4 20.395 203⁄8 20.080 201⁄8 20.000 20 19.845 197⁄8 19.685 1911⁄16 19.490 191⁄2 19.295 195⁄16 19.100 191⁄8 1.67 1.42 1.22 1.02 0.960 0.830 0.750 0.650 0.650 0.630 111⁄16 17⁄16 11⁄4 1 1 13⁄ 16 3⁄ 4 5⁄ 8 5⁄ 8 5⁄ 8 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 35.4 29.5 24.9 20.5 19.2 16.5 14.8 12.7 12.5 12.0 12.640 125⁄8 12.360 123⁄8 12.170 123⁄16 11.970 12 11.930 12 11.890 117⁄8 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 11.810 113⁄4 2.950 2.520 2.130 1.810 1.730 1.575 1.415 1.220 1.025 0.830 215⁄16 21⁄2 21⁄8 113⁄16 13⁄4 17⁄16 19⁄16 11⁄4 1 13⁄ 16 41⁄8 311⁄16 35⁄16 3 215⁄16 23⁄4 25⁄8 23⁄8 23⁄16 2 WT18×424 WT22×399 WT22×325 WT22×263.5 WT22×219.5 WT22×196.5 WT22×179.5 WT22×164 WT22×150 WT22×140 WT22×130 WT22×122.5 WT22×115 125 117 95.0 77.0 64.0 57.5 52.7 48.2 44.1 41.2 38.2 36.0 33.8 21.225 211⁄4 20.985 21 20.235 201⁄4 19.605 195⁄8 19.130 191⁄8 18.900 187⁄8 18.700 1811⁄16 18.545 189⁄16 18.370 183⁄8 18.260 181⁄4 18.130 181⁄8 18.040 18 17.950 18 2.520 2.380 1.970 1.610 1.360 1.220 1.120 1.020 0.945 0.885 0.840 0.800 0.760 21⁄2 23⁄8 2 15⁄8 13⁄8 11⁄4 11⁄8 1 15⁄ 16 7⁄ 8 13⁄ 16 13⁄ 16 3⁄ 4 11⁄4 13⁄16 1 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 7⁄ 16 3⁄ 8 53.5 49.9 39.9 31.6 26.0 23.1 20.9 18.9 17.4 16.2 15.2 14.4 13.6 18.130 17.990 17.575 17.220 16.965 16.830 16.730 16.630 16.655 16.595 16.550 16.510 16.470 181⁄8 18 175⁄8 171⁄4 17 167⁄8 163⁄4 165⁄8 165⁄8 165⁄8 161⁄2 161⁄2 161⁄2 4.530 4.290 3.540 2.910 2.440 2.200 2.010 1.850 1.680 1.570 1.440 1.350 1.260 41⁄2 45⁄16 39⁄16 215⁄16 27⁄16 23⁄16 2 17⁄8 111⁄16 19⁄16 17⁄16 13⁄8 11⁄4 511⁄16 57⁄16 411⁄16 41⁄16 39⁄16 35⁄16 31⁄8 3 213⁄16 211⁄16 29⁄16 21⁄2 23⁄8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 69 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 Fy, ksi 50 167.5 145 131 115 19.1 22.3 24.6 27.4 2160 1840 1650 1440 131 111 100 88.6 6.63 6.55 6.53 6.53 5.51 5.27 5.20 5.17 233 197 177 157 1.54 1.35 1.23 1.07 600 524 463 398 75.3 66.1 58.8 50.5 3.50 3.49 3.46 3.43 118 103 91.4 78.4 0.982 0.833 0.732 0.608 0.817 0.636 0.532 0.438 296.5 251.5 215.5 186 160.5 148.5 138.5 124.5 107.5 99.5 87 9.5 11.1 12.8 14.7 17.1 18.4 20.6 22.8 26.3 26.3 26.3 3300 2730 2290 1930 1630 1500 1360 1210 1030 987 907 209 175 148 126 107 98.9 88.6 79.3 68.0 66.4 63.8 6.16 6.07 6.01 5.95 5.89 5.87 5.78 5.75 5.72 5.81 5.96 5.67 5.39 5.18 4.97 4.79 4.71 4.51 4.41 4.28 4.48 4.87 379 315 266 225 191 176 157 140 120 117 114 2.61 2.25 1.95 1.70 1.48 1.38 1.28 1.16 1.00 0.927 0.811 1260 1020 843 710 596 546 522 463 398 347 271 151 125 104 88.5 74.9 69.1 65.9 58.8 50.5 44.1 34.4 3.81 3.72 3.65 3.60 3.56 3.54 3.58 3.56 3.55 3.45 3.26 240 197 164 139 117 108 102 91.0 77.9 68.3 53.8 — — — — — 0.989 0.882 0.782 0.618 0.628 0.643 — — — — 0.895 0.825 0.699 0.580 0.445 0.452 0.463 233 196 165.5 139 132 117.5 105.5 91.5 83.5 74.5 10.2 12.0 14.0 16.8 17.8 20.6 22.8 26.3 26.3 27.1 2770 2270 1880 1540 1450 1260 1120 957 898 815 185 153 128 106 99.3 85.6 76.7 65.8 63.7 59.7 6.36 6.28 6.21 6.14 6.11 6.04 6.01 5.97 6.05 6.10 6.22 5.95 5.74 5.50 5.40 5.17 5.08 4.94 5.20 5.45 333 276 231 190 178 153 137 117 115 119 2.71 2.33 2.01 1.71 1.63 1.45 1.31 1.14 1.04 1.82 504 401 323 261 246 222 195 168 141 115 79.8 65.0 53.1 43.6 41.3 37.3 33.0 28.5 23.9 19.4 2.72 2.64 2.57 2.52 2.52 2.54 2.51 2.50 2.40 2.29 131 106 86.2 70.0 66.2 59.2 52.3 44.8 38.0 31.1 — — — — — 0.882 0.782 0.618 0.630 0.604 — — — 0.913 0.855 0.699 0.581 0.445 0.454 0.435 424 399 325 263.5 219.5 196.5 179.5 164 150 140 130 122.5 115 6.3 6.6 8.0 9.8 11.6 12.9 14.1 15.4 16.7 17.8 18.7 19.7 20.7 4250 3920 3020 2330 1880 1660 1500 1350 1230 1140 1060 995 934 277 257 202 159 130 115 104 94.1 86.1 80.0 75.1 71.0 67.0 5.84 5.79 5.64 5.50 5.42 5.37 5.33 5.29 5.27 5.25 5.26 5.26 5.25 5.86 5.72 5.29 4.89 4.63 4.46 4.33 4.21 4.13 4.07 4.05 4.03 4.01 515 478 373 290 235 207 187 168 153 142 133 125 118 3.43 3.25 2.70 2.24 1.89 1.71 1.58 1.45 1.33 1.24 1.16 1.09 1.03 2270 2100 1610 1240 997 877 786 711 648 599 545 507 470 251 234 184 145 117 104 94.0 85.5 77.8 72.2 65.9 61.4 57.1 4.27 4.24 4.12 4.02 3.95 3.90 3.86 3.84 3.83 3.81 3.78 3.75 3.73 399 371 290 227 184 162 146 132 120 112 102 94.9 88.1 — — — — — — — — — — 0.981 0.943 0.896 — — — — — — — — 0.927 0.867 0.816 0.770 0.715 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 70 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area of Stem Flange DisThickness tance tf k Area Depth of Tee d Thickness tw tw 2 Designation in.2 in. in. in. WT18×128 WT18×116 WT18×105 WT18×97 WT18×91 WT18×85 WT18×80 WT18×75 WT18×67.5 37.7 34.1 30.9 28.5 26.8 25.0 23.5 22.1 19.9 18.715 1811⁄16 18.560 189⁄16 18.345 183⁄8 18.245 181⁄4 18.165 181⁄8 18.085 181⁄8 18.005 18 17.925 177⁄8 17.775 173⁄4 0.960 0.870 0.830 0.765 0.725 0.680 0.650 0.625 0.600 1 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 18.0 16.1 15.2 14.0 13.2 12.3 11.7 11.2 10.7 12.215 12.120 12.180 12.115 12.075 12.030 12.000 11.975 11.950 121⁄4 121⁄8 121⁄8 121⁄8 121⁄8 12 12 12 12 1.730 1.570 1.360 1.260 1.180 1.100 1.020 0.940 0.790 13⁄4 19⁄16 13⁄8 11⁄4 13⁄16 11⁄8 1 15⁄ 16 13⁄ 16 25⁄8 21⁄2 25⁄16 23⁄16 21⁄8 2 115⁄16 17⁄8 111⁄16 WT16.5×177 WT16.5×159 WT16.5×145.5 WT16.5×131.5 WT16.5×120.5 WT16.5×110.5 WT16.5×100.5 52.1 46.7 42.8 38.7 35.4 32.5 29.5 17.775 173⁄4 17.580 179⁄16 17.420 177⁄16 17.265 171⁄4 17.090 171⁄8 16.965 17 16.840 167⁄8 1.160 1.040 0.960 0.870 0.830 0.775 0.715 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 20.6 18.3 16.7 15.0 14.2 13.1 12.0 16.100 15.985 15.905 15.805 15.860 15.805 15.745 161⁄8 16 157⁄8 153⁄4 157⁄8 153⁄4 153⁄4 2.090 1.890 1.730 1.570 1.400 1.275 1.150 21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8 27⁄8 211⁄16 29⁄16 23⁄8 23⁄16 21⁄16 115⁄16 WT16.5×84.5 WT16.5×76 WT16.5×70.5 WT16.5×65 WT16.5×59 24.8 22.4 20.8 19.2 17.3 16.910 1615⁄16 16.745 163⁄4 16.650 165⁄8 16.545 161⁄2 16.430 163⁄8 0.670 0.635 0.605 0.580 0.550 11⁄ 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 11.3 10.6 10.1 9.60 9.04 11.500 11.565 11.535 11.510 11.480 111⁄2 115⁄8 111⁄2 111⁄2 111⁄2 1.220 1.055 0.960 0.855 0.740 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 21⁄16 17⁄8 13⁄4 111⁄16 19⁄16 WT15×238.5 WT15×195.5 WT15×163 WT15×146 WT15×130.5 WT15×117.5 WT15×105.5 WT15×95.5 WT15×86.5 70.0 57.0 47.9 42.9 38.4 34.5 31.0 28.1 25.4 17.105 171⁄8 16.595 165⁄8 16.200 163⁄16 16.005 16 15.805 1513⁄16 15.650 155⁄8 15.470 151⁄2 15.340 153⁄8 15.220 151⁄4 1.630 1.360 1.140 1.020 0.930 0.830 0.775 0.710 0.655 15⁄8 13⁄8 11⁄8 1 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 27.9 22.6 18.5 16.3 14.7 13.0 12.0 10.9 9.97 15.865 15.590 15.370 15.255 15.155 15.055 15.105 15.040 14.985 157⁄8 155⁄8 153⁄8 151⁄2 151⁄8 15 151⁄8 15 15 2.950 2.440 2.050 1.850 1.650 1.500 1.315 1.185 1.065 3 27⁄16 21⁄16 17⁄8 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 33⁄4 31⁄4 213⁄16 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 17⁄8 WT15×74 WT18×66 WT18×62 WT18×58 WT18×54 WT18×49.5 WT18×45 21.7 19.4 18.2 17.1 15.9 14.5 13.2 15.335 155⁄16 15.155 151⁄8 15.085 151⁄8 15.005 15 14.915 147⁄8 14.825 147⁄8 14.765 143⁄4 0.650 0.615 0.585 0.565 0.545 0.520 0.470 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 9⁄ 16 1⁄ 2 1⁄ 2 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 10.0 9.32 8.82 8.48 8.13 7.71 6.94 10.480 10.545 10.515 10.495 10.475 10.450 10.400 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 101⁄2 103⁄8 1.180 1.000 0.930 0.850 0.760 0.670 0.610 13⁄16 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16 2 13⁄4 111⁄16 15⁄8 19⁄16 17⁄16 15⁄16 16 5⁄ 8 5⁄ 8 9⁄ 16 9⁄ 16 1⁄ Width bf in.2 in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. STRUCTURAL TEES (WT, MT, ST) 1 - 71 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 Fy, ksi 36 50 128 116 105 97 91 85 80 75 67.5 16.9 18.7 19.6 21.2 22.4 23.9 25.0 26.0 27.1 1200 1080 985 901 845 786 740 698 637 87.4 78.5 73.1 67.0 63.1 58.9 55.8 53.1 49.7 5.66 5.63 5.65 5.62 5.62 5.61 5.61 5.62 5.66 4.92 4.82 4.87 4.80 4.77 4.73 4.74 4.78 4.96 156 140 131 120 113 105 100 95.5 94.3 1.54 1.40 1.27 1.18 1.11 1.04 0.980 0.923 1.24 264 234 206 187 174 160 147 135 113 43.2 38.6 33.8 30.9 28.8 26.6 24.6 22.5 18.9 2.65 2.62 2.58 2.56 2.55 2.53 2.50 2.47 2.38 68.6 61.0 53.5 48.9 45.4 41.9 38.6 35.5 29.8 — 0.994 0.960 0.887 0.831 0.767 0.720 0.677 0.634 0.927 0.831 0.791 0.705 0.635 0.565 0.521 0.486 0.457 177 159 145.5 131.5 120.5 110.5 100.5 12.9 14.4 15.6 17.2 18.1 19.3 21.0 1320 1160 1050 943 871 799 725 96.8 85.8 78.3 70.2 65.8 60.8 55.5 5.03 4.99 4.97 4.94 4.96 4.96 4.95 4.16 4.02 3.94 3.84 3.85 3.81 3.78 174 154 140 125 116 107 97.7 1.62 1.46 1.34 1.22 1.12 1.03 0.938 729 645 581 517 466 420 375 90.6 80.7 73.1 65.5 58.8 53.2 47.6 3.74 3.71 3.69 3.66 3.63 3.59 3.56 141 125 113 101 90.9 82.1 73.4 — — — — — 0.968 0.896 — — 0.993 0.907 0.867 0.801 0.715 84.5 76 70.5 65 59 22.4 23.6 24.8 25.8 27.3 649 592 552 513 469 51.1 47.4 44.7 42.1 39.2 5.12 5.14 5.15 5.18 5.20 4.21 4.26 4.29 4.36 4.47 90.8 84.5 79.8 75.6 74.8 1.08 0.967 0.901 0.832 0.862 155 136 123 109 93.6 27.0 23.6 21.3 18.9 16.3 2.50 2.47 2.43 2.39 2.32 42.2 37.0 33.5 29.7 25.7 0.827 0.775 0.728 0.685 0.621 0.630 0.574 0.529 0.492 0.447 238.5 195.5 163 146 130.5 117.5 105.5 95.5 86.5 8.3 9.9 11.8 13.2 14.5 16.2 17.4 19.0 20.6 1550 1210 981 861 764 674 610 549 497 121 96.6 78.9 69.6 62.3 55.1 50.5 45.7 41.7 4.70 4.61 4.53 4.48 4.46 4.42 4.43 4.42 4.42 4.30 4.04 3.76 3.63 3.54 3.42 3.40 3.35 3.31 224 177 143 125 112 98.2 89.5 80.8 73.4 2.21 1.83 1.56 1.40 1.27 1.15 1.03 0.933 0.848 987 774 622 549 480 427 378 336 299 124 99.2 81.0 71.9 63.3 56.8 50.1 44.7 39.9 3.75 3.68 3.61 3.58 3.54 3.52 3.49 3.46 3.43 195 155 126 111 97.9 87.5 77.2 68.9 61.4 — — — — — — — 0.981 0.913 — — — — — 0.952 0.897 0.816 0.735 74 66 62 58 54 49.5 45 20.8 22.0 23.1 23.9 24.8 26.0 28.7 466 421 396 373 349 322 291 40.6 37.4 35.3 33.7 32.0 30.0 27.1 4.63 4.66 4.66 4.67 4.69 4.71 4.69 3.84 3.90 3.90 3.94 4.01 4.09 4.03 72.2 66.8 63.1 60.4 57.7 57.4 49.4 1.04 0.921 0.867 0.815 0.757 0.912 0.445 113 98.0 90.4 82.1 73.0 63.9 57.3 21.7 18.6 17.2 15.7 13.9 12.2 11.0 2.28 2.25 2.23 2.19 2.15 2.10 2.08 34.0 29.2 27.0 24.6 22.0 19.3 17.3 0.896 0.853 0.801 0.767 0.733 0.685 0.563 0.715 0.664 0.601 0.565 0.533 0.492 0.405 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 72 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area of Stem Area Depth of Tee d Thickness tw tw 2 Designation in.2 in. in. in. in.2 WT13.5×269.5 WT13.5×224 WT13.5×184 WT13.5×153.5 WT13.5×129 WT13.5×117.5 WT13.5×108.5 WT13.5×97 WT13.5×89 WT13.5×80.5 WT13.5×73 79.0 65.5 54.0 45.1 37.9 34.6 31.9 28.5 26.1 23.7 21.5 16.260 15.710 15.195 14.805 14.490 14.330 14.215 14.055 13.905 13.795 13.690 161⁄4 1511⁄16 153⁄16 1413⁄16 141⁄2 145⁄16 143⁄16 141⁄16 137⁄8 133⁄4 133⁄4 1.970 1.650 1.380 1.160 0.980 0.910 0.830 0.750 0.725 0.660 0.605 2 15⁄8 13⁄8 13⁄16 1 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 11⁄ 16 5⁄ 8 1 13⁄ 16 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 3⁄ 8 5⁄ 16 32.0 25.9 21.0 17.2 14.2 13.0 11.8 10.5 10.1 9.10 8.28 WT13.5×64.5 WT13.5×57 WT13.5×51 WT13.5×47 WT13.5×42 18.9 16.8 15.0 13.8 12.4 13.815 1313⁄16 13.645 135⁄8 13.545 131⁄2 13.460 131⁄2 13.355 133⁄8 0.610 0.570 0.515 0.490 0.460 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 WT12×246 WT12×204 WT12×167.5 WT12×139.5 WT12×125 WT12×114.5 WT12×103.5 WT12×96 WT12×88 WT12×81 WT12×73 WT12×65.5 WT12×58.5 WT12×52 72.0 59.5 49.2 41.0 36.8 33.6 30.4 28.2 25.8 23.9 21.5 19.3 17.2 15.3 14.825 1413⁄16 14.270 141⁄4 13.760 133⁄4 13.365 133⁄8 13.170 133⁄16 13.010 13 12.855 127⁄8 12.735 123⁄4 12.620 125⁄8 12.500 121⁄2 12.370 123⁄8 12.240 121⁄4 12.130 121⁄8 12.030 12 1.970 1.650 1.380 1.160 1.040 0.960 0.870 0.810 0.750 0.705 0.650 0.605 0.550 0.500 2 15⁄8 13⁄8 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 29.2 23.5 19.0 15.5 13.7 12.5 11.2 10.3 9.47 8.81 8.04 7.41 6.67 6.02 WT12×51.5 WT12×47 WT12×42 WT12×38 WT12×34 15.1 13.8 12.4 11.2 10.0 12.265 12.155 12.050 11.960 11.865 121⁄4 121⁄8 12 12 117⁄8 0.550 0.515 0.470 0.440 0.415 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 1⁄ 4 9.11 11.870 8.10 11.785 117⁄8 113⁄4 0.430 0.395 7⁄ 16 3⁄ 8 1⁄ 4 3⁄ 16 WT12×31 WT12×27.5 1 Flange DisThickness tance tf k Width bf in. in. in. 151⁄4 15 145⁄8 141⁄2 141⁄4 141⁄4 141⁄8 14 141⁄8 14 14 3.540 2.990 2.480 2.090 1.770 1.610 1.500 1.340 1.190 1.080 0.975 39⁄16 3 21⁄2 21⁄16 13⁄4 15⁄8 11⁄2 15⁄16 13⁄16 11⁄16 1 41⁄4 311⁄16 33⁄16 213⁄16 21⁄2 25⁄16 23⁄16 21⁄16 17⁄8 113⁄16 111⁄16 8.43 10.010 10 7.78 10.070 101⁄8 6.98 10.015 10 6.60 9.990 10 6.14 9.960 10 1.100 0.930 0.830 0.745 0.640 11⁄8 15⁄ 16 13⁄ 16 3⁄ 4 5⁄ 8 113⁄16 15⁄8 19⁄16 17⁄16 13⁄8 14.115 13.800 13.520 13.305 13.185 13.110 13.010 12.950 12.890 12.955 12.900 12.855 12.800 12.750 141⁄8 133⁄4 131⁄2 131⁄4 131⁄8 131⁄8 13 13 127⁄8 13 127⁄8 127⁄8 123⁄4 123⁄4 3.540 2.990 2.480 2.090 1.890 1.730 1.570 1.460 1.340 1.220 1.090 0.960 0.850 0.750 39⁄16 3 21⁄2 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 11⁄4 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 45⁄16 33⁄4 31⁄4 27⁄8 211⁄16 21⁄2 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4 15⁄8 11⁄2 6.75 6.26 5.66 5.26 4.92 9.000 9.065 9.020 8.990 8.965 9 91⁄8 9 9 9 0.980 0.875 0.770 0.680 0.585 1 7⁄ 8 3⁄ 4 11⁄ 16 9⁄ 16 13⁄4 15⁄8 19⁄16 17⁄16 13⁄8 5.10 4.66 7.040 7.005 7 7 0.590 0.505 9⁄ 16 1⁄ 2 13⁄8 15⁄16 15.255 14.940 14.665 14.445 14.270 14.190 14.115 14.035 14.085 14.020 13.965 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 73 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 50 2.59 1060 2.19 836 1.84 655 1.56 527 1.33 430 1.22 384 1.13 352 1.02 309 0.928 278 0.845 248 0.768 222 138 112 89.3 72.9 60.2 54.2 49.9 44.1 39.4 35.4 31.7 3.66 3.57 3.48 3.42 3.37 3.33 3.32 3.29 3.26 3.24 3.21 218 176 140 113 93.3 83.8 77.0 67.9 60.8 54.5 48.8 — — — — — — — — — — 0.938 — — — — — — — 0.963 0.937 0.851 0.765 18.4 15.8 13.9 12.4 10.6 2.21 2.18 2.15 2.12 2.07 28.8 24.7 21.7 19.4 16.6 0.938 0.883 0.780 0.728 0.664 0.765 0.700 0.578 0.529 0.476 119 95.5 75.9 61.9 54.9 49.7 44.4 40.9 37.2 34.2 30.3 26.5 23.2 20.3 3.41 3.33 3.23 3.17 3.14 3.11 3.08 3.07 3.04 3.05 3.01 2.97 2.94 2.91 187 150 119 96.4 85.3 77.0 68.6 63.1 57.3 52.6 46.6 40.7 35.7 31.2 — — — — — — — — — — — — 0.960 0.874 — — — — — — — — — — 0.947 0.887 0.791 0.690 20.7 18.8 16.3 14.3 12.3 0.951 0.896 0.810 0.741 0.681 0.781 0.715 0.610 0.541 0.489 7.87 0.724 6.67 0.626 0.525 0.450 269.5 224 184 153.5 129 117.5 108.5 97 89 80.5 73 6.2 7.4 8.8 10.5 12.4 13.3 14.6 16.2 16.7 18.4 20.0 1520 1190 938 753 613 556 502 444 414 372 336 128 102 81.7 66.4 54.6 50.0 45.2 40.3 38.2 34.4 31.2 4.39 4.27 4.17 4.09 4.02 4.01 3.97 3.95 3.98 3.96 3.95 4.36 4.02 3.71 3.47 3.28 3.21 3.11 3.03 3.05 2.99 2.95 241 191 151 121 98.8 89.8 81.1 71.8 67.6 60.8 55.0 64.5 57 51 47 42 19.9 21.3 23.5 24.7 26.3 323 289 258 239 216 31.0 28.3 25.3 23.8 21.9 4.13 4.15 4.14 4.16 4.18 3.39 3.42 3.37 3.41 3.48 55.1 50.4 45.0 42.4 39.2 0.945 0.833 0.750 0.692 0.621 246 204 167.5 139.5 125 114.5 103.5 96 88 81 73 65.5 58.5 52 5.5 6.5 7.8 9.3 10.4 11.2 12.4 13.3 14.4 15.3 16.6 17.8 19.6 21.6 1130 874 685 546 478 431 382 350 319 293 264 238 212 189 105 83.1 66.3 53.6 47.2 42.9 38.3 35.2 32.2 29.9 27.2 24.8 22.3 20.0 3.96 3.83 3.73 3.65 3.61 3.58 3.55 3.53 3.51 3.50 3.50 3.52 3.51 3.51 4.07 3.74 3.42 3.18 3.05 2.97 2.87 2.80 2.74 2.70 2.66 2.65 2.62 2.59 200 157 123 98.8 86.5 78.1 69.3 63.5 57.8 53.3 48.2 43.9 39.2 35.1 2.55 2.16 1.82 1.54 1.39 1.28 1.17 1.09 1.00 0.921 0.833 0.750 0.672 0.600 51.5 47 42 38 34 19.6 20.9 22.9 24.5 26.0 204 186 166 151 137 22.0 20.3 18.3 16.9 15.6 3.67 3.67 3.67 3.68 3.70 3.01 2.99 2.97 3.00 3.06 39.2 36.1 32.5 30.1 27.9 0.841 0.764 0.685 0.622 0.560 59.7 54.5 47.2 41.3 35.2 13.3 12.0 10.5 9.18 7.85 1.99 1.98 1.95 1.92 1.87 31 27.5 25.1 27.3 131 117 15.6 14.1 3.79 3.80 3.46 3.50 28.4 25.6 1.28 1.53 17.2 14.5 4.90 4.15 1.38 1.34 92.2 79.4 69.6 62.0 52.8 837 659 513 412 362 326 289 265 240 221 195 170 149 130 *Where no value of Qs is shown, the Tee complies with LRFD Specification Sect. E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Fy, ksi 1 - 74 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area of Stem Flange DisThickness tance tf k Area Depth of Tee d Thickness tw tw 2 Designation in.2 in. in. in. in.2 WT10.5×100.5 WT10.5×91 WT10.5×83 WT10.5×73.5 WT10.5×66 WT10.5×61 WT10.5×55.5 WT10.5×50.5 29.6 26.8 24.4 21.6 19.4 17.9 16.3 14.9 11.515 11.360 11.240 11.030 10.915 10.840 10.755 10.680 111⁄2 113⁄8 111⁄4 11 107⁄8 107⁄8 103⁄4 105⁄8 0.910 0.830 0.750 0.720 0.650 0.600 0.550 0.500 15⁄ 16 13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 10.5 9.43 8.43 7.94 7.09 6.50 5.92 5.34 12.575 12.500 12.420 12.510 12.440 12.390 12.340 12.290 125⁄8 121⁄2 123⁄8 121⁄2 121⁄2 123⁄8 123⁄8 121⁄4 1.630 1.480 1.360 1.150 1.035 0.960 0.875 0.800 15⁄8 11⁄2 13⁄8 11⁄8 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 23⁄8 21⁄4 21⁄8 17⁄8 113⁄16 111⁄16 15⁄8 19⁄16 WT10.5×46.5 WT10.5×41.5 WT10.5×36.5 WT10.5×34 WT10.5×31 13.7 12.2 10.7 10.0 9.13 10.810 10.715 10.620 10.565 10.495 103⁄4 103⁄4 105⁄8 105⁄8 101⁄2 0.580 0.515 0.455 0.430 0.400 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 6.27 5.52 4.83 4.54 4.20 8.420 8.355 8.295 8.270 8.240 83⁄8 83⁄8 81⁄4 81⁄4 81⁄4 0.930 0.835 0.740 0.685 0.615 15⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 111⁄16 19⁄16 11⁄2 17⁄16 13⁄8 8.37 10.530 7.36 10.415 6.49 10.330 101⁄2 103⁄8 103⁄8 0.405 0.380 0.350 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 16 3⁄ 16 3⁄ 16 4.26 3.96 3.62 6.555 6.530 6.500 61⁄2 61⁄2 61⁄2 0.650 0.535 0.450 5⁄ 8 9⁄ 16 7⁄ 16 13⁄8 15⁄16 13⁄16 WT10.5×28.5 WT10.5×25 WT10.5×22 Width bf in. in. in. WT9×155.5 WT9×141.5 WT9×129 WT9×117 WT9×105.5 WT9×96 WT9×87.5 WT9×79 WT9×71.5 WT9×65 45.8 41.6 38.0 34.4 31.1 28.2 25.7 23.2 21.0 19.1 11.160 10.925 10.730 10.530 10.335 10.175 10.020 9.860 9.745 9.625 113⁄16 1015⁄16 103⁄4 101⁄2 105⁄16 103⁄16 10 97⁄8 93⁄4 95⁄8 1.520 1.400 1.280 1.160 1.060 0.960 0.890 0.810 0.730 0.670 11⁄2 13⁄8 11⁄4 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 17.0 15.3 13.7 12.2 11.0 9.77 8.92 7.99 7.11 6.45 12.005 11.890 11.770 11.650 11.555 11.455 11.375 11.300 11.220 11.160 12 117⁄8 113⁄4 115⁄8 111⁄2 111⁄2 113⁄8 111⁄4 111⁄4 111⁄8 2.740 2.500 2.300 2.110 1.910 1.750 1.590 1.440 1.320 1.200 23⁄4 21⁄2 25⁄16 21⁄8 115⁄16 13⁄4 19⁄16 17⁄16 15⁄16 13⁄16 37⁄16 33⁄16 3 23⁄4 9 2 ⁄16 27⁄16 21⁄4 21⁄8 2 17⁄8 WT9×59.5 WT9×53 WT9×48.5 WT9×43 WT9×38 17.5 15.6 14.3 12.7 11.2 9.485 9.365 9.295 9.195 9.105 91⁄2 93⁄8 91⁄4 91⁄4 91⁄8 0.655 0.590 0.535 0.480 0.425 5⁄ 8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 6.21 5.53 4.97 4.41 3.87 11.265 11.200 11.145 11.090 11.035 111⁄4 111⁄4 111⁄8 111⁄8 11 1.060 0.940 0.870 0.770 0.680 11⁄16 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 13⁄4 15⁄8 19⁄16 17⁄16 13⁄8 WT9×35.5 WT9×32.5 WT9×30 WT9×27.5 WT9×25 10.4 9.55 8.82 8.10 7.33 9.235 9.175 9.120 9.055 8.995 91⁄4 91⁄8 91⁄8 9 9 0.495 0.450 0.415 0.390 0.355 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 1⁄ 1⁄ 4 3⁄ 16 3⁄ 16 4.57 4.13 3.78 3.53 3.19 7.635 7.590 7.555 7.530 7.495 75⁄8 75⁄8 71⁄2 71⁄2 71⁄2 0.810 0.750 0.695 0.630 0.570 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 9⁄ 16 11⁄2 17⁄16 13⁄8 15⁄16 11⁄4 WT9×23 WT9×20 WT9×17.5 6.77 5.88 5.15 9.030 8.950 8.850 9 9 87⁄8 0.360 0.315 0.300 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 3.25 2.82 2.66 6.060 6.015 6.000 6 6 6 0.605 0.525 0.425 5⁄ 8 1⁄ 2 7⁄ 16 11⁄4 13⁄16 11⁄8 1⁄ 4 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 75 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 50 43.1 38.6 35.0 30.0 26.7 24.6 22.2 20.2 3.02 3.00 2.98 2.95 2.93 2.92 2.90 2.89 66.6 59.6 53.9 46.3 41.1 37.8 34.1 30.9 — — — — — — — 0.990 — — — — — 0.993 0.917 0.826 17.4 15.3 13.3 12.2 10.9 — — 0.908 0.853 0.784 0.968 0.856 0.730 0.664 0.583 7.42 0.793 6.09 0.733 5.09 0.638 0.592 0.533 0.460 100.5 91 83 73.5 66 61 55.5 50.5 10.3 11.2 12.4 13.0 14.4 15.6 17.1 18.8 285 253 226 204 181 166 150 135 31.9 28.5 25.5 23.7 21.1 19.3 17.5 15.8 3.10 3.07 3.04 3.08 3.06 3.04 3.03 3.01 2.57 2.48 2.39 2.39 2.33 2.28 2.23 2.18 58.6 52.1 46.3 42.4 37.6 34.3 31.0 27.9 1.18 1.07 0.984 0.864 0.780 0.724 0.662 0.605 271 241 217 188 166 152 137 124 46.5 41.5 36.5 34 31 16.2 18.2 20.6 21.8 23.5 144 127 110 103 93.8 17.9 15.7 13.8 12.9 11.9 3.25 3.22 3.21 3.20 3.21 2.74 2.66 2.60 2.59 2.58 31.8 28.0 24.4 22.9 21.1 0.812 0.728 0.647 0.606 0.554 46.4 40.7 35.3 32.4 28.7 11.0 9.75 8.51 7.83 6.97 1.84 1.83 1.81 1.80 1.77 28.5 25 22 23.2 24.7 26.8 90.4 80.3 71.1 11.8 10.7 9.68 3.29 3.30 3.31 2.85 2.93 2.98 21.2 20.8 17.6 0.638 0.771 1.06 15.3 12.5 10.3 4.67 3.82 3.18 1.35 1.30 1.26 155.5 141.5 129 117 105.5 96 87.5 79 71.5 65 5.3 5.7 6.3 6.9 7.5 8.3 9.0 9.9 11.0 11.9 383 337 298 260 229 202 181 160 142 127 46.5 41.5 37.0 32.6 29.0 25.8 23.4 20.8 18.5 16.7 2.89 2.85 2.80 2.75 2.72 2.68 2.66 2.63 2.60 2.58 2.93 2.80 2.68 2.55 2.44 2.34 2.26 2.18 2.09 2.02 90.6 80.1 71.0 62.4 55.0 48.5 43.6 38.5 34.0 30.5 1.91 1.75 1.61 1.48 1.34 1.23 1.13 1.02 0.938 0.856 59.5 53 48.5 43 38 12.3 13.6 15.0 16.7 18.9 119 104 93.8 82.4 71.8 15.9 14.1 12.7 11.2 9.83 2.60 2.59 2.56 2.55 2.54 2.03 1.97 1.91 1.86 1.80 28.7 25.2 22.6 19.9 17.3 0.778 126 0.695 110 0.640 100 0.570 87.6 0.505 76.2 35.5 32.5 30 27.5 25 16.2 17.8 19.3 20.6 22.6 78.2 70.7 64.7 59.5 53.5 11.2 10.1 9.29 8.63 7.79 2.74 2.72 2.71 2.71 2.70 2.26 2.20 2.16 2.16 2.12 20.0 18.0 16.5 15.3 13.8 0.683 0.629 0.583 0.538 0.489 30.1 27.4 25.0 22.5 20.0 23 20 17.5 22.3 25.5 26.8 52.1 44.8 40.1 7.77 6.73 6.21 2.77 2.76 2.79 2.33 2.29 2.39 13.9 12.0 12.0 0.558 0.489 0.450 11.3 9.55 7.67 398 352 314 279 246 220 196 174 156 139 Fy, ksi 66.2 59.2 53.4 47.9 42.7 38.4 34.4 30.7 27.7 24.9 2.95 2.91 2.88 2.85 2.82 2.79 2.76 2.74 2.72 2.70 104 92.5 83.2 74.5 66.2 59.4 53.1 47.4 42.7 38.3 — — — — — — — — — — — — — — — — — — — — 22.5 19.7 18.0 15.8 13.8 2.69 2.66 2.65 2.63 2.61 34.6 30.2 27.6 24.2 21.1 — — — — 0.990 — — — 0.937 0.826 7.89 7.22 6.63 5.97 5.35 1.70 1.69 1.69 1.67 1.65 12.3 — 11.2 — 10.3 0.964 9.27 0.913 8.29 0.823 0.963 0.877 0.796 0.735 0.625 3.72 3.17 2.56 1.29 1.27 1.22 5.85 0.831 4.97 0.690 4.03 0.638 0.635 0.496 0.460 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 76 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area of Stem Flange DisThickness tance tf k Area Depth of Tee d Thickness tw tw 2 Designation in.2 in. in. in. in.2 WT8×50 WT8×44.5 WT8×38.5 WT8×33.5 14.7 13.1 11.3 9.84 8.485 8.375 8.260 8.165 81⁄2 83⁄8 81⁄4 81⁄8 0.585 0.525 0.455 0.395 9⁄ 16 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 4.96 4.40 3.76 3.23 10.425 10.365 10.295 10.235 103⁄8 103⁄8 101⁄4 101⁄4 0.985 0.875 0.760 0.665 1 7⁄ 8 3⁄ 4 11⁄ 16 111⁄16 19⁄16 17⁄16 13⁄8 WT8×28.5 WT8×25 WT8×22.5 WT8×20 WT8×18 8.38 7.37 6.63 5.89 5.28 8.215 8.130 8.065 8.005 7.930 81⁄4 81⁄8 81⁄8 8 77⁄8 0.430 0.380 0.345 0.305 0.295 7⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 3.53 3.09 2.78 2.44 2.34 7.120 7.070 7.035 6.995 6.985 71⁄8 71⁄8 7 7 7 0.715 0.630 0.565 0.505 0.430 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 13⁄8 15⁄16 11⁄4 13⁄16 11⁄8 WT8×15.5 WT8×13 4.56 3.84 7.940 7.845 8 77⁄8 0.275 0.250 1⁄ 4 1⁄ 4 1⁄ 2.18 1.96 5.525 5.500 51⁄2 51⁄2 0.440 0.345 7⁄ 16 3⁄ 8 11⁄8 11⁄16 3.740 3.070 2.830 2.595 2.380 2.190 2.015 33⁄4 31⁄16 213⁄16 25⁄8 23⁄8 23⁄16 2 17⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄8 1 42.7 34.4 30.6 27.1 24.1 21.5 19.2 18.560 17.890 17.650 17.415 17.200 17.010 16.835 181⁄2 177⁄8 175⁄8 173⁄8 171⁄4 17 167⁄8 5.120 4.910 4.520 4.160 3.820 3.500 3.210 51⁄8 415⁄16 41⁄2 43⁄16 313⁄16 31⁄2 33⁄16 513⁄16 59⁄16 53⁄16 413⁄16 41⁄2 43⁄16 37⁄8 1.875 1.770 1.655 1.540 1.410 1.290 1.175 1.070 0.980 0.890 0.830 0.745 0.680 17⁄8 13⁄4 15⁄8 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 15⁄ 17.5 16.2 14.8 13.5 12.1 10.8 9.62 8.58 7.70 6.89 6.32 5.58 5.03 16.695 16.590 16.475 16.360 16.230 16.110 15.995 15.890 15.800 15.710 15.650 15.565 15.500 163⁄4 165⁄8 161⁄2 163⁄8 161⁄4 161⁄8 16 157⁄8 153⁄4 153⁄4 155⁄8 155⁄8 151⁄2 3.035 2.845 2.660 2.470 2.260 2.070 1.890 1.720 1.560 1.440 1.310 1.190 1.090 31⁄16 27⁄8 211⁄16 21⁄2 21⁄4 21⁄16 17⁄8 13⁄4 19⁄16 17⁄16 15⁄16 13⁄16 11⁄16 311⁄16 31⁄2 35⁄16 31⁄8 215⁄16 23⁄4 29⁄16 23⁄8 21⁄4 21⁄8 2 17⁄8 13⁄4 WT7×404 WT8×365 WT8×332.5 WT8×302.5 WT8×275 WT8×250 WT8×227.5 119 107 97.8 88.9 80.9 73.5 66.9 WT7×213 WT8×199 WT8×185 WT8×171 WT8×155.5 WT8×141.5 WT8×128.5 WT8×116.5 WT8×105.5 WT8×96.5 WT8×88 WT8×79.5 WT8×72.5 62.6 58.5 54.4 50.3 45.7 41.6 37.8 34.2 31.0 28.4 25.9 23.4 21.3 11.420 117⁄16 11.210 111⁄4 10.820 107⁄8 10.460 101⁄2 10.120 101⁄8 9.800 93⁄4 9.510 91⁄2 9.335 9.145 8.960 8.770 8.560 8.370 8.190 8.020 7.860 7.740 7.610 7.490 7.390 93⁄8 91⁄8 9 83⁄4 81⁄2 83⁄8 81⁄4 8 77⁄8 73⁄4 75⁄8 71⁄2 73⁄8 1⁄ 7⁄ 13⁄ 13⁄ 3⁄ 8 8 16 8 16 16 4 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 3⁄ 8 Width bf in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. STRUCTURAL TEES (WT, MT, ST) 1 - 77 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 50 17.9 15.7 13.4 11.6 2.51 2.49 2.47 2.46 27.4 24.0 20.5 17.7 — — — — — — 0.988 0.861 — 0.990 0.904 0.784 0.754 0.942 0.826 0.725 0.583 0.553 50 44.5 38.5 33.5 12.1 13.5 15.6 18.0 76.8 67.2 56.9 48.6 11.4 10.1 8.59 7.36 2.28 2.27 2.24 2.22 1.76 1.70 1.63 1.56 20.7 18.1 15.3 13.0 0.706 0.631 0.549 0.481 93.1 81.3 69.2 59.5 28.5 25 22.5 20 18 16.5 18.7 20.6 23.3 24.1 48.7 42.3 37.8 33.1 30.6 7.77 6.78 6.10 5.35 5.05 2.41 2.40 2.39 2.37 2.41 1.94 1.89 1.86 1.81 1.88 13.8 12.0 10.8 9.43 8.93 0.589 0.521 0.471 0.421 0.378 21.6 18.6 16.4 14.4 12.2 15.5 13 25.8 28.4 27.4 23.5 4.64 4.09 2.45 2.47 2.02 2.09 404 365 332.5 302.5 275 250 227.5 1.5 1.9 2.0 2.2 2.4 2.6 2.8 898 739 622 524 442 375 321 116 95.4 82.1 70.6 60.9 52.7 45.9 2.75 2.62 2.52 2.43 2.34 2.26 2.19 3.70 3.47 3.25 3.05 2.85 2.67 2.51 213 199 185 171 155.5 141.5 128.5 116.5 105.5 96.5 88 79.5 72.5 3.0 3.2 3.4 3.7 4.0 4.4 4.9 5.3 5.8 6.4 6.9 7.7 8.4 287 257 229 203 176 153 133 116 102 89.8 80.5 70.2 62.5 41.4 37.6 33.9 30.4 26.7 23.5 20.7 18.2 16.2 14.4 13.0 11.4 10.2 2.14 2.10 2.05 2.01 1.96 1.92 1.88 1.84 1.81 1.78 1.76 1.73 1.71 2.40 2.30 2.19 2.09 1.97 1.86 1.75 1.65 1.57 1.49 1.43 1.35 1.29 8.27 0.413 8.12 0.372 249 211 182 157 136 117 102 91.7 82.9 74.4 66.2 57.7 50.4 43.9 38.2 33.4 29.4 26.3 22.8 20.2 3.19 3.00 2.77 2.55 2.35 2.16 1.99 6.20 4.80 2760 2360 2080 1840 1630 1440 1280 1.88 1180 1.76 1090 1.65 994 1.54 903 1.41 807 1.29 722 1.18 645 1.08 576 0.980 513 0.903 466 0.827 419 0.751 374 0.688 338 Fy, ksi 6.06 5.26 4.67 4.12 3.50 1.60 1.59 1.57 1.57 1.52 9.43 8.16 7.23 6.37 5.42 2.24 1.74 1.17 1.12 3.52 0.668 0.479 2.74 0.563 0.406 297 264 236 211 189 169 152 4.82 4.69 4.62 4.55 4.49 4.43 4.38 463 408 365 326 292 261 234 — — — — — — — — — — — — — — 141 131 121 110 99.4 89.7 80.7 72.5 65.0 59.3 53.5 48.1 43.7 4.34 4.31 4.27 4.24 4.20 4.17 4.13 4.10 4.07 4.05 4.02 4.00 3.98 217 201 185 169 152 137 123 110 99.0 90.2 81.4 73.0 66.3 — — — — — — — — — — — — — — — — — — — — — — — — — — *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 78 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Designation Area of Stem Flange DisThickness tance tf k Area Depth of Tee d Thickness tw tw 2 in.2 in. in. in. in.2 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 4.73 4.27 3.76 3.43 3.08 14.725 14.670 14.605 14.565 14.520 143⁄4 145⁄8 145⁄8 145⁄8 141⁄2 1.030 0.940 0.860 0.780 0.710 1 15⁄ 16 7⁄ 8 3⁄ 4 11⁄ 16 111⁄16 15⁄8 19⁄16 17⁄16 13⁄8 1⁄ 10.130 101⁄8 10.070 101⁄8 10.035 10 9.995 10 0.855 0.785 0.720 0.645 7⁄ 8 13⁄ 16 3⁄ 4 5⁄ 8 15⁄8 19⁄16 11⁄2 17⁄16 Width bf in. in. in. WT7×66 WT7×60 WT7×54.5 WT7×49.5 WT7×45 19.4 17.7 16.0 14.6 13.2 7.330 7.240 7.160 7.080 7.010 73⁄8 71⁄4 71⁄8 71⁄8 7 0.645 0.590 0.525 0.485 0.440 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 WT7×41 WT7×37 WT7×34 WT7×30.5 12.0 10.9 9.99 8.96 7.155 7.085 7.020 6.945 71⁄8 71⁄8 7 7 0.510 0.450 0.415 0.375 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 1⁄ 4 3⁄ 16 3.65 3.19 2.91 2.60 WT7×26.5 WT7×24 WT7×21.5 7.81 7.07 6.31 6.960 6.895 6.830 7 67⁄8 67⁄8 0.370 0.340 0.305 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 2.58 2.34 2.08 8.060 8.030 7.995 8 8 8 0.660 0.595 0.530 11⁄ 16 5⁄ 8 1⁄ 2 17⁄16 13⁄8 15⁄16 WT7×19 WT7×17 WT7×15 5.58 5.00 4.42 7.050 6.990 6.920 7 7 67⁄8 0.310 0.285 0.270 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 1⁄ 8 2.19 1.99 1.87 6.770 6.745 6.730 63⁄4 63⁄4 63⁄4 0.515 0.455 0.385 1⁄ 2 7⁄ 16 3⁄ 8 11⁄16 1 15⁄ 16 WT7×13 WT7×11 3.85 3.25 6.955 6.870 7 67⁄8 0.255 0.230 1⁄ 4 1⁄ 4 1⁄ 1.77 1.58 5.025 5.000 5 5 0.420 0.335 7⁄ 16 5⁄ 16 15⁄ 1⁄ 1⁄ 4 4 8 8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 7⁄ 16 8 STRUCTURAL TEES (WT, MT, ST) 1 - 79 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft Axis X-X h tw S I 4 r 3 y Z yp 3 S I 4 in. in. in. in. in. in. 66 60 54.5 49.5 45 8.8 9.7 10.9 11.8 13.0 57.8 51.7 45.3 40.9 36.4 9.57 8.61 7.56 6.88 6.16 1.73 1.71 1.68 1.67 1.66 1.29 1.24 1.17 1.14 1.09 18.6 16.5 14.4 12.9 11.5 0.658 0.602 0.549 0.500 0.456 41 37 34 30.5 11.2 12.7 13.7 15.2 41.2 36.0 32.6 28.9 7.14 6.25 5.69 5.07 1.85 1.82 1.81 1.80 1.39 1.32 1.29 1.25 13.2 11.5 10.4 9.16 0.594 0.541 0.498 0.448 74.2 66.9 60.7 53.7 26.5 24 21.5 15.4 16.8 18.7 27.6 24.9 21.9 4.94 4.48 3.98 1.88 1.87 1.86 1.38 1.35 1.31 8.87 8.00 7.05 0.484 0.440 0.395 28.8 25.7 22.6 19 17 15 19.8 21.5 22.7 23.3 20.9 19.0 4.22 3.83 3.55 2.04 2.04 2.07 1.54 1.53 1.58 7.45 6.74 6.25 0.412 0.371 0.329 13 11 24.1 26.7 17.3 14.8 3.31 2.91 2.12 2.14 1.72 1.76 5.89 5.20 0.383 0.325 lb Qs* Axis Y-Y in. r 3 Z Fy, ksi 3 in. in. in. 36 50 37.2 33.7 30.6 27.6 25.0 3.76 3.74 3.73 3.71 3.70 56.6 51.2 46.4 41.8 37.8 — — — — — — — — — — 14.6 13.3 12.1 10.7 2.48 2.48 2.46 2.45 22.4 20.3 18.5 16.4 — — — — — — — 0.973 7.16 6.40 5.65 1.92 1.91 1.89 11.0 9.82 8.66 — — 0.947 0.958 0.882 0.775 13.3 11.7 9.79 3.94 3.45 2.91 1.55 1.53 1.49 6.07 5.32 4.49 0.934 0.857 0.810 0.760 0.669 0.610 4.45 3.50 1.77 1.40 1.08 1.04 2.77 2.19 0.737 0.621 0.537 0.447 274 247 223 201 181 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 80 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Designation Area of Stem Area Depth of Tee d Thickness tw tw 2 in.2 in. in. in. in.2 14.9 13.3 12.1 10.7 9.67 8.68 7.62 6.73 5.96 5.30 4.66 3.93 3.50 3.23 2.91 2.63 2.36 WT6×168 WT6×152.5 WT6×139.5 WT6×126 WT6×115 WT6×105 WT6×95 WT6×85 WT6×76 WT6×68 WT6×60 WT6×53 WT6×48 WT6×43.5 WT6×39.5 WT6×36 WT6×32.5 49.4 44.8 41.0 37.0 33.9 30.9 27.9 25.0 22.4 20.0 17.6 15.6 14.1 12.8 11.6 10.6 9.54 8.410 8.160 7.925 7.705 7.525 7.355 7.190 7.015 6.855 6.705 6.560 6.445 6.355 6.265 6.190 6.125 6.060 83⁄8 81⁄8 77⁄8 73⁄4 71⁄2 73⁄8 71⁄4 7 67⁄8 63⁄4 61⁄2 61⁄2 63⁄8 61⁄4 61⁄4 61⁄8 6 1.775 1.625 1.530 1.395 1.285 1.180 1.060 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.430 0.390 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 13⁄16 11⁄16 15⁄ 16 7⁄ 8 13⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 11⁄ 16 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 WT6×29 WT6×26.5 8.52 7.78 6.095 6.030 61⁄8 6 0.360 0.345 3⁄ 8 3⁄ 8 3⁄ 16 3⁄ 16 WT6×25 WT6×22.5 WT6×20 7.34 6.61 5.89 6.095 6.030 5.970 61⁄8 6 6 0.370 0.335 0.295 3⁄ 8 5⁄ 16 5⁄ 16 WT6×17.5 WT6×15 WT6×13 5.17 4.40 3.82 6.250 6.170 6.110 61⁄4 61⁄8 61⁄8 0.300 0.260 0.230 WT6×11 WT6×9.5 WT6×8 WT6×7 3.24 2.79 2.36 2.08 6.155 6.080 5.995 5.955 61⁄8 61⁄8 6 6 0.260 0.235 0.220 0.200 Flange DisThickness tance tf k Width bf in. in. in. 133⁄8 131⁄4 131⁄8 13 127⁄8 123⁄4 125⁄8 125⁄8 121⁄2 123⁄8 123⁄8 121⁄4 121⁄8 121⁄8 121⁄8 12 12 2.955 2.705 2.470 2.250 2.070 1.900 1.735 1.560 1.400 1.250 1.105 0.990 0.900 0.810 0.735 0.670 0.605 215⁄16 211⁄16 21⁄2 21⁄4 21⁄16 17⁄8 13⁄4 19⁄16 13⁄8 11⁄4 11⁄8 1 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 311⁄16 37⁄16 33⁄16 215⁄16 23⁄4 25⁄8 27⁄16 21⁄4 21⁄8 115⁄16 113⁄16 111⁄16 15⁄8 11⁄2 17⁄16 13⁄8 15⁄16 2.19 10.010 2.08 9.995 10 10 0.640 0.575 5⁄ 8 9⁄ 16 13⁄8 11⁄4 3⁄ 16 3⁄ 16 3⁄ 16 2.26 2.02 1.76 8.080 8.045 8.005 81⁄8 8 8 0.640 0.575 0.515 5⁄ 8 9⁄ 16 1⁄ 2 13⁄8 11⁄4 11⁄4 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1.88 1.60 1.41 6.560 6.520 6.490 61⁄2 61⁄2 61⁄2 0.520 0.440 0.380 1⁄ 2 7⁄ 16 3⁄ 8 15⁄ 16 7⁄ 8 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8 1.60 1.43 1.32 1.19 4.030 4.005 3.990 3.970 4 4 4 4 0.425 0.350 0.265 0.225 7⁄ 16 3⁄ 8 1⁄ 4 1⁄ 4 7⁄ 8 13⁄ 16 3⁄ 4 11⁄ 16 13.385 13.235 13.140 13.005 12.895 12.790 12.670 12.570 12.480 12.400 12.320 12.220 12.160 12.125 12.080 12.040 12.000 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 STRUCTURAL TEES (WT, MT, ST) 1 - 81 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft Axis X-X h tw S I 4 r 3 y Qs* Axis Y-Y Z yp 3 S I 4 r 3 Z Fy, ksi 3 in. in. in. in. in. in. in. in. in. in. 36 50 168 152.5 139.5 126 115 105 95 85 76 68 60 53 48 43.5 39.5 36 32.5 2.7 3.0 3.2 3.5 3.8 4.1 4.6 5.1 5.6 6.1 6.8 8.0 8.8 9.4 10.3 11.3 12.4 190 162 141 121 106 92.1 79.0 67.8 58.5 50.6 43.4 36.3 32.0 28.9 25.8 23.2 20.6 31.2 27.0 24.1 20.9 18.5 16.4 14.2 12.3 10.8 9.46 8.22 6.91 6.12 5.60 5.03 4.54 4.06 1.96 1.90 1.86 1.81 1.77 1.73 1.68 1.65 1.62 1.59 1.57 1.53 1.51 1.50 1.49 1.48 1.47 2.31 2.16 2.05 1.92 1.82 1.72 1.62 1.52 1.43 1.35 1.28 1.19 1.13 1.10 1.06 1.02 0.985 68.4 59.1 51.9 44.8 39.4 34.5 29.8 25.6 22.0 19.0 16.2 13.6 11.9 10.7 9.49 8.48 7.50 1.84 1.69 1.56 1.42 1.31 1.21 1.10 0.994 0.896 0.805 0.716 0.637 0.580 0.527 0.480 0.439 0.398 593 525 469 414 371 332 295 259 227 199 172 151 135 120 108 97.5 87.2 88.6 79.3 71.3 63.6 57.5 51.9 46.5 41.2 36.4 32.1 28.0 24.7 22.2 19.9 17.9 16.2 14.5 3.47 3.42 3.38 3.34 3.31 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02 137 122 110 97.9 88.4 79.7 71.3 63.0 55.6 49.0 42.7 37.5 33.7 30.2 27.2 24.6 22.0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 29 26.5 13.5 14.1 19.1 17.7 3.76 3.54 1.50 1.51 1.03 1.02 6.97 0.426 6.46 0.389 53.5 47.9 10.7 9.58 2.51 2.48 16.3 14.6 — — — — 25 22.5 20 13.1 14.5 16.5 18.7 16.6 14.4 3.79 3.39 2.95 1.60 1.58 1.57 1.17 1.13 1.08 6.90 0.454 6.12 0.411 5.30 0.368 28.2 25.0 22.0 6.97 6.21 5.51 1.96 1.94 1.93 10.7 9.50 8.41 — — — — 0.998 0.887 17.5 15 13 18.1 20.9 23.6 16.0 13.5 11.7 3.23 2.75 2.40 1.76 1.75 1.75 1.30 1.27 1.25 5.71 0.394 4.83 0.337 4.20 0.295 12.2 10.2 8.66 3.73 3.12 2.67 1.54 1.52 1.51 5.73 4.78 4.08 — 0.856 0.891 0.710 0.767 0.565 11 9.5 8 7 20.9 23.1 24.7 27.2 11.7 10.1 8.70 7.67 2.59 2.28 2.04 1.83 1.90 1.90 1.92 1.92 1.63 1.65 1.74 1.76 4.63 4.11 3.72 3.32 2.33 1.88 1.41 1.18 1.16 0.939 0.706 0.594 0.847 0.822 0.773 0.753 1.83 1.49 1.13 0.950 0.891 0.797 0.741 0.626 lb 0.402 0.348 0.639 0.760 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 0.710 0.596 0.541 0.450 1 - 82 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Designation Area of Stem Area Depth of Tee d Thickness tw tw 2 in.2 in. in. in. in.2 Flange DisThickness tance tf k Width bf in. in. in. WT5×56 WT5×50 WT5×44 WT5×38.5 WT5×34 WT5×30 WT5×27 WT5×24.5 16.5 14.7 12.9 11.3 9.99 8.82 7.91 7.21 5.680 5.550 5.420 5.300 5.200 5.110 5.045 4.990 55⁄8 51⁄2 53⁄8 51⁄4 51⁄4 51⁄8 5 5 0.755 0.680 0.605 0.530 0.470 0.420 0.370 0.340 3⁄ 4 11⁄ 16 5⁄ 8 1⁄ 2 1⁄ 2 7⁄ 16 3⁄ 8 5⁄ 16 3⁄ 8 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 3⁄ 16 4.29 3.77 3.28 2.81 2.44 2.15 1.87 1.70 10.415 10.340 10.265 10.190 10.130 10.080 10.030 10.000 103⁄8 103⁄8 101⁄4 101⁄4 101⁄8 101⁄8 10 10 1.250 1.120 0.990 0.870 0.770 0.680 0.615 0.560 11⁄4 11⁄8 1 7⁄ 8 3⁄ 8 11⁄ 16 5⁄ 8 9⁄ 16 17⁄8 13⁄4 15⁄8 11⁄2 13⁄8 15⁄16 11⁄4 13⁄16 WT5×22.5 WT5×19.5 WT5×16.5 6.63 5.73 4.85 5.050 4.960 4.865 5 5 47⁄8 0.350 0.315 0.290 3⁄ 8 5⁄ 16 5⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 1.77 1.56 1.41 8.020 7.985 7.960 8 8 8 0.620 0.530 0.435 5⁄ 8 1⁄ 2 7⁄ 16 11⁄4 11⁄8 11⁄16 WT5×15 WT5×13 WT5×11 4.42 3.81 3.24 5.235 5.165 5.085 51⁄4 51⁄8 51⁄8 0.300 0.260 0.240 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1.57 1.34 1.22 5.810 5.770 5.750 53⁄4 53⁄4 53⁄4 0.510 0.440 0.360 1⁄ 2 7⁄ 16 3⁄ 8 15⁄ 16 7⁄ 8 3⁄ 4 WT5×9.5 WT5×8.5 WT5×7.5 WT5×6 2.81 2.50 2.21 1.77 5.120 5.055 4.995 4.935 51⁄8 5 5 47⁄8 0.250 0.240 0.230 0.190 1⁄ 4 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 1⁄ 8 1.28 1.21 1.15 0.938 4.020 4.010 4.000 3.960 4 4 4 4 0.395 0.330 0.270 0.210 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 13⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 83 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 0.791 118 0.711 103 0.631 89.3 0.555 76.8 0.493 66.8 0.438 58.1 0.395 51.7 0.361 46.7 22.6 20.0 17.4 15.1 13.2 11.5 10.3 9.34 2.68 2.65 2.63 2.60 2.59 2.57 2.56 2.54 6.65 5.64 4.60 Fy, ksi 36 50 34.6 30.5 26.5 22.9 20.0 17.5 15.7 14.2 — — — — — — — — — — — — — — — — 2.01 1.98 1.94 10.1 8.59 7.01 — — — — — — 56 50 44 38.5 34 30 27 24.5 5.2 5.8 6.5 7.4 8.4 9.4 10.6 11.6 28.6 24.5 20.8 17.4 14.9 12.9 11.1 10.0 6.40 5.56 4.77 4.04 3.49 3.04 2.64 2.39 1.32 1.29 1.27 1.24 1.22 1.21 1.19 1.18 1.21 1.13 1.06 0.990 0.932 0.884 0.836 0.807 13.4 11.4 9.65 8.06 6.85 5.87 5.05 4.52 22.5 19.5 16.5 11.2 12.5 13.6 10.2 8.84 7.71 2.47 2.16 1.93 1.24 1.24 1.26 0.907 0.876 0.869 4.65 3.99 3.48 0.413 0.359 0.305 15 13 11 14.8 17.0 18.4 9.28 7.86 6.88 2.24 1.91 1.72 1.45 1.44 1.46 1.10 1.06 1.07 4.01 3.39 3.02 0.380 0.330 0.282 8.35 7.05 5.71 2.87 2.44 1.99 1.37 1.36 1.33 4.42 3.75 3.05 — — 0.999 — 0.902 0.836 17.7 18.4 19.2 23.3 6.68 6.06 5.45 4.35 1.74 1.62 1.50 1.22 1.54 1.56 1.57 1.57 1.28 1.32 1.37 1.36 3.10 2.90 3.03 2.50 0.349 0.311 0.306 0.323 2.15 1.78 1.45 1.09 1.07 0.888 0.723 0.551 0.874 0.844 0.810 0.785 1.68 — 1.40 — 1.15 0.977 0.872 0.793 0.872 0.841 0.811 0.592 9.5 8.5 7.5 6 26.7 22.5 18.3 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 84 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from W shapes Dimensions k Y X X d tw Y Stem Area of Stem Flange DisThickness tance tf k Area Depth of Tee d Thickness tw tw 2 Designation in.2 in. in. in. in.2 WT4×33.5 WT4×29 WT4×24 WT4×20 WT4×17.5 WT4×15.5 9.84 8.55 7.05 5.87 5.14 4.56 4.500 4.375 4.250 4.125 4.060 4.000 41⁄2 43⁄8 41⁄4 41⁄8 4 4 0.570 0.510 0.400 0.360 0.310 0.285 9⁄ 16 1⁄ 2 3⁄ 8 3⁄ 8 5⁄ 16 5⁄ 16 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 16 3⁄ 16 3⁄ 16 2.56 2.23 1.70 1.48 1.26 1.14 8.280 8.220 8.110 8.070 8.020 7.995 81⁄4 81⁄4 81⁄8 81⁄8 8 8 0.935 0.810 0.685 0.560 0.495 0.435 15⁄ 16 13⁄ 16 11⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 17⁄16 15⁄16 13⁄16 11⁄16 1 15⁄ 16 WT4×14 WT4×12 4.12 3.54 4.030 3.965 4 4 0.285 0.245 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 1.15 0.971 6.535 6.495 61⁄2 61⁄2 0.465 0.400 7⁄ 16 3⁄ 8 15⁄ 16 7⁄ 8 WT4×10.5 WT4×9 3.08 2.63 4.140 4.070 41⁄8 41⁄8 0.250 0.230 1⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 1.03 0.936 5.270 5.250 51⁄4 51⁄4 0.400 0.330 3⁄ 8 5⁄ 16 13⁄ 16 3⁄ 4 WT4×7.5 WT4×6.5 WT4×5 2.22 1.92 1.48 4.055 3.995 3.945 4 4 4 0.245 0.230 0.170 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 0.993 0.919 0.671 4.015 4.000 3.940 4 4 4 0.315 0.255 0.205 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 4 11⁄ 16 5⁄ 8 WT3×12.5 WT4×10 WT4×7.5 3.67 2.94 2.21 3.190 3.100 2.995 31⁄4 31⁄8 3 0.320 0.260 0.230 5⁄ 16 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1.02 0.806 0.689 6.080 6.020 5.990 61⁄8 6 6 0.455 0.365 0.260 7⁄ 16 3⁄ 8 1⁄ 4 13⁄ 16 3⁄ 4 5⁄ 8 WT3×8 WT4×6 WT4×4.5 2.37 1.78 1.34 3.140 3.015 2.950 31⁄8 3 3 0.260 0.230 0.170 1⁄ 4 1⁄ 4 3⁄ 16 1⁄ 8 1⁄ 8 1⁄ 8 0.816 0.693 0.502 4.030 4.000 3.940 4 4 4 0.405 0.280 0.215 3⁄ 8 1⁄ 4 3⁄ 16 3⁄ 4 5⁄ 8 9⁄ 16 WT2.5×9.5 WT4.5×8 2.77 2.34 2.575 2.505 25⁄8 21⁄2 0.270 0.240 1⁄ 4 1⁄ 4 1⁄ 8 1⁄ 8 0.695 0.601 5.030 5.000 5 5 0.430 0.360 7⁄ 16 3⁄ 8 13⁄ 16 3⁄ 4 WT2×6.5 1.91 2.080 21⁄8 0.280 1⁄ 4 1⁄ 8 0.582 4.060 4 0.345 3⁄ 8 11⁄ 16 Width bf in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION in. in. STRUCTURAL TEES (WT, MT, ST) 1 - 85 bf STRUCTURAL TEES Cut from W shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 Fy, ksi 50 33.5 29 24 20 17.5 15.5 5.6 6.2 7.9 8.8 10.2 11.1 10.9 9.12 6.85 5.73 4.81 4.28 3.05 2.61 1.97 1.69 1.43 1.28 1.05 1.03 0.986 0.988 0.967 0.968 0.936 0.874 0.777 0.735 0.688 0.667 6.29 5.25 3.94 3.25 2.71 2.39 0.594 0.520 0.435 0.364 0.321 0.285 44.3 37.5 30.5 24.5 21.3 18.5 10.7 9.13 7.52 6.08 5.31 4.64 2.12 2.10 2.08 2.04 2.03 2.02 16.3 13.9 11.4 9.25 8.06 7.04 — — — — — — — — — — — — 14 12 11.1 12.9 4.22 3.53 1.28 1.08 1.01 0.999 0.734 0.695 2.38 1.98 0.315 0.273 10.8 9.14 3.31 2.81 1.62 1.61 5.05 4.29 — — — — 10.5 9 13.8 15.0 3.90 3.41 1.18 1.05 1.12 1.14 0.831 0.834 2.11 1.86 0.292 0.251 4.89 3.98 1.85 1.52 1.26 1.23 2.84 2.33 — — — — 7.5 6.5 5 14.0 15.0 20.2 3.28 2.89 2.15 1.07 0.974 0.717 1.22 1.23 1.20 0.998 1.03 0.953 1.91 1.74 1.27 0.276 0.240 0.188 1.70 1.37 1.05 0.849 0.876 0.683 0.843 0.532 0.841 1.33 — 1.08 — 0.828 0.913 12.5 10 7.5 7.8 9.6 10.8 2.28 1.76 1.41 0.886 0.693 0.577 0.789 0.774 0.797 0.610 0.560 0.558 1.68 1.29 1.03 0.302 0.244 0.185 8.53 6.64 4.66 2.81 2.21 1.56 4.28 3.36 2.37 — — — — — — 8 6 4.5 9.6 10.8 14.6 1.69 0.685 1.32 0.564 0.950 0.408 0.844 0.861 0.842 0.676 0.677 0.623 1.25 1.01 0.720 0.294 0.222 0.170 2.21 1.50 1.10 1.10 0.966 0.748 0.918 0.557 0.905 1.70 1.16 0.858 — — — — — — 9.5 8 7.0 7.9 1.01 0.485 0.850 0.413 0.605 0.601 0.487 0.458 0.967 0.798 0.275 0.234 4.56 3.75 1.82 1.50 1.28 1.27 2.76 2.29 — — — — 6.5 5.3 0.530 0.321 0.524 0.440 0.616 0.236 1.93 0.950 1.00 1.46 — — 1.52 1.50 1.45 *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION — — 0.735 1 - 86 DIMENSIONS AND PROPERTIES bf tf yp , y STRUCTURAL TEES Cut from M shapes Dimensions k Y X X d tw Y Designation Area Depth of Tee d in.2 in. Flange Stem Area of Thickness tw 2 Stem tw in. in. in. 1.73 1.59 6.000 5.990 6 6 0.177 0.160 3⁄ 16 3⁄ 16 1⁄ 8 1⁄ 16 1.06 3.065 0.958 3.065 31⁄8 31⁄8 0.225 0.210 1⁄ 4 1⁄ 4 9⁄ 16 1⁄ 2 1⁄ 4 1⁄ 4 — 1⁄ 2 MT5×4.5 MT5×4 1.32 1.18 5.000 4.980 5 5 0.157 0.141 3⁄ 16 3⁄ 16 1⁄ 8 1⁄ 16 0.785 2.690 0.702 2.690 23⁄4 23⁄4 0.206 0.182 3⁄ 16 3⁄ 16 9⁄ 16 7⁄ 16 3⁄ 16 3⁄ 16 — 3⁄ 8 MT4×3.25 0.958 4.000 4 0.135 1⁄ 8 1⁄ 16 0.540 2.281 21⁄4 0.189 3⁄ 16 1⁄ 2 3⁄ 16 — 0.316 5⁄ 16 3⁄ 16 0.790 5.003 5 0.416 7⁄ 16 7⁄ 8 7⁄ 16 7⁄ 8 2.500 21⁄2 in. in.2 MT6×5.9 MT6×5.4 MT2.5×9.45* 2.78 in. Width bf in. Max. DisFlge. FasThickness tance Grip tener tf k in. *This shape has tapered flanges, while all other MT shapes have parallel flanges. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 87 bf STRUCTURAL TEES Cut from M shapes Properties tf k Y yp , y X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 36 Fy, ksi 50 5.9 5.4 31.3 31.8 6.60 6.03 1.60 1.46 1.95 1.95 1.89 1.85 2.89 2.63 1.09 1.01 0.490 0.453 0.320 0.295 0.532 0.533 0.577 0.525 0.483 0.397 0.348 0.286 4.5 4 29.2 29.7 3.46 3.09 0.997 0.893 1.62 1.62 1.53 1.52 1.81 1.62 0.778 0.778 0.305 0.269 0.227 0.200 0.480 0.477 0.405 0.333 0.549 0.446 0.396 0.321 3.25 26.9 1.57 0.556 1.28 1.17 1.01 0.446 0.172 0.150 0.423 0.265 0.634 0.457 9.45 5.6 1.05 0.527 0.615 0.511 1.03 0.278 3.93 1.57 1.19 2.66 — — *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 88 DIMENSIONS AND PROPERTIES bf tf y, yp STRUCTURAL TEES Cut from S shapes Dimensions grip Y X X d tw Y Designation Area Depth of Tee d in.2 in. Flange Stem Area of Thickness tw 2 Stem tw Width bf Max. DisFlge. FasThickness tance Grip tener tf k in. in.2 in. in. in. 7 13⁄ 16 ⁄16 5⁄ 5⁄ 8 16 9.80 7.60 8.050 8 7.870 77⁄8 1.090 1.090 11⁄16 11⁄16 2 2 11⁄8 11⁄8 1 1 3⁄ 8 5⁄ 16 1⁄ 4 8.94 7.50 6.00 7.245 71⁄4 7.125 71⁄8 7.000 7 0.870 0.870 0.870 7⁄ 8 7⁄ 8 7⁄ 8 13⁄4 13⁄4 13⁄4 7⁄ 8 7⁄ 8 7⁄ 8 1 1 1 7 13⁄ 16 ⁄16 3⁄ 11⁄ 16 8 8.12 6.70 7.200 71⁄4 7.060 7 0.920 0.920 15⁄ 16 15⁄ 16 13⁄4 13⁄4 15⁄ 16 15⁄ 16 1 1 in. in. in. in. ST12×60.5 ST12×53 17.8 15.6 12.250 121⁄4 12.250 121⁄4 0.800 0.620 ST12×50 ST12×45 ST12×40 14.7 13.2 11.7 12.000 12.000 12.000 0.745 0.625 0.500 ST10×48 ST10×43 14.1 12.7 10.150 101⁄8 10.150 101⁄8 0.800 0.660 ST10×37.5 ST10×33 11.0 9.70 10.000 10.000 10 10 0.635 0.505 5⁄ 8 1⁄ 2 5⁄ 16 1⁄ 4 6.35 5.05 6.385 63⁄8 6.225 61⁄4 0.795 0.795 13⁄ 16 13⁄ 16 15⁄8 15⁄8 13⁄ 16 13⁄ 16 7⁄ 8 7⁄ 8 ST9×35 ST9×27.35 10.3 8.04 9.000 9.000 9 9 0.711 0.461 11⁄ 16 7⁄ 16 3⁄ 8 1⁄ 4 6.40 4.15 6.251 61⁄4 6.001 6 0.691 0.691 11⁄ 16 11⁄ 16 11⁄2 11⁄2 11⁄ 16 11⁄ 16 7⁄ 8 7⁄ 8 12 12 12 3⁄ 4 5⁄ 8 1⁄ 2 ST7.5×25 ST7.5×21.45 7.35 6.31 7.500 71⁄2 7.500 71⁄2 0.550 0.411 9⁄ 16 5⁄ 16 1⁄ 4 4.13 3.08 5.640 55⁄8 5.501 51⁄2 0.622 0.622 5⁄ 8 5⁄ 8 13⁄8 13⁄8 9⁄ 16 9⁄ 16 3⁄ 4 3⁄ 4 ST6×25 ST6×20.4 7.35 6.00 6.000 6.000 6 6 0.687 0.462 11⁄ 16 7⁄ 16 3⁄ 8 1⁄ 4 4.12 2.77 5.477 51⁄2 5.252 51⁄4 0.659 0.659 11⁄ 16 11⁄ 16 17⁄16 17⁄16 11⁄ 16 5⁄ 8 3⁄ 4 3⁄ 4 ST6×17.5 ST6×15.9 5.15 4.68 6.000 6.000 6 6 0.428 0.350 7⁄ 1⁄ 4 3⁄ 16 2.57 2.10 5.078 51⁄8 5.000 5 0.545 0.544 9⁄ 16 9⁄ 16 13⁄16 13⁄16 1⁄ 2 1⁄ 2 3⁄ 4 3⁄ 4 ST5×17.5 ST5×12.7 5.15 3.73 5.000 5.000 5 5 0.594 0.311 16 5⁄ 16 3⁄ 16 2.97 1.56 4.944 5 4.661 45⁄8 0.491 0.491 1⁄ 2 1⁄ 2 11⁄8 11⁄8 1⁄ 2 1⁄ 2 3⁄ 4 3⁄ 4 ST4×11.5 ST4×9.2 3.38 2.70 4.000 4.000 4 4 0.441 0.271 7⁄ 16 1⁄ 4 1⁄ 4 1⁄ 8 1.76 1.08 4.171 41⁄8 4.001 4 0.425 0.425 7⁄ 16 7⁄ 16 1 1 7⁄ 16 7⁄ 16 3⁄ 4 3⁄ 4 ST3×8.625 ST3×6.25 2.53 1.83 3.000 3.000 3 3 0.465 0.232 7⁄ 16 1⁄ 4 1⁄ 4 1⁄ 8 1.40 0.70 3.565 35⁄8 3.332 33⁄8 0.359 0.359 3⁄ 8 3⁄ 8 7⁄ 8 7⁄ 8 3⁄ 8 3⁄ 8 5⁄ 8 — ST2.5×5 1.47 2.500 21⁄2 0.214 3⁄ 16 1⁄ 8 0.535 3.004 0.326 5⁄ 16 13⁄ 16 5⁄ 16 — ST2×4.75 ST2×3.85 1.40 1.13 2.000 2.000 0.326 0.193 5⁄ 16 3⁄ 16 1⁄ 8 0.652 2.796 23⁄4 0.386 2.663 25⁄8 0.293 0.293 5⁄ 16 5⁄ 16 3⁄ 4 3⁄ 4 5⁄ 16 5⁄ 16 — — ST1.5×3.75 ST1.5×2.85 1.10 0.835 1.500 11⁄2 1.500 11⁄2 3⁄ 16 1⁄ 8 0.523 2.509 21⁄2 0.255 2.330 23⁄8 0.260 0.260 1⁄ 4 1⁄ 4 11⁄ 16 11⁄ 16 1⁄ 4 1⁄ 4 — — 2 2 0.349 0.170 7⁄ 16 16 3⁄ 8 5⁄ 8 5⁄ 3⁄ 16 3⁄ 8 3⁄ 16 3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION STRUCTURAL TEES (WT, MT, ST) 1 - 89 bf STRUCTURAL TEES Cut from S shapes Properties tf grip Y y, yp X X d tw Y Nominal Wt. per ft lb Axis X-X h tw Qs* Axis Y-Y I S r y Z yp I S r Z in.4 in.3 in. in. in.3 in. in.4 in.3 in. in.3 60.5 53 13.2 17 259 216 30.1 24.1 3.82 3.72 3.63 3.28 54.5 43.3 1.28 1.03 41.7 38.5 10.4 9.80 1.53 1.57 18.1 16.6 50 45 40 14.1 16.8 21.1 215 190 162 26.3 22.6 18.7 3.83 3.79 3.72 3.84 3.60 3.29 47.5 41.1 33.6 2.20 23.8 1.48 22.5 0.922 21.1 6.58 6.31 6.04 1.27 1.30 1.34 12.0 11.2 10.4 48 43 10.8 13.1 143 125 20.3 17.2 3.18 3.14 3.13 2.91 36.9 31.1 1.40 25.1 0.985 23.4 6.97 6.63 1.33 1.36 12.5 11.6 37.5 33 13.6 17 109 93.1 15.8 12.9 3.15 3.10 3.07 2.81 28.6 23.4 1.40 14.9 0.855 13.8 4.66 4.43 1.16 1.19 35 27.35 10.9 16.8 84.7 62.4 14.0 9.61 2.87 2.79 2.94 2.50 25.1 17.3 1.81 12.1 0.747 10.4 3.86 3.47 25 21.45 11.6 15.5 40.6 33.0 7.73 6.00 2.35 2.29 2.25 2.01 14.0 10.8 0.872 0.613 7.85 7.19 25 20.4 7 10.3 25.2 18.9 6.05 4.28 1.85 1.78 1.84 1.58 11.0 7.71 0.770 0.581 17.5 15.9 11.7 14.3 17.2 14.9 3.95 3.31 1.83 1.78 1.64 1.51 7.12 5.94 17.5 12.7 6.9 13.2 12.5 7.83 3.63 2.06 1.56 1.45 1.56 1.20 11.5 9.2 7.3 11.8 5.03 3.51 1.77 1.15 1.22 1.14 5 10 8.63 6.25 Fy, ksi 36 50 — — — 0.907 — — — 0.937 0.878 0.695 — — — — 8.37 7.70 — — — 0.907 1.08 1.14 7.21 6.07 — — — 0.922 2.78 2.61 1.03 1.07 5.01 4.54 — — — 0.988 7.85 6.78 2.87 2.58 1.03 1.06 5.19 4.45 — — — — 0.548 0.485 4.94 4.68 1.95 1.87 0.980 1.00 3.41 3.22 — — — — 6.58 3.70 0.702 0.408 4.18 3.39 1.69 1.46 0.901 0.954 3.11 2.49 — — — — 1.15 0.941 3.19 2.07 0.447 0.341 2.15 1.86 1.03 0.798 0.932 0.831 1.84 1.59 — — — — 2.13 1.27 1.02 0.917 0.914 0.552 0.833 0.691 1.85 1.01 0.401 0.275 1.15 0.911 0.648 0.675 0.547 0.705 1.18 0.929 — — — — 5 8.7 0.681 0.353 0.681 0.569 0.650 0.243 0.608 0.405 0.643 0.685 — — 4.75 3.85 4.3 7.3 0.470 0.316 0.325 0.580 0.553 0.203 0.528 0.448 0.592 0.255 0.381 0.209 0.451 0.382 0.323 0.569 0.287 0.581 0.566 0.483 — — — — 3.75 2.85 2.8 5.7 0.204 0.118 0.191 0.430 0.432 0.101 0.376 0.329 0.351 0.223 0.196 0.175 0.293 0.227 0.234 0.516 0.195 0.522 0.412 0.327 — — — — *Where no value of Qs is shown, the Tee complies with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 90 DIMENSIONS AND PROPERTIES DOUBLE ANGLES AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 91 DOUBLE ANGLES Properties of double angles in contact and separated are listed in the following tables. Each table shows properties of double angles in contact, and the radius of gyration about the Y-Y axis when the legs of the angles are separated. Values of Qs are given for Fy = 36 ksi and Fy = 50 ksi for those angles exceeding the width-thickness ratio λr of LRFD Specification Section B5. Since the cross section is comprised entirely of unstiffened elements, Qa = 1.0 and Q = Qs, for all _angle sections. The Flexural-Torsional Properties Table lists the dimensional values (J, ro, and H) needed for checking flexural-torsional buckling. Use of Table The table may be used as follows for checking the limit states of (1) flexural buckling and (2) flexural-torsional buckling. The lower of the two limit states must be used for design. See also Part 3 of this LRFD Manual. (1) Flexural Buckling Where no value of Qs is shown, the design compressive strength for this limit state is given by LRFD Specification Section E2. Where a value of Qs is shown, the strength must be reduced in accordance with Appendix B5 of the LRFD Specification. (2) Flexural-Torsional Buckling The design compressive strength for this limit state_ is given by LRFD Specification Sections E3 and E4. This involves calculations with J, ro, and H. These torsional constants can be obtained by summing the respective values for single angles listed in the Flexural-Torsional Properties Tables in Part 1 of this Manual. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 92 DIMENSIONS AND PROPERTIES Y X X DOUBLE ANGLES Two equal leg angles Properties of sections y, yp s Y Wt. Area of per ft 2 Angles 2 Angles Designation 2 Axis X-X S I 4 in. r 3 y Z yp 3 lb in. in. in. in. in. in. L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 114 102 90.0 77.8 65.4 52.8 33.5 30.0 26.5 22.9 19.2 15.5 195 177 159 139 118 97.3 35.1 31.6 28.0 24.4 20.6 16.7 2.42 2.44 2.45 2.47 2.49 2.50 2.41 2.37 2.32 2.28 2.23 2.19 63.2 56.9 50.5 43.9 37.1 30.1 1.05 0.938 0.827 0.715 0.601 0.484 L6×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 L8×8×13⁄8 74.8 66.2 57.4 48.4 39.2 29.8 22.0 19.5 16.9 14.2 11.5 8.72 70.9 63.8 56.3 48.3 39.8 30.8 17.1 15.3 13.3 11.3 9.23 7.06 1.80 1.81 1.83 1.84 1.86 1.88 1.86 1.82 1.78 1.73 1.68 1.64 30.9 27.5 24.0 20.4 16.6 12.7 0.917 0.811 0.703 0.592 0.479 0.363 L5×5×7⁄8 L5×5×3⁄4 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 54.4 47.2 32.4 24.6 20.6 16.0 13.9 9.50 7.22 6.05 35.5 31.5 22.5 17.5 14.8 10.3 9.06 6.31 4.84 4.08 1.49 1.51 1.54 1.56 1.57 1.57 1.52 1.43 1.39 1.37 18.7 16.3 11.4 8.72 7.35 0.798 0.694 0.475 0.361 0.303 L4×4×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 L5×5×1⁄4 37.0 31.4 25.6 19.6 16.4 13.2 10.9 9.22 7.50 5.72 4.80 3.88 15.3 13.3 11.1 8.72 7.43 6.08 5.62 4.80 3.95 3.05 2.58 2.09 1.19 1.20 1.22 1.23 1.24 1.25 1.27 1.23 1.18 1.14 1.12 1.09 10.1 8.66 7.12 5.49 4.64 3.77 0.680 0.576 0.469 0.357 0.300 0.242 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 93 DOUBLE ANGLES Two equal leg angles Properties of sections Y X X y, yp s Y Qs* Axis Y-Y Radii of Gyration Back to Back of Angles, in. Angles in Contact Angles Separated 0 3⁄ 8 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi L8×8×11⁄8 L8×8×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 3.42 3.40 3.38 3.36 3.34 3.32 3.55 3.53 3.51 3.49 3.47 3.45 3.69 3.67 3.64 3.62 3.60 3.58 — — — — — 0.995 — — — — — 0.921 — — — — 0.997 0.911 — — — — 0.935 0.834 L6×6×1 L8×8×17⁄8 L8×8×13⁄4 L8×8×15⁄8 L8×8×11⁄2 L8×8×13⁄8 2.59 2.57 2.55 2.53 2.51 2.49 2.73 2.70 2.68 2.66 2.64 2.62 2.87 2.85 2.82 2.80 2.78 2.75 — — — — — 0.995 — — — — — 0.921 — — — — — 0.911 — — — — 0.961 0.834 L5×5×7⁄8 L5×5×3⁄4 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 2.16 2.14 2.10 2.09 2.08 2.30 2.28 2.24 2.22 2.21 2.45 2.42 2.38 2.35 2.34 — — — — 0.995 — — — — 0.921 — — — 0.982 0.911 — — — 0.919 0.834 L4×4×3⁄4 L5×5×5⁄8 L5×5×1⁄2 L5×5×3⁄8 L5×5×5⁄16 L5×5×1⁄4 1.74 1.72 1.70 1.68 1.67 1.66 1.88 1.86 1.83 1.81 1.80 1.79 2.03 2.00 1.98 1.95 1.94 1.93 — — — — — 0.995 — — — — — 0.921 — — — — 0.997 0.911 — — — — 0.935 0.834 Designation *Where no value ofQs is shown, the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 94 DIMENSIONS AND PROPERTIES DOUBLE ANGLES Two equal leg angles Properties of sections Y X X y, yp s Y Wt. Area of per ft 2 Angles 2 Angles 2 Axis X-X S I 4 r 3 y Z yp 3 Designation lb in. in. in. in. in. in. L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 17.0 14.4 11.6 4.97 4.18 3.38 5.73 4.90 4.02 2.30 1.95 1.59 1.07 1.08 1.09 1.01 0.990 0.968 4.15 3.52 2.86 0.355 0.299 0.241 L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 18.8 14.4 12.2 9.80 7.42 5.50 4.22 3.55 2.88 2.18 4.43 3.52 3.02 2.49 1.92 2.14 1.67 1.41 1.15 0.882 0.898 0.913 0.922 0.930 0.939 0.932 0.888 0.865 0.842 0.820 3.87 3.00 2.55 2.08 1.59 0.458 0.352 0.296 0.240 0.182 L21⁄2×21⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 L31⁄2×31⁄2×3⁄16 11.8 10.0 8.20 6.14 3.47 2.93 2.38 1.80 1.97 1.70 1.41 1.09 1.13 0.964 0.789 0.606 0.753 0.761 0.769 0.778 0.762 0.740 0.717 0.694 2.04 1.74 1.42 1.09 0.347 0.293 0.238 0.180 9.40 7.84 6.38 4.88 3.30 2.72 2.30 1.88 1.43 0.960 0.958 0.832 0.695 0.545 0.380 0.702 0.681 0.494 0.381 0.261 0.594 0.601 0.609 0.617 0.626 0.636 0.614 0.592 0.569 0.546 1.27 1.08 0.890 0.686 0.471 0.340 0.288 0.234 0.179 0.121 L2×2×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 L3×3×1⁄8 in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 95 DOUBLE ANGLES Two equal leg angles Properties of sections Y X X y, yp s Y Qs* Axis Y-Y Radii of Gyration Angles in Contact Angles Separated 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi Back to Back of Angles, in. 3⁄ 8 Designation 0 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 1.48 1.47 1.46 1.61 1.60 1.59 1.75 1.74 1.73 — — — — — 0.982 — — 0.965 — 0.986 0.897 L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 1.29 1.27 1.26 1.26 1.25 1.43 1.41 1.40 1.39 1.38 1.59 1.56 1.55 1.53 1.52 — — — — 0.995 — — — — 0.921 — — — — 0.911 — — — 0.961 0.834 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16 1.07 1.06 1.05 1.04 1.21 1.20 1.19 1.18 1.36 1.35 1.34 1.32 — — — — — — — — — — — 0.982 — — — 0.919 L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8 0.870 0.859 0.849 0.840 0.831 1.01 1.00 0.989 0.977 0.965 1.17 1.16 1.14 1.13 1.11 — — — — 0.995 — — — — 0.921 — — — — 0.911 — — — — 0.834 *Where no value ofQs is shown, the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 96 DIMENSIONS AND PROPERTIES DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Long legs back to back Y Wt. Area of per ft 2 Angles 2 Angles Designation 2 Axis X-X S I 4 in. r 3 y Z yp 3 lb in. in. in. in. in. in. L8×6×1 L8×6×13⁄4 L8×6×11⁄2 88.4 67.6 46.0 26.0 19.9 13.5 161 126 88.6 30.2 23.3 16.0 2.49 2.53 2.56 2.65 2.56 2.47 54.5 42.2 29.1 1.50 1.38 1.25 L8×4×1 L8×6×13⁄4 L8×6×11⁄2 74.8 57.4 39.2 22.0 16.9 11.5 139 109 77.0 28.1 21.8 15.0 2.52 2.55 2.59 3.05 2.95 2.86 48.5 37.7 26.1 2.50 2.38 2.25 L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8 52.4 35.8 27.2 15.4 10.5 7.97 75.6 53.3 41.1 16.8 11.6 8.88 2.22 2.25 2.27 2.51 2.42 2.37 29.6 20.6 15.7 1.88 1.75 1.69 L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8 47.2 40.0 32.4 24.6 13.9 11.7 9.50 7.22 49.0 42.1 34.8 26.9 12.5 10.6 8.67 6.64 1.88 1.90 1.91 1.93 2.08 2.03 1.99 1.94 22.3 19.0 15.6 11.9 1.38 1.31 1.25 1.19 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 23.4 19.6 6.84 5.74 25.7 21.8 6.49 5.47 1.94 1.95 2.04 2.01 11.5 9.70 1.44 1.41 L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 39.6 27.2 20.8 17.4 11.6 8.00 6.09 5.12 27.8 20.0 15.6 13.2 8.55 5.97 4.59 3.87 1.55 1.58 1.60 1.61 1.75 1.66 1.61 1.59 15.3 10.8 8.28 6.99 1.13 1.00 0.938 0.906 L5×3×1⁄2 L7×4×3⁄8 L7×4×5⁄16 L7×4×1⁄4 25.6 19.6 16.4 13.2 7.50 5.72 4.80 3.88 18.9 14.7 12.5 10.2 5.82 4.47 3.77 3.06 1.59 1.61 1.61 1.62 1.75 1.70 1.68 1.66 10.3 7.95 6.71 5.45 1.25 1.19 1.16 1.13 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 97 DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Long legs back to back Y Qs* Axis Y-Y Radii of Gyration Back to Back of Angles, in. Angles in Contact Angles Separated 0 3⁄ 8 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi L8×6×1 L8×6×13⁄4 L8×6×11⁄2 2.39 2.35 2.32 2.52 2.48 2.44 2.66 2.62 2.57 — — — — — — — — 0.911 — — 0.834 L8×4×1 L8×4×13⁄4 L8×4×11⁄2 1.47 1.42 1.38 1.61 1.55 1.51 1.75 1.69 1.64 — — — — — — — — 0.911 — — 0.834 L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8 1.48 1.44 1.43 1.62 1.57 1.55 1.76 1.71 1.68 — — — — — — — 0.965 0.839 — 0.897 0.750 L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8 1.55 1.53 1.51 1.5 1.69 1.67 1.64 1.62 1.83 1.81 1.78 1.76 — — — — — — — — — — — 0.911 — — 0.961 0.834 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 1.26 1.26 1.39 1.38 1.53 1.51 — — — — 0.911 0.825 0.834 0.733 L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 1.40 1.35 1.34 1.33 1.53 1.49 1.46 1.45 1.68 1.63 1.60 1.59 — — — — — — — — — — 0.982 0.911 — — 0.919 0.834 L5×3×1⁄2 L7×4×3⁄8 L7×4×5⁄16 L7×4×1⁄4 1.12 1.10 1.09 1.08 1.25 1.23 1.22 1.21 1.40 1.37 1.36 1.34 — — — — — — — — — 0.982 0.911 0.804 — 0.919 0.834 0.708 Designation *Where no value of Qs is shown the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 98 DIMENSIONS AND PROPERTIES DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Long legs back to back Y Wt. Area of per ft 2 Angles 2 Angles Designation 2 Axis X-X S I 4 in. r 3 y Z yp 3 lb in. in. in. in. in. in. L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 23.8 18.2 15.4 12.4 7.00 5.34 4.49 3.63 10.6 8.35 7.12 5.83 3.87 2.99 2.53 2.05 1.23 1.25 1.26 1.27 1.25 1.21 1.18 1.16 7.00 5.42 4.59 3.73 0.500 0.438 0.406 0.375 L4×3×1⁄2 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 22.2 17.0 14.4 11.6 6.50 4.97 4.18 3.38 10.1 7.93 6.76 5.54 3.78 2.92 2.47 2.00 1.25 1.26 1.27 1.28 1.33 1.28 1.26 1.24 6.81 5.28 4.47 3.63 0.750 0.688 0.656 0.625 L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 15.8 13.2 10.8 4.59 3.87 3.13 5.45 4.66 3.83 2.25 1.91 1.55 1.09 1.10 1.11 1.08 1.06 1.04 4.08 3.46 2.82 0.438 0.406 0.375 L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4 14.4 9.80 4.22 2.88 5.12 3.60 2.19 1.51 1.10 1.12 1.16 1.11 3.94 2.73 0.688 0.625 L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×5⁄16 13.2 9.00 6.77 3.84 2.63 1.99 3.31 2.35 1.81 1.62 1.12 0.859 0.928 0.945 0.954 0.956 0.911 0.888 2.93 2.04 1.56 0.438 0.375 0.344 L3×2×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16 11.8 10.0 8.20 6.14 3.47 2.93 2.38 1.80 3.06 2.63 2.17 1.68 1.56 1.33 1.08 0.830 0.940 0.948 0.957 0.966 1.04 1.02 0.993 0.970 2.79 2.38 1.95 1.49 0.688 0.656 0.625 0.594 L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 10.6 9.00 7.24 5.50 3.09 2.62 2.13 1.62 1.82 1.58 1.31 1.02 1.09 0.932 0.763 0.586 0.768 0.776 0.784 0.793 0.831 0.809 0.787 0.764 1.97 1.69 1.38 1.06 0.438 0.406 0.375 0.344 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 99 DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Long legs back to back Y Qs* Axis Y-Y Radii of Gyration Angles in Contact Angles Separated 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi Back to Back of Angles, in. Designation 0 3⁄ 8 L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 1.44 1.42 1.42 1.41 1.58 1.56 1.55 1.54 1.72 1.70 1.69 1.67 — — — — — — — 0.982 — — 0.997 0.911 — — 0.935 0.834 L4×3×1⁄2 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 1.20 1.18 1.17 1.16 1.33 1.31 1.30 1.29 1.48 1.45 1.44 1.43 — — — — — — — — — — 0.997 0.911 — — 0.935 0.834 L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 1.22 1.21 1.20 1.36 1.35 1.33 1.50 1.49 1.48 — — — — — — — — 0.965 — 0.986 0.897 L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4 0.976 0.958 1.11 1.09 1.26 1.23 — — — — — 0.965 — 0.897 L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×5⁄16 1.02 1.00 0.993 1.16 1.13 1.12 1.31 1.28 1.27 — — — — — — — — 0.911 — 0.961 0.834 L3×2×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16 0.777 0.767 0.757 0.749 0.917 0.903 0.891 0.879 1.07 1.06 1.04 1.03 — — — — — — — — — — — 0.911 — — 0.961 0.834 L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 0.819 0.809 0.799 0.790 0.961 0.948 0.935 0.923 1.12 1.10 1.09 1.07 — — — — — — — — — — — 0.982 — — — 0.919 *Where no value of Qs is shown, the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 100 DIMENSIONS AND PROPERTIES DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Short legs back to back Y Wt. Area of per ft 2 Angles 2 Angles Designation 2 Axis X-X S I 4 in. r 3 y Z yp 3 lb in. in. in. in. in. in. L8×6×1 L8×6×13⁄4 L8×6×11⁄2 88.4 67.6 46.0 26.0 19.9 13.5 77.6 61.4 43.4 17.8 13.8 9.58 1.73 1.76 1.79 1.65 1.56 1.47 32.4 24.9 17.0 0.813 0.621 0.422 L8×4×1 L8×6×13⁄4 L8×6×11⁄2 74.8 57.4 39.2 22.0 16.9 11.5 23.3 18.7 13.5 7.88 6.14 4.29 1.03 1.05 1.08 1.05 0.953 0.859 15.4 11.6 7.80 0.688 0.527 0.359 L7×4×3⁄4 L5×3×1⁄2 L5×3×3⁄8 52.4 35.8 27.2 15.4 10.5 7.97 18.1 13.1 10.2 6.05 4.23 3.26 1.09 1.11 1.13 1.01 0.917 0.870 11.3 7.66 5.80 0.549 0.375 0.285 L6×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×3⁄8 47.2 40.0 32.4 24.6 13.9 11.7 9.50 7.22 17.4 15.0 12.5 9.81 5.94 5.07 4.16 3.21 1.12 1.13 1.15 1.17 1.08 1.03 0.987 0.941 10.9 9.24 7.50 5.71 0.578 0.488 0.396 0.301 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 23.4 19.6 6.84 5.74 6.68 5.70 2.46 2.08 0.988 0.996 0.787 0.763 4.41 3.70 0.285 0.239 L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 39.6 27.2 20.8 17.4 11.6 8.00 6.09 5.12 11.1 8.10 6.37 5.44 4.43 3.12 2.41 2.04 0.977 1.01 1.02 1.03 0.996 0.906 0.861 0.838 8.20 5.65 4.32 3.63 0.581 0.400 0.305 0.256 L5×3×1⁄2 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 25.6 19.6 16.4 13.2 7.50 5.72 4.80 3.88 5.16 4.08 3.49 2.88 2.29 1.78 1.51 1.23 0.829 0.845 0.853 0.861 0.750 0.704 0.681 0.657 4.22 3.21 2.69 2.17 0.375 0.286 0.240 0.194 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 101 DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Short legs back to back Y Qs* Axis Y-Y Radii of Gyration Back to Back of Angles, in. Angles in Contact Angles Separated 0 3⁄ 8 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi L8×6×1 L8×6×13⁄4 L8×6×11⁄2 3.64 3.60 3.56 3.78 3.74 3.69 3.92 3.88 3.83 — — 0.995 — — 0.921 — — 0.911 — — 0.834 L8×4×1 L8×4×13⁄4 L8×4×11⁄2 3.95 3.90 3.86 4.10 4.05 4.00 4.25 4.19 4.14 — — 0.995 — — 0.921 — — 0.911 — — 0.834 L7×4×3⁄4 L7×4×1⁄2 L7×4×3⁄8 3.35 3.30 3.28 3.49 3.44 3.42 3.64 3.59 3.56 — — 0.926 — 0.982 0.838 — 0.965 0.839 0.897 0.750 L6×4×3⁄4 L7×4×5⁄8 L7×4×1⁄2 L7×4×3⁄8 2.80 2.78 2.76 2.74 2.94 2.92 2.90 2.87 3.09 3.06 3.04 3.02 — — — 0.995 — — — 0.921 — — — 0.911 — — 0.961 0.834 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 2.81 2.80 2.95 2.94 3.09 3.08 0.995 0.912 0.921 0.822 0.911 0.825 0.834 0.733 L5×31⁄2×3⁄4 L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 2.33 2.29 2.27 2.26 2.48 2.43 2.41 2.39 2.63 2.57 2.55 2.54 — — — 0.995 — — — 0.921 — — 0.982 0.911 — — 0.919 0.834 L5×3×1⁄2 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 2.36 2.34 2.33 2.32 2.50 2.48 2.47 2.46 2.65 2.63 2.61 2.60 — — 0.995 0.891 — — 0.921 0.797 — 0.982 0.911 0.804 — 0.919 0.834 0.708 Designation *Where no value of Qs is shown, the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 102 DIMENSIONS AND PROPERTIES DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Short legs back to back Y Wt. Area of per ft 2 Angles 2 Angles Designation 2 Axis X-X S I 4 in. r 3 y Z yp 3 lb in. in. in. in. in. in. L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 23.8 18.2 15.4 12.4 7.00 5.34 4.49 3.63 7.58 5.97 5.10 4.19 3.03 2.35 1.99 1.62 1.04 1.06 1.07 1.07 1.00 0.955 0.932 0.909 5.47 4.21 3.56 2.89 0.438 0.334 0.281 0.227 L4×3×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 22.2 17.0 14.4 11.6 6.50 4.97 4.18 3.38 4.85 3.84 3.29 2.71 2.23 1.73 1.47 1.20 0.864 0.879 0.887 0.896 0.827 0.782 0.759 0.736 4.06 3.11 2.63 2.13 0.406 0.311 0.261 0.211 L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 15.8 13.2 10.8 4.59 3.87 3.13 3.69 3.17 2.61 1.70 1.44 1.18 0.897 0.905 0.914 0.830 0.808 0.785 3.06 2.59 2.10 0.328 0.276 0.223 L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4 14.4 9.80 4.22 2.88 2.18 1.55 1.18 0.824 0.719 0.735 0.660 0.614 2.15 1.47 0.301 0.205 L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 13.2 9.00 6.77 3.84 2.63 1.99 2.08 1.49 1.15 1.16 0.808 0.620 0.736 0.753 0.761 0.706 0.661 0.638 2.10 1.45 1.11 0.320 0.219 0.166 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 11.8 10.0 8.20 6.14 3.47 2.93 2.38 1.80 1.09 0.941 0.784 0.613 0.743 0.634 0.520 0.401 0.559 0.567 0.574 0.583 0.539 0.516 0.493 0.470 1.37 1.16 0.937 0.713 0.289 0.244 0.198 0.150 L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 10.6 9.00 7.24 5.50 3.09 2.62 2.13 1.62 1.03 0.893 0.745 0.583 0.725 0.620 0.509 0.392 0.577 0.584 0.592 0.600 0.581 0.559 0.537 0.514 1.32 1.12 0.915 0.701 0.309 0.262 0.213 0.162 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DOUBLE ANGLES 1 - 103 DOUBLE ANGLES Two unequal leg angles Properties of sections Y X X y, yp s Short legs back to back Y Qs* Axis Y-Y Radii of Gyration Back to Back of Angles, in. Angles in Contact Angles Separated 0 3⁄ 8 3⁄ 4 Fy = 36 ksi Fy = 50 ksi Fy = 36 ksi Fy = 50 ksi L4×31⁄2×1⁄2 L4×31⁄2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 1.76 1.74 1.73 1.72 1.89 1.87 1.86 1.85 2.04 2.01 2.00 1.99 — — — 0.995 — — — 0.921 — — 0.997 0.911 — — 0.935 0.834 L4×3×1⁄2 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 1.82 1.80 1.79 1.78 1.96 1.94 1.93 1.92 2.11 2.08 2.07 2.06 — — — 0.995 — — — 0.921 — — 0.997 0.911 — — 0.935 0.834 L31⁄2×3×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 1.53 1.52 1.52 1.67 1.66 1.65 1.82 1.80 1.79 — — — — — 0.982 — — 0.965 — 0.986 0.897 L31⁄2×21⁄2×3⁄8 L31⁄2×21⁄2×1⁄4 1.60 1.58 1.74 1.72 1.89 1.86 — — — 0.982 — 0.965 — 0.897 L3×21⁄2×3⁄8 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 1.33 1.31 1.30 1.47 1.45 1.44 1.62 1.60 1.58 — — 0.995 — — 0.921 — — 0.911 — 0.961 0.834 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 1.40 1.39 1.38 1.37 1.55 1.53 1.52 1.51 1.70 1.68 1.67 1.66 — — — 0.995 — — — 0.921 — — — 0.911 — — 0.961 0.834 L21⁄2×2×3⁄8 L4×31⁄2×5⁄16 L4×31⁄2×1⁄4 L4×31⁄2×3⁄16 1.13 1.12 1.11 1.10 1.28 1.26 1.25 1.24 1.43 1.42 1.40 1.39 — — — — — — — — — — — 0.982 — — — 0.911 Designation *Where no value of Qs is shown the angles comply with LRFD Specification Section E2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 104 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 105 COMBINATION SECTIONS Standard rolled shapes are frequently combined to produce efficient and economical structural members for special applications. Experience has established a demand for certain combinations. When properly sized and connected to satisfy the design and specification criteria, these members may be used as struts, lintels, eave struts, and light crane and trolley runways. The W section with channel attached to the web is not recommended for use as a trolley or crane runway member. Properties of several combined sections are tabulated for those combinations that experience has proven to be in popular demand. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 106 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS W shapes and channels Properties of sections Y y 2 X X y , yp 1 Y Beam Channel Axis X-X Total Weight per ft Total Area lb in.2 I S1 = I / y1 S2 = I / y2 r in.4 in.3 in.3 in. W12×26 W ×26 C10×15.3 C12×20.7 41.3 46.7 12.14 13.74 299 318 36.3 36.8 70.5 82.2 4.96 4.81 W14×30 W ×30 C10×15.3 C12×20.7 45.3 50.7 13.34 14.94 420 448 46.1 46.8 84.6 98.3 5.61 5.47 W16×36 W ×36 C12×20.7 C15×33.9 56.7 69.9 16.69 20.56 670 748 62.8 64.6 123 160 6.34 6.03 W18×50 W ×50 C12×20.7 C15×33.9 70.7 83.9 20.79 24.66 1120 1250 97.4 100 166 211 7.34 7.11 W21×62 W ×62 W ×68 W ×68 C12×20.7 C15×33.9 C12×20.7 C15×33.9 82.7 95.9 88.7 101.9 24.39 28.26 26.09 29.96 1800 2000 1960 2180 138 142 152 156 218 272 232 287 8.59 8.41 8.68 8.52 W24×68 W ×68 W ×84 W ×84 C12×20.7 C15×33.9 C12×20.7 C15×33.9 88.7 101.9 104.7 117.9 26.19 30.06 30.79 34.66 2450 2720 3040 3340 168 173 212 217 258 321 303 368 9.67 9.50 9.93 9.82 W27×84 W ×94 C15×33.9 C15×33.9 117.9 127.9 34.76 37.66 4050 4530 237 268 404 436 10.8 11.0 W30×99 W ×99 W ×116 W ×116 C15×33.9 C18×42.7 C15×33.9 C18×42.7 132.9 141.7 149.9 158.7 39.06 41.70 44.16 46.80 5540 5830 6590 6900 300 304 360 365 480 533 544 599 11.9 11.8 12.2 12.1 W33×118 W ×118 W ×141 W ×141 C15×33.9 C18×42.7 C15×33.9 C18×42.7 151.9 160.7 174.9 183.7 44.66 47.30 51.56 54.20 7900 8280 9580 10000 395 400 484 490 596 656 689 751 13.3 13.2 13.6 13.6 W36×150 W ×150 C15×33.9 C18×42.7 183.9 192.7 54.16 56.80 11500 12100 546 553 765 832 14.6 14.6 AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 107 COMBINATION SECTIONS W shapes and channels Properties of sections Y y 2 X X y , yp 1 Y Axis X-X y1 Beam Z Axis Y-Y yp 3 Channel in. in. W12×26 W30×26 C10×15.3 C12×20.7 8.22 8.63 W14×30 W30×30 C10×15.3 C12×20.7 W16×36 W30×36 S I 4 3 r Z in. in.3 in. in. in. 47.0 48.8 11.30 11.55 84.7 146 16.9 24.4 2.64 3.26 24.0 33.6 9.12 9.57 60.5 62.3 12.56 12.87 87.0 149 17.4 24.8 2.55 3.15 24.8 34.4 C12×20.7 C15×33.9 10.67 11.58 83.6 88.6 14.56 15.21 154 340 25.6 45.3 3.03 4.06 36.3 61.3 W18×50 W30×50 C12×20.7 C15×33.9 11.51 12.47 128 134 16.08 16.90 169 355 28.2 47.3 2.85 3.79 42.0 67.0 W21×62 W30×62 W30×68 W30×68 C12×20.7 C15×33.9 C12×20.7 C15×33.9 13.01 14.06 12.93 13.95 182 190 200 208 18.06 19.36 17.60 19.32 187 373 194 380 31.1 49.7 32.3 50.6 2.77 3.63 2.72 3.56 47.2 72.2 49.8 74.8 W24×68 W30×68 W30×84 W30×84 C12×20.7 C15×33.9 C12×20.7 C15×33.9 14.53 15.67 14.35 15.40 224 234 275 288 19.15 21.66 18.49 21.61 199 385 223 409 33.2 51.4 37.2 54.6 2.76 3.58 2.69 3.44 50.0 75.0 58.1 83.1 W27×84 W27×94 C15×33.9 C15×33.9 17.07 16.92 320 357 23.86 23.56 421 439 56.1 58.5 3.48 3.41 83.6 89.2 W30×99 W30×99 W30×116 W30×116 C15×33.9 C18×42.7 C15×33.9 C18×42.7 18.51 19.18 18.30 18.93 408 418 480 492 24.34 26.43 23.77 26.04 443 682 479 718 59.1 75.8 63.9 79.8 3.37 4.04 3.29 3.92 89.1 113 99.6 124 W33×118 W30×118 W30×141 W30×141 C15×33.9 C18×42.7 C15×33.9 C18×42.7 20.01 20.69 19.79 20.42 529 544 634 652 25.43 27.77 24.83 26.96 502 741 561 800 66.9 82.3 74.8 88.9 3.35 3.96 3.30 3.84 102 126 117 141 W36×150 W30×150 C15×33.9 C18×42.7 21.15 21.81 716 738 25.84 27.91 585 824 78.0 91.6 3.29 3.81 121 145 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 108 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS S shapes and channels Properties of sections Y y 2 X X y , yp 1 Y Beam Channel Axis X-X Total Weight per ft Total Area lb in.2 I S1 = I / y1 S2 = I / y2 r in.4 in.3 in.3 in. S10×25.4 C8×11.5 C10×15.3 36.9 40.7 10.84 11.95 176 186 27.2 27.6 46.6 52.9 4.02 3.94 S12×31.8 C8×11.5 C10×15.3 43.3 47.1 12.73 13.84 299 316 39.8 40.4 63.2 71.4 4.84 4.78 S15×42.9 C8×11.5 C10×15.3 54.4 58.2 15.98 17.09 585 616 64.9 65.8 94.2 105 6.05 6.01 S20×66 C10×15.3 C12×20.7 81.3 86.7 23.89 25.49 1530 1620 130 132 181 203 8.00 7.97 S24×80 C10×15.3 C12×20.7 95.3 100.7 27.99 29.59 2610 2750 188 191 252 278 9.66 9.65 AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 109 COMBINATION SECTIONS S shapes and channels Properties of sections Y y 2 X X y , yp 1 Y Axis X-X y1 Beam Z Axis Y-Y yp 3 S I 4 3 r Z in. in.3 Channel in. in. in. in. in. S10×25.4 C8×11.5 C10×15.3 6.45 6.73 35.7 36.9 8.81 9.02 39.4 74.2 9.8 14.8 1.91 2.49 14.5 20.8 S12×31.8 C8×11.5 C10×15.3 7.50 7.82 52.6 53.9 10.30 10.61 42.0 76.8 10.5 15.4 1.82 2.36 16.0 22.2 S15×42.9 C8×11.5 C10×15.3 9.01 9.37 85.7 88.2 11.58 12.77 47.0 81.8 11.8 16.4 1.71 2.19 18.6 24.9 S20×66 C10×15.3 C12×20.7 11.81 12.29 171 178 14.41 15.99 95.1 157 19.0 26.1 2.00 2.48 31.2 40.8 S24×80 C10×15.3 C12×20.7 13.86 14.38 244 254 16.46 18.05 110 171 21.9 28.5 1.98 2.41 36.6 46.2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 110 DIMENSIONS AND PROPERTIES d 2 Yd COMBINATION SECTIONS Two channels Properties of sections 2 y 2 X X x1 , xp y , yp 1 Y Vertical Horizontal Channel Channel Axis X-X Total Weight per ft Total Area lb in.2 I S1 = I / y1 S2 = I / y2 r y1 Z yp in.4 in.3 in.3 in. in. in.3 in. C3×4.1 C4×5.4 9.5 2.80 3.0 1.4 3.0 1.04 2.20 2.16 2.67 C4×5.4 C4×5.4 C5×6.7 10.8 12.1 3.18 3.56 6.5 6.9 2.3 2.3 4.9 5.5 1.43 1.39 2.86 2.94 3.39 3.62 3.56 3.61 C5×6.7 C5×6.7 C6×8.2 C7×9.8 13.4 14.9 16.5 3.94 4.37 4.84 12.8 13.4 14.0 3.5 3.6 3.7 8.0 8.9 9.8 1.80 1.75 1.70 3.60 3.70 3.79 5.23 5.50 5.81 4.50 4.57 4.62 C6×8.2 C5×6.7 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 14.9 16.4 18.0 19.7 21.6 23.5 4.37 4.80 5.27 5.78 6.34 6.89 21.5 22.5 23.4 24.3 25.2 26.0 5.1 5.2 5.2 5.3 5.4 5.5 10.9 12.1 13.3 14.5 15.8 16.9 2.22 2.16 2.11 2.05 1.99 1.94 4.22 4.34 4.45 4.55 4.64 4.70 7.31 7.61 7.93 8.30 8.72 9.16 5.37 5.45 5.53 5.58 5.63 5.65 C7×9.8 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 18.0 19.6 21.3 23.2 25.1 5.27 5.74 6.25 6.81 7.36 35.3 36.7 38.0 39.3 40.5 7.1 7.2 7.3 7.4 7.5 15.7 17.3 18.8 20.5 21.9 2.59 2.53 2.47 2.40 2.34 4.95 5.08 5.20 5.31 5.39 10.2 10.6 10.9 11.4 11.8 6.32 6.40 6.48 6.54 6.58 C8×11.5 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7 19.7 21.3 23.0 24.9 26.8 32.2 5.78 6.25 6.76 7.32 7.87 9.47 52.4 54.5 56.4 58.4 60.0 64.4 9.5 9.6 9.7 9.8 9.9 10.2 19.6 21.6 23.6 25.6 27.5 32.6 3.01 2.95 2.89 2.82 2.76 2.61 5.53 5.68 5.82 5.95 6.06 6.30 13.4 13.8 14.2 14.6 15.1 16.4 7.18 7.27 7.35 7.44 7.49 7.62 AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 111 COMBINATION SECTIONS Two channels Properties of sections d 2 Yd 2 y 2 X X x1 , xp y , yp 1 Y Axis Y-Y Vertical Channel Horizontal Channel I S r x1 Z xp in.4 in.3 in. in. in.3 in. C3×4.1 C4×5.4 4.0 2.0 1.20 0.44 2.67 0.315 C4×5.4 C4×5.4 C5×6.7 4.2 7.8 2.1 3.1 1.14 1.48 0.46 0.46 2.84 4.09 0.281 0.282 C5×6.7 C5×6.7 C6×8.2 C7×9.8 8.0 13.6 21.8 3.2 4.5 6.2 1.42 1.76 2.12 0.48 0.48 0.48 4.29 5.90 7.90 0.264 0.266 0.268 C6×8.2 C5×6.7 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 8.2 13.8 22.0 33.3 48.6 68.1 3.3 4.6 6.3 8.3 10.8 13.6 1.37 1.70 2.04 2.40 2.77 3.14 0.51 0.51 0.51 0.51 0.51 0.51 4.52 6.14 8.13 10.6 13.5 16.8 0.242 0.245 0.247 0.249 0.252 0.254 C7×9.8 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 14.1 22.3 33.6 48.6 68.4 4.7 6.4 8.4 10.9 13.7 1.63 1.97 2.32 2.68 3.05 0.54 0.54 0.54 0.54 0.54 6.41 8.41 10.8 13.8 17.1 0.225 0.228 0.230 0.234 0.235 C8×11.5 C6×8.2 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7 14.4 22.6 33.9 49.2 68.7 130 4.8 6.5 8.5 10.9 13.7 21.7 1.58 1.90 2.24 2.59 2.95 3.71 0.57 0.57 0.57 0.57 0.57 0.57 6.73 8.73 11.2 14.1 17.4 27.0 0.218 0.219 0.219 0.220 0.220 0.230 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 112 DIMENSIONS AND PROPERTIES d 2 Yd COMBINATION SECTIONS Two channels Properties of sections 2 y 2 X X x1 , xp y , yp 1 Y Vertical Horizontal Channel Channel Total Weight per ft Axis X-X Total Area 2 lb in. C9×13.4 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7 23.2 24.9 26.8 28.7 34.1 6.81 7.32 7.88 8.43 10.03 C10×15.3 C8×11.5 C9×13.4 C10×15.3 C12×20.7 C15×33.9 26.8 28.7 30.6 36.0 49.2 7.87 8.43 8.98 10.58 14.45 C12×20.7 C9×13.4 C10×15.3 C12×20.7 C15×33.9 34.1 36.0 41.4 54.6 C15×33.9 C10×15.3 C12×20.7 C15×33.9 MC18×42.7 MC18×42.7 MC12×20.7 MC15×33.9 MC18×42.7 S1 = I / y1 I 4 in. 3 S2 = I / y2 3 r y1 Z yp 3 in. in. in. in. in. in. 12.4 12.6 12.7 12.8 13.1 26.3 28.7 31.2 33.5 39.8 3.38 3.32 3.25 3.19 3.02 6.26 6.42 6.57 6.69 6.98 17.6 18.1 18.5 19.0 20.4 8.11 8.21 8.31 8.37 8.54 110 114 117 126 141 15.8 15.9 16.1 16.4 17.3 34.2 37.2 39.9 47.5 63.7 3.75 3.68 3.61 3.45 3.13 7.00 7.16 7.30 7.64 8.18 22.4 22.9 23.4 24.9 28.3 9.07 9.18 9.26 9.46 9.73 10.03 10.58 12.18 16.05 207 213 228 256 25.2 25.4 25.9 27.0 51.4 55.0 65.3 87.8 4.54 4.48 4.32 4.00 8.21 8.38 8.79 9.48 35.7 36.3 38.0 41.8 10.78 10.88 11.16 11.56 49.2 54.6 67.8 76.6 14.45 16.05 19.92 22.56 474 509 575 608 48.8 49.9 52.0 53.1 85.6 99.8 132 152 5.72 5.63 5.37 5.19 9.71 10.19 11.06 11.45 69.7 72.2 77.4 80.7 12.83 13.31 14.04 14.37 63.4 76.6 85.4 18.69 22.56 25.20 860 975 1030 72.9 76.1 77.6 133 174 200 6.78 6.57 6.40 11.80 12.80 13.29 77.7 80.5 83.3 85.6 91.7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 106 113 117 15.51 16.50 16.96 COMBINATION SECTIONS 1 - 113 COMBINATION SECTIONS Two channels Properties of sections d 2 Yd 2 y 2 X X x1 , xp y , yp 1 Y Axis Y-Y Vertical Channel Horizontal Channel I S r x1 Z xp in.4 in.3 in. in. in.3 in. C9×13.4 C7×9.8 C8×11.5 C9×13.4 C10×15.3 C12×20.7 23.1 34.4 49.7 69.2 131 6.6 8.6 11.0 13.8 21.8 1.84 2.17 2.51 2.86 3.61 0.60 0.60 0.60 0.60 0.60 9.10 11.5 14.5 17.8 27.4 0.226 0.227 0.227 0.227 0.229 C10×15.3 C8×11.5 C9×13.4 C10×15.3 C12×20.7 C15×33.9 34.9 50.2 69.7 131 317 8.7 11.2 13.9 21.9 42.3 2.11 2.44 2.79 3.52 4.69 0.63 0.63 0.63 0.63 0.63 11.9 14.9 18.2 27.8 52.8 0.232 0.232 0.233 0.234 0.239 C12×20.7 C9×13.4 C10×15.3 C12×20.7 C15×33.9 51.8 71.3 133 319 11.5 14.3 22.1 42.5 2.27 2.60 3.30 4.46 0.70 0.70 0.70 0.70 16.0 19.3 29.0 54.0 0.261 0.261 0.262 0.266 C15×33.9 C10×15.3 C12×20.7 C15×33.9 MC18×42.7 75.5 137 323 562 15.1 22.9 43.1 62.5 2.29 2.92 4.03 4.99 0.79 0.79 0.79 0.79 22.1 31.7 56.7 80.7 0.337 0.338 0.342 0.343 MC18×42.7 MC12×20.7 MC15×33.9 MC18×42.7 143 329 568 23.9 43.9 63.2 2.77 3.82 4.75 0.88 0.88 0.88 33.6 58.6 82.6 0.355 0.358 0.359 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 114 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X X Long leg of angle turned out y , yp 1 x1 xp x2 Y Total Weight per ft Axis X-X Total Area 2 S1 = I / y1 I 4 3 3 in. r y1 Z yp 3 Angle lb in. in. in. in. in. in. C6×8.2 L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 12.3 12.7 13.6 14.8 14.0 3.59 3.71 3.96 4.33 4.09 17.9 18.5 19.0 19.8 19.5 8.0 8.5 8.9 9.8 9.5 4.8 4.8 4.9 5.0 5.0 2.24 2.23 2.19 2.14 2.19 2.24 2.17 2.13 2.02 2.06 6.75 6.90 7.23 7.54 7.36 1.40 1.26 1.26 1.11 1.13 C7×9.8 L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 13.9 14.3 15.2 16.4 15.6 17.0 4.06 4.18 4.43 4.80 4.56 4.96 28.5 29.3 30.0 31.2 30.8 32.0 10.6 11.2 11.8 12.9 12.4 13.7 6.6 6.7 6.7 6.8 6.8 6.9 2.65 2.65 2.60 2.55 2.60 2.54 2.68 2.61 2.54 2.42 2.48 2.35 9.13 9.31 9.64 9.99 9.81 10.2 1.67 1.53 1.53 1.35 1.39 1.20 C8×11.5 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16 16.0 16.9 18.1 17.3 18.7 20.2 4.69 4.94 5.31 5.07 5.47 5.94 43.9 44.9 46.7 46.0 47.8 49.9 14.3 15.1 16.4 15.8 17.3 18.9 8.9 9.0 9.0 9.0 9.1 9.3 3.06 3.02 2.97 3.01 2.96 2.90 3.07 2.98 2.84 2.91 2.76 2.64 12.2 12.6 13.0 12.8 13.2 13.9 1.81 1.81 1.60 1.67 1.45 1.30 C9×13.4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16 17.9 18.8 20.0 19.2 20.6 22.1 5.25 5.50 5.87 5.63 6.03 6.50 63.1 64.6 67.1 66.0 68.7 71.4 17.8 18.8 20.4 19.6 21.4 23.4 11.6 11.6 11.7 11.7 11.8 12.0 3.47 3.43 3.38 3.42 3.37 3.31 3.54 3.45 3.29 3.37 3.20 3.06 15.8 16.1 16.6 16.3 16.8 17.5 2.11 2.11 1.87 1.98 1.73 1.58 C10×15.3 L31⁄2×3 ×1⁄4 L3×21⁄2 ×5⁄16 L4 ×3 ×1⁄4 L3×2 ×5⁄16 L5 ×31⁄2×5⁄16 L3×21⁄2 ×3⁄8 20.7 21.9 21.1 22.5 24.0 25.7 6.05 6.42 6.18 6.58 7.05 7.54 89.3 92.7 91.1 94.7 98.4 102 22.8 24.8 23.8 25.9 28.2 30.6 14.7 14.8 14.8 14.9 15.1 15.2 3.84 3.80 3.84 3.79 3.74 3.67 3.91 3.74 3.83 3.65 3.49 3.33 20.0 20.6 20.3 20.9 21.6 22.2 2.39 2.12 2.26 1.98 1.84 1.61 Channel in. S2 = I / y2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 115 COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X X Long leg of angle turned out y , yp 1 x1 xp x2 Y Axis Y-Y S1 = I / x1 I 3 3 r x1 Z xp 3 in. in. in. in. in. in. C6×8.2 L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 2.6 3.6 4.9 5.7 6.5 1.0 1.2 1.4 1.7 1.7 1.4 1.9 2.4 2.7 3.1 0.85 0.98 1.11 1.14 1.26 2.60 3.01 3.40 3.31 3.79 2.02 2.38 2.82 3.27 3.30 2.60 3.09 3.57 3.54 4.06 C7×9.8 L21⁄2×21⁄2×1⁄4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L31⁄2 ×5⁄16 3.0 4.0 5.4 6.3 7.1 8.3 1.1 1.3 1.6 1.8 18 2.2 1.6 2.0 2.6 2.9 3.2 3.6 0.86 0.98 1.10 1.14 1.25 1.29 2.67 3.09 3.48 3.40 3.88 3.78 2.31 2.66 3.11 3.57 3.59 4.16 2.62 3.11 3.59 3.57 4.08 4.05 C8×11.5 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16 4.6 6.0 6.9 7.8 9.0 14.7 14 1.7 2.0 2.0 2.3 3.2 2.2 2.7 3.0 3.4 3.8 5.6 0.99 1.10 1.14 1.24 1.28 1.57 3.16 3.56 3.48 3.97 3.87 4.64 3.00 3.45 3.91 3.93 4.51 5.97 3.13 3.61 3.59 4.10 4.08 5.05 C9×13.4 L3 ×21⁄2×1⁄4 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16 5.2 6.7 7.7 8.5 9.9 15.8 1.6 1.8 2.2 2.1 2.5 3.3 2.3 2.9 3.2 3.6 4.0 5.9 0.99 1.10 1.14 1.23 1.28 1.56 3.22 3.64 3.55 4.05 3.96 4.74 3.38 3.83 4.31 4.32 4.91 6.38 3.14 3.63 3.61 4.12 4.10 5.08 C10×15.3 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L3×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 7.4 8.5 9.4 10.8 16.9 19.2 2.0 2.3 2.3 2.7 3.5 4.1 3.1 3.4 3.8 4.2 6.1 6.7 1.11 1.15 1.23 1.28 1.55 1.60 3.70 3.62 4.12 4.03 4.83 4.73 4.25 4.73 4.74 5.34 6.82 7.70 3.64 3.63 4.14 4.12 5.09 5.07 Channel Angle in. 4 S2 = I / x2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 116 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X X Long leg of angle turned out y , yp 1 x1 xp x2 Y Total Weight per ft Axis X-X Total Area 2 S1 = I / y1 I 4 3 S2 = I / y2 3 r y1 Z yp 3 Angle lb in. in. in. in. in. in. in. in. C12×20.7 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L31⁄2×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2 26.1 27.3 26.5 27.9 29.4 31.1 33.0 36.9 7.65 8.02 7.78 8.18 8.65 9.14 9.70 10.84 164 170 167 173 180 186 192 202 33.2 35.8 34.4 37.2 40.2 43.4 46.6 53.2 23.2 23.5 23.4 23.6 23.9 24.1 24.3 24.7 4.63 4.61 4.63 4.60 4.56 4.51 4.45 4.32 4.94 4.75 4.86 4.66 4.47 4.29 4.12 3.80 31.4 32.2 31.8 32.6 33.5 34.2 35.3 36.7 3.23 2.80 3.01 2.67 2.53 2.25 2.11 1.68 C12×25 L31⁄2×3 ×1⁄4 L5×31⁄2 ×5⁄16 L4 ×3 ×1⁄4 L5×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2 30.4 31.6 30.8 32.2 33.7 35.4 37.3 41.2 8.91 9.28 9.04 9.44 9.91 10.40 10.96 12.10 180 187 183 190 197 204 211 223 35.4 38.0 36.6 39.3 42.3 45.4 48.7 55.3 26.1 26.4 26.3 26.6 26.9 27.2 27.5 28.0 4.50 4.49 4.50 4.49 4.46 4.43 4.39 4.29 5.09 4.92 5.02 4.84 4.67 4.49 4.33 4.03 35.8 36.8 36.3 37.3 38.3 39.3 40.4 42.2 3.98 3.50 3.82 3.30 3.05 2.77 2.65 2.20 C15×33.9 L4 ×3 ×1⁄4 L5×3 ×5⁄16 L5 ×31⁄2×5⁄16 L5×31⁄2 ×3⁄8 L6 ×4 ×3⁄8 L5×3 ×1⁄2 39.7 41.1 42.6 44.3 46.2 50.1 11.65 12.05 12.52 13.01 13.57 14.71 383 395 408 421 434 458 58.7 62.4 66.5 70.8 75.4 84.8 45.1 45.6 46.1 46.5 46.9 47.7 5.73 5.73 5.71 5.69 5.65 5.58 6.52 6.33 6.14 5.94 5.76 5.40 60.1 61.8 63.4 64.8 66.2 68.6 5.39 4.89 4.30 3.69 3.48 2.92 Channel AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 117 COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X X Long leg of angle turned out y , yp 1 x1 xp x2 Y Axis Y-Y S1 = I / x1 I 3 3 r x1 Z xp 3 in. in. in. in. in. in. C12×20.7 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2 9.5 10.7 11.6 13.2 19.9 22.5 33.2 40.6 2.5 2.8 2.7 3.2 40 4.6 5.8 7.3 3.7 4.0 4.4 4.8 6.8 7.5 10.3 11.9 1.12 1.16 1.22 1.27 1.52 1.57 1.85 1.93 3.84 3.77 4.28 4.20 5.02 4.93 5.72 5.52 5.45 5.94 5.94 6.56 8.06 8.97 11.1 13.7 3.69 3.67 4.18 4.16 5.15 5.13 6.10 6.05 C12×25 L31⁄2×3 ×1⁄4 L31⁄2×3 ×5⁄16 L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2 10.2 11.4 12.3 13.9 20.8 23.5 34.5 42.3 2.6 3.0 2.8 3.3 4.1 4.7 5.9 7.5 3.8 4.2 4.5 5.0 7.0 7.7 10.7 12.4 1.07 1.11 1.17 1.22 1.45 1.50 1.77 1.87 3.87 3.81 4.32 4.25 5.09 5.00 5.81 5.63 5.88 6.40 6.38 7.02 8.54 9.48 11.7 14.3 3.74 3.72 4.23 4.22 5.20 5.18 6.15 6.11 C15×33.9 L4 ×3 ×1⁄4 L4×3 ×5⁄16 L5 ×31⁄2×5⁄16 L31⁄2×3 ×3⁄8 L6 ×4 ×3⁄8 L4×3 ×1⁄2 16.8 18.7 26.2 29.3 41.3 50.3 3.7 4.2 4.9 5.6 6.8 8.5 5.8 6.3 8.5 9.2 12.4 14.3 1.20 1.25 1.45 1.50 1.75 1.85 4.49 4.43 5.30 5.23 6.06 5.89 8.82 9.47 11.0 12.0 14.2 16.9 4.27 4.26 5.24 5.23 6.21 6.17 Channel Angle in. 4 S2 = I / x2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 118 DIMENSIONS AND PROPERTIES COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X X y , yp 1 1 x1 xp Short leg of angle turned out 2 x2 Y Total Weight per ft Total Area 2 3 in. S2 = I / y2 3 in. r y1 Z yp 3 in. in. in. in. L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 12.7 13.1 14.0 16.4 18.0 3.71 3.84 4.09 4.80 5.27 6.0 6.1 6.4 7.5 7.7 5.9 6.2 6.2 6.4 6.8 2.61 2.68 2.63 2.55 2.56 4.21 4.56 4.46 4.16 4.45 7.86 8.23 8.32 8.77 9.32 2.79 3.25 3.18 3.00 3.46 C 7×9.8 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 14.3 14.7 15.6 18.0 19.6 4.18 4.31 4.56 5.27 5.74 8.0 8.0 8.5 10.0 10.3 7.8 8.2 8.2 8.5 8.9 3.00 3.07 3.03 2.95 2.96 4.70 5.05 4.93 4.60 4.87 10.5 10.9 1 1.0 11.6 12.2 2.95 3.38 3.29 3.11 3.50 C 8×11.5 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 16.0 16.4 17.3 19.7 21.3 4.69 4.82 5.07 5.78 6.25 10.4 10.4 10.9 12.9 13.3 10.2 10.6 10.6 11.0 11.4 3.39 3.45 3.42 3.36 3.36 5.20 5.55 5.42 5.06 5.31 13.7 14.2 14.3 14.9 15.6 3.52 3.73 3.42 3.21 3.61 C 9×13.4 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 17.9 18.3 19.2 21.6 23.2 5.25 5.38 5.63 6.34 6.81 13.1 13.1 13.8 16.2 16.7 12.9 13.4 13.5 13.9 14.4 3.78 3.84 3.81 3.76 3.77 5.71 6.07 5.93 5.54 5.78 17.4 18.0 18.3 19.0 19.7 4.18 4.42 3.88 3.32 3.71 C10×15.3 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 19.8 20.2 21.1 23.5 25.1 5.80 5.93 6.18 6.89 7.36 16.2 16.1 17.0 19.9 20.5 16.0 16.5 16.6 17.1 17.7 4.17 4.22 4.20 4.17 4.18 6.22 6.58 6.43 6.02 6.25 21.4 22.1 22.5 23.5 24.2 4.77 5.01 4.48 3.44 3.81 C12×20.7 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 25.2 25.6 26.5 28.9 30.5 7.40 7.53 7.78 8.49 8.96 24.3 24.0 25.3 29.2 30.1 24.7 25.3 25.5 26.3 27.1 4.90 4.95 4.95 4.94 4.97 7.32 7.69 7.54 7.11 7.33 32.6 33.4 34.3 36.4 37.5 6.17 6.45 6.01 4.74 4.41 C15×33.9 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 38.8 39.7 42.1 43.7 11.40 11.65 12.36 12.83 42.7 44.5 50.1 51.4 47.2 47.7 49.1 50.3 5.95 5.96 6.01 6.05 9.45 9.31 8.91 9.15 61.1 62.5 66.5 69.0 8.70 8.39 7.50 7.41 Angle in. S1 = I / y1 C 6×8.2 Channel lb Axis X-X AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMBINATION SECTIONS 1 - 119 COMBINATION SECTIONS Channels and angles Properties of sections Y y 2 X Short leg of angle turned out X y , yp 1 1 x1 xp 2 x2 Y Axis Y-Y S1 = I / x1 r x1 Z xp 3 in. in. in. in. L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 2.4 2.8 3.8 6.0 8.4 4.4 4.6 6.6 9.3 12.1 1.22 1.26 1.64 2.05 2.47 2.25 2.18 2.85 3.33 3.82 3.70 4.01 5.46 8.29 11.3 2.65 2.59 3.46 4.12 4.84 C 7×9.8 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 2.6 2.9 3.9 6.1 8.6 5.0 5.2 7.5 10.5 13.6 1.19 1.23 1.60 2.01 2.44 2.32 2.25 2.95 3.47 3.98 4.03 4.35 5.82 8.71 11.8 2.72 2.67 3.55 4.24 4.99 C 8×11.5 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 2.7 3.0 4.0 6.3 8.7 5.6 5.8 8.3 11.7 15.2 1.16 1.20 1.55 1.97 2.40 2.37 2.31 3.03 3.58 4 13 4.40 4.73 6.21 9.16 12.3 2.78 2.73 3.62 4.34 5.12 C 9×13.4 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 2.8 3.2 4.2 6.4 8.9 6.2 6.5 9.2 12.9 16.9 1.14 1.18 1.51 1.92 2.36 2.40 2.35 3.10 3.68 4.26 4.81 5.15 6.65 9.66 12.8 2.84 2.79 3.70 4.43 5.23 C10×15.3 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 3.0 3.4 4.3 6.5 9.0 6.8 7.1 10.0 14.0 18.3 1.12 1.16 1.48 1.88 2.31 2.42 2.37 3.15 3.76 4.36 5.25 5.59 7.10 10.1 13.3 2.88 2.84 3.74 4.49 5.31 C12×20.7 L3×21⁄2×1⁄4 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 3.6 4.0 4.7 6.9 9.3 8.6 8.9 12.2 17.0 22.4 1.10 1.13 1.40 1.78 2 19 2.47 2.43 3.25 3.92 4.59 6.47 6.82 8.37 11.5 14.8 3.01 2.97 3.89 4.67 5.52 C15×33.9 L3×3 ×1⁄4 L4×3 ×1⁄4 L5×3 ×5⁄16 L6×31⁄2×5⁄16 5.6 5.9 7.8 10.2 13.5 17.2 23.4 30.7 1.10 1.30 1.61 1.97 2.48 3.35 4.12 4.88 9.54 11.1 14.5 18.0 3.12 4.11 5.02 5.90 Angle in. 3 C 6×8.2 Channel in. 3 S2 = I / x2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 120 DIMENSIONS AND PROPERTIES STEEL PIPE AND STRUCTURAL TUBING General When designing and specifying steel pipe or tubing as compression members, refer to comments in the notes for Columns, Steel Pipe, and Structural Tubing, in Part 3. For standard mill practices and tolerances, refer to page 1-183. For material specifications and availability, see Tables 1-4 through 1-6, Part 1. Steel Pipe The Tables of Dimensions and Properties of Steel Pipe (unfilled) list a selected range of sizes of standard, extra strong, and double-extra strong pipe. For a complete range of sizes manufactured, refer to catalogs of the manufacturers or to the American Institute for Hollow Structural Sections (AIHSS). Structural Tubing The Tables of Dimensions and Properties of Square and Rectangular Structural Tubing (unfilled) list a selected range of frequently used sizes. For dimensions and properties of other sizes, refer to catalogs from the manufacturers or AIHSS. The tables are based on an outside corner radius equal to two times the specified wall thickness. Material specifications stipulate that the outside corner radius may vary up to three times the specified wall thickness. This variation should be considered in those details where a close match or fit is important. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 121 PIPE Dimensions and properties Dimensions Weight Nominal Outside Inside Wall per ft lbs Diameter Diameter Diameter Thickness Plain Ends in. in. in. in. Properties Area I S r J Z in.2 in.4 in.3 in. in.4 in.3 0.041 0.071 0.133 0.235 0.326 0.561 1.06 1.72 2.39 3.21 5.45 8.50 16.8 29.9 43.8 0.261 0.334 0.421 0.540 0.623 0.787 0.947 1.16 1.34 1.51 1.88 2.25 2.94 3.67 4.38 0.034 0.074 0.175 0.389 0.620 1.33 3.06 6.03 9.58 14.5 30.3 56.3 145 321 559 0.059 0.100 0.187 0.324 0.448 0.761 1.45 2.33 3.22 4.31 7.27 11.2 22.2 39.4 57.4 0.048 0.085 0.161 0.291 0.412 0.731 1.34 2.23 3.14 4.27 7.43 12.2 24.5 39.4 56.7 0.250 0.321 0.407 0.524 0.605 0.766 0.924 1.14 1.31 1.48 1.84 2.19 2.88 3.63 4.33 0.040 0.090 0.211 0.484 0.782 1.74 3.85 8.13 12.6 19.2 41.3 81.0 211 424 723 0.072 0.125 0.233 0.414 0.581 1.02 1.87 3.08 4.32 5.85 10.1 16.6 33.0 52.6 75.1 1.10 2.00 3.42 6.79 12.1 20.0 37.6 0.703 0.844 1.05 1.37 1.72 2.06 2.76 2.62 5.74 12.0 30.6 67.3 133 324 1.67 3.04 5.12 9.97 17.5 28.9 52.8 Standard Weight 1⁄ 2 3⁄ 4 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 8.625 10.750 12.750 0.622 0.824 1.049 1.380 1.610 2.067 2.469 3.068 3.548 4.026 5.047 6.065 7.981 10.020 12.000 0.109 0.113 0.133 0.140 0.145 0.154 0.203 0.216 0.226 0.237 0.258 0.280 0.322 0.365 0.375 0.85 1.13 1.68 2.27 2.72 3.65 5.79 7.58 9.11 10.79 14.62 18.97 28.55 40.48 49.56 1 11⁄4 11⁄2 2 21⁄2 3 31⁄2 4 5 6 8 10 12 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 8.625 10.750 12.750 0.546 0.742 0.957 1.278 1.500 1.939 2.323 2.900 3.364 3.826 4.813 5.761 7.625 9.750 11.750 0.147 0.154 0.179 0.191 0.200 0.218 0.276 0.300 0.318 0.337 0.375 0.432 0.500 0.500 0.500 1.09 1.47 2.17 3.00 3.63 5.02 7.66 10.25 12.50 14.98 20.78 28.57 43.39 54.74 65.42 2 21⁄2 3 4 5 6 8 2.375 2.875 3.500 4.500 5.563 6.625 8.625 1.503 1.771 2.300 3.152 4.063 4.897 6.875 0.436 0.552 0.600 0.674 0.750 0.864 0.875 1 11⁄4 11⁄2 2 21⁄2 3 31⁄2 4 5 6 8 10 12 0.250 0.333 0.494 0.669 0.799 1.07 1.70 2.23 2.68 3.17 4.30 5.58 8.40 11.9 14.6 0.017 0.037 0.087 0.195 0.310 0.666 1.53 3.02 4.79 7.23 15.2 28.1 72.5 161 279 Extra Strong 1⁄ 2 3⁄ 4 0.320 0.433 0.639 0.881 1.07 1.48 2.25 3.02 3.68 4.41 6.11 8.40 12.8 16.1 19.2 0.020 0.045 0.106 0.242 0.391 0.868 1.92 3.89 6.28 9.61 20.7 40.5 106 212 362 Double-Extra Strong 9.03 13.69 18.58 27.54 38.59 53.16 72.42 2.66 4.03 5.47 8.10 11.3 15.6 21.3 1.31 2.87 5.99 15.3 33.6 66.3 162 The listed sections are available in conformance with ASTM Specification A53 Grade B or A501. Other sections are made to these specifications. Consult with pipe manufacturers or distributors for availability. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 122 DIMENSIONS AND PROPERTIES STRUCTURAL TUBING Square Dimensions and properties Dimensions Properties** Nominal* Size Wall Thickness Weight per ft Area I S r J Z in. in. lb in.2 in.4 in.3 in. in.4 in.3 0.6250 5⁄ 8 246.47 72.4 10300 690 12.0 16000 794 28×28 0.6250 5⁄ 8 229.45 67.4 8360 597 11.1 13000 689 26×26 0.6250 5⁄ 8 212.44 62.4 6650 511 10.3 10400 591 24×24 24×24 24×24 0.6250 0.5000 0.3750 5⁄ 8 1⁄ 2 3⁄ 8 195.43 157.74 119.35 57.4 46.4 35.1 5180 4240 3250 432 353 270 9.50 9.56 9.62 8100 6570 4990 500 407 310 22×22 22×22 22×22 0.6250 0.5000 0.3750 5⁄ 8 1⁄ 2 3⁄ 8 178.41 144.13 109.15 52.4 42.4 32.1 3950 3240 2490 359 294 226 8.68 8.74 8.80 6200 5030 3830 418 340 259 20×20 20×20 20×20 0.6250 0.5000 0.3750 5⁄ 8 1⁄ 2 3⁄ 8 161.40 130.52 98.94 47.4 38.4 29.1 2940 2410 1850 294 241 185 7.87 7.93 7.99 4620 3760 2870 342 279 213 18×18 18×18 18×18 0.6250 0.5000 0.3750 5⁄ 8 1⁄ 2 3⁄ 8 144.39 116.91 88.73 42.4 34.4 26.1 2110 1740 1340 234 193 149 7.05 7.11 7.17 3340 2720 2080 274 224 172 30×30 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 123 STRUCTURAL TUBING Square Dimensions and properties Dimensions Properties** Nominal* Size Wall Thickness Weight per ft Area I S r J Z in. in. lb in.2 in.4 in.3 in. in.4 in.3 127.37 103.30 78.52 65.87 37.4 30.4 23.1 19.4 1450 1200 931 789 182 150 116 98.6 6.23 6.29 6.35 6.38 2320 1890 1450 1220 214 175 134 113 110.36 89.68 68.31 57.36 32.4 26.4 20.1 16.9 952 791 615 522 136 113 87.9 74.6 5.42 5.48 5.54 5.57 1530 1250 963 812 161 132 102 86.1 93.34 76.07 58.10 48.86 39.43 27.4 22.4 17.1 14.4 11.6 580 485 380 324 265 96.7 80.9 63.4 54.0 44.1 4.60 4.66 4.72 4.75 4.78 943 777 599 506 410 116 95.4 73.9 62.6 50.8 76.33 62.46 47.90 40.35 32.63 24.73 22.4 18.4 14.1 11.9 9.59 7.27 321 271 214 183 151 116 64.2 54.2 42.9 36.7 30.1 23.2 3.78 3.84 3.90 3.93 3.96 3.99 529 439 341 289 235 179 77.6 64.6 50.4 42.8 34.9 26.6 16×16 14×14 12×12 10×10 0.6250 0.5000 0.3750 0.3125 0.6250 0.5000 0.3750 0.3125 0.6250 0.5000 0.3750 0.3125 0.2500 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 1⁄ 3⁄ 8 2 8 5⁄ 16 5⁄ 1⁄ 8 2 3⁄ 8 5⁄ 16 5⁄ 1⁄ 8 2 3⁄ 8 5⁄ 16 1⁄ 4 5⁄ 1⁄ 3⁄ 8 2 8 5⁄ 16 1⁄ 4 3⁄ 16 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 124 DIMENSIONS AND PROPERTIES STRUCTURAL TUBING Square Dimensions and properties Dimensions Properties** Nominal* Size Wall Thickness Weight per ft Area I S r J Z in. in. lb in.2 in.4 in.3 in. in.4 in.3 8×8 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 59.32 48.85 37.69 31.84 25.82 19.63 17.4 14.4 11.1 9.36 7.59 5.77 153 131 106 90.9 75.1 58.2 38.3 32.9 26.4 22.7 18.8 14.6 2.96 3.03 3.09 3.12 3.15 3.18 258 217 170 145 118 90.6 47.2 39.7 31.3 26.7 21.9 16.8 7×7 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 50.81 42.05 32.58 27.59 22.42 17.08 14.9 12.4 9.58 8.11 6.59 5.02 97.5 84.6 68.7 59.5 49.4 38.5 27.9 24.2 19.6 17.0 14.1 11.0 2.56 2.62 2.68 2.71 2.74 2.77 166 141 112 95.6 78.3 60.2 34.8 29.6 23.5 20.1 16.5 12.7 6×6 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 42.30 35.24 27.48 23.34 19.02 14.53 9.86 12.4 10.4 8.08 6.86 5.59 4.27 2.90 57.3 50.5 41.6 36.3 30.3 23.8 16.5 19.1 16.8 13.9 12.1 10.1 7.93 5.52 2.15 2.21 2.27 2.30 2.33 2.36 2.39 99.5 85.6 68.5 58.9 48.5 37.5 25.7 24.3 20.9 16.8 14.4 11.9 9.24 6.35 51⁄2×51⁄2 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 24.93 21.21 17.32 13.25 9.01 7.33 6.23 5.09 3.89 2.65 31.2 27.4 23.0 18.1 12.6 11.4 9.95 8.36 6.58 4.60 2.07 2.10 2.13 2.16 2.19 51.9 44.8 37.0 28.6 19.7 13.8 12.0 9.91 7.70 5.31 5×5 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 28.43 22.37 19.08 15.62 11.97 8.16 8.36 6.58 5.61 4.59 3.52 2.40 27.0 22.8 20.1 16.9 13.4 9.41 10.8 9.11 8.02 6.78 5.36 3.77 1.80 1.86 1.89 1.92 1.95 1.98 46.8 38.2 33.1 27.4 21.3 14.7 13.7 11.2 9.70 8.07 6.29 4.36 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 125 STRUCTURAL TUBING Square Dimensions and properties Dimensions Properties** Nominal* Size Wall Thickness Weight per ft Area I S r J Z in. in. lb in.2 in.4 in.3 in. in.4 in.3 41⁄2×41⁄2 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 19.82 16.96 13.91 10.70 7.31 5.83 4.98 4.09 3.14 2.15 16.0 14.2 12.1 9.60 6.78 7.10 6.30 5.36 4.27 3.02 1.66 1.69 1.72 1.75 1.78 27.1 23.6 19.7 15.4 10.6 8.81 7.68 6.43 5.03 3.50 4×4 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 21.63 17.27 14.83 12.21 9.42 6.46 6.36 5.08 4.36 3.59 2.77 1.90 12.3 10.7 9.58 8.22 6.59 4.70 6.13 5.35 4.79 4.11 3.30 2.35 1.39 1.45 1.48 1.51 1.54 1.57 21.8 18.4 16.1 13.5 10.6 7.40 8.02 6.72 5.90 4.97 3.91 2.74 31⁄2×31⁄2 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 12.70 10.51 8.15 5.61 3.73 3.09 2.39 1.65 6.09 5.29 4.29 3.09 3.48 3.02 2.45 1.76 1.28 1.31 1.34 1.37 10.4 8.82 6.99 4.90 4.35 3.69 2.93 2.07 3×3 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 10.58 8.81 6.87 4.75 3.11 2.59 2.02 1.40 3.58 3.16 2.60 1.90 2.39 2.10 1.73 1.26 1.07 1.10 1.13 1.16 6.22 5.35 4.28 3.03 3.04 2.61 2.10 1.49 21⁄2×21⁄2 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 8.45 7.11 5.59 3.90 2.48 2.09 1.64 1.15 1.87 1.69 1.42 1.06 1.50 1.35 1.14 0.847 0.868 0.899 0.930 0.961 3.32 2.92 2.38 1.71 1.96 1.71 1.40 1.01 2×2 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 6.32 5.41 4.32 3.05 1.86 1.59 1.27 0.897 0.815 0.766 0.668 0.513 0.815 0.766 0.668 0.513 0.662 0.694 0.726 0.756 1.49 1.36 1.15 0.846 1.11 1.00 0.840 0.621 11⁄2×11⁄2 0.1875 3⁄ 16 3.04 0.894 0.242 0.323 0.521 0.431 0.423 3⁄ 2 8 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 126 DIMENSIONS AND PROPERTIES Y X X STRUCTURAL TUBING Rectangular Dimensions and properties Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. 2 X-X Axis S I 4 Z 3 Y-Y Axis r 3 S I 4 Z 3 3 r J lb in. in. in. in. in. in. in. in. in. in.4 178.16 134.67 112.66 52.4 39.6 33.1 7110 474 5430 362 4570 305 555 422 354 11.7 11.7 11.7 5070 3870 3260 422 323 272 477 363 304 9.84 9.89 9.92 9170 6960 5830 30×24 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 28×24 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 171.35 129.56 108.41 50.4 38.1 31.9 6050 432 4630 331 3890 278 503 383 321 11.0 11.0 11.1 4790 3660 3080 399 305 257 454 345 290 9.75 9.81 9.84 8280 6290 5270 26×24 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 164.55 124.46 104.15 48.4 36.6 30.6 5100 392 3900 300 3280 253 454 345 290 10.3 10.3 10.4 4510 3460 2910 376 288 242 430 327 275 9.66 9.72 9.75 7410 5630 4720 24×22 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 150.93 114.25 95.64 44.4 33.6 28.1 3960 330 3040 253 2560 213 383 292 245 9.45 3470 9.51 2660 9.54 2240 315 242 204 361 275 231 8.84 8.90 8.93 5740 4370 3660 22×20 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 137.32 104.04 87.14 40.4 30.6 25.6 3010 273 2310 210 1950 177 318 243 204 8.63 2600 8.69 2000 8.72 1690 260 200 169 298 228 192 8.03 8.09 8.12 4350 3310 2780 20×18 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 123.71 93.83 78.63 36.4 27.6 23.1 2220 222 1710 171 1440 144 259 198 167 7.81 1890 7.88 1460 7.91 1230 210 162 137 242 185 155 7.21 7.27 7.30 3190 2440 2050 20×12 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 103.30 78.52 65.87 30.4 23.1 19.4 1650 165 1280 128 1080 108 201 154 130 7.37 7.45 7.47 750 583 495 125 141 97.2 109 82.5 91.8 4.97 5.03 5.06 1650 1270 1070 20×8 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 89.68 68.31 57.36 26.4 20.1 16.9 1270 127 162 988 98.8 125 838 83.8 105 6.94 7.02 7.05 300 236 202 20×4 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 76.07 58.10 48.86 22.4 17.1 14.4 889 699 596 88.9 123 69.9 95.3 59.6 80.8 6.31 6.40 6.44 61.6 50.3 43.7 75.1 59.1 50.4 84.7 65.6 55.6 3.38 3.43 3.46 806 625 529 30.8 25.1 21.8 36.0 28.5 24.3 1.66 1.72 1.74 205 165 143 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 127 STRUCTURAL TUBING Rectangular Dimensions and properties Y X X Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. lb in.2 X-X Axis Y-Y Axis I S Z r I S Z r J in.4 in.3 in.3 in. in.4 in.3 in.3 in. in.4 6.71 6.78 6.81 684 533 452 114 130 88.8 100 75.3 84.5 4.91 4.97 5.00 1420 1090 920 53.9 42.1 35.8 29.2 2.52 2.57 2.60 2.63 410 322 274 224 103 118 80.3 91.3 68.2 77.2 4.84 4.90 4.93 1200 922 777 18×12 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 96.49 73.42 61.62 28.4 21.6 18.1 18×6 0.5000 0.3750 0.3125 0.2500 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 76.07 58.10 48.86 39.43 22.4 17.1 14.4 11.6 818 641 546 447 90.9 119 71.3 92.2 60.7 78.1 49.6 63.5 6.05 6.13 6.17 6.21 141 113 97.0 80.0 16×12 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 89.68 68.31 57.36 26.4 20.1 16.9 962 748 635 120 144 93.5 111 79.4 93.8 6.04 6.11 6.14 618 482 409 16×8 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 76.07 58.10 48.86 22.4 17.1 14.4 722 565 481 90.2 113 70.6 87.6 60.1 74.2 5.68 5.75 5.79 244 193 165 16×4 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 62.46 47.90 40.35 18.4 14.1 11.9 481 382 327 60.2 47.8 40.9 82.2 64.2 54.5 5.12 5.21 5.25 14×12 0.5000 0.3750 1⁄ 2 3⁄ 8 82.88 63.21 24.4 18.6 699 546 99.9 119 78.0 91.7 5.36 5.42 14×10 0.5000 0.3750 0.3125 1⁄ 2 3⁄ 8 5⁄ 16 76.07 58.10 48.86 22.4 17.1 14.4 608 476 405 86.9 105 68.0 81.5 57.9 69.0 14×6 0.6250 0.5000 0.3750 0.3125 0.2500 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 76.33 62.46 47.90 40.35 32.63 22.4 18.4 14.1 11.9 9.59 504 426 337 288 237 72.0 60.8 48.1 41.2 33.8 1280 142 172 991 110 132 840 93.3 111 94.0 78.3 61.1 51.9 42.3 47.2 37.6 32.3 26.7 61.0 48.2 41.2 69.7 54.2 45.9 3.30 3.36 3.39 599 465 394 24.6 20.2 17.6 29.0 23.0 19.7 1.64 1.69 1.72 157 127 110 552 431 91.9 107 71.9 82.6 4.76 4.82 983 757 5.22 5.28 5.31 361 284 242 72.3 56.8 48.4 83.6 64.8 54.9 4.02 4.08 4.11 730 564 477 4.74 4.82 4.89 4.93 4.97 130 111 89.1 76.7 63.4 43.3 37.1 29.7 25.6 21.1 51.2 42.9 33.6 28.7 23.4 2.41 2.46 2.52 2.54 2.57 352 296 233 199 162 49.3 40.4 35.1 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 128 DIMENSIONS AND PROPERTIES Y X X STRUCTURAL TUBING Rectangular Dimensions and properties Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. lb in.2 X-X Axis Y-Y Axis I S Z r I S Z r J in.4 in.3 in.3 in. in.4 in.3 in.3 in. in.4 49.0 43.1 35.4 30.9 25.8 20.2 24.5 21.5 17.7 15.4 12.9 10.1 30.0 25.5 20.3 17.4 14.3 11.1 1.57 1.62 1.68 1.71 1.73 1.76 154 134 108 93.1 77.0 59.7 14×4 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 67.82 55.66 42.79 36.10 29.23 22.18 19.9 16.4 12.6 10.6 8.59 6.52 392 335 267 230 189 146 56.0 47.8 38.2 32.8 27.0 20.9 77.3 64.8 50.8 43.3 35.4 27.1 4.44 4.52 4.61 4.65 4.69 4.74 12×10 0.5000 0.3750 0.3125 0.2500 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 69.27 53.00 44.60 36.03 20.4 15.6 13.1 10.6 419 330 281 230 69.9 55.0 46.9 38.4 83.9 65.2 55.2 44.9 4.54 4.60 4.63 4.66 316 249 213 174 63.3 49.8 42.6 34.9 74.1 57.6 48.8 39.7 3.94 4.00 4.03 4.06 581 450 381 309 12×8 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 76.33 62.46 47.90 40.35 32.63 24.73 22.4 18.4 14.1 11.9 9.59 7.27 418 353 279 239 196 151 69.7 58.9 46.5 39.8 32.6 25.1 87.1 72.4 56.5 47.9 39.1 29.8 4.32 4.39 4.45 4.49 4.52 4.55 221 188 149 128 105 81.1 55.3 46.9 37.3 32.0 26.3 20.3 65.6 54.7 42.7 36.3 29.6 22.7 3.14 3.20 3.26 3.28 3.31 3.34 481 401 312 265 216 165 12×6 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 67.82 55.66 42.79 36.10 29.23 22.18 19.9 16.4 12.6 10.6 8.59 6.52 337 287 228 196 161 124 56.2 47.8 38.1 32.6 26.9 20.7 72.9 60.9 47.7 40.6 33.2 25.4 4.11 4.19 4.26 4.30 4.33 4.37 112 96.0 77.2 66.6 55.2 42.8 37.2 32.0 25.7 22.2 18.4 14.3 44.5 37.4 29.4 25.1 20.6 15.8 2.37 2.42 2.48 2.51 2.53 2.56 286 241 190 162 132 101 12×4 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 59.32 48.85 37.69 31.84 25.82 19.63 17.4 14.4 11.1 9.36 7.59 5.77 257 221 178 153 127 98.2 42.8 36.8 29.6 25.5 21.1 16.4 58.6 49.4 39.0 33.3 27.3 21.0 3.84 3.92 4.01 4.05 4.09 4.13 41.8 36.9 30.5 26.6 22.3 17.5 20.9 18.5 15.2 13.3 11.1 8.75 25.8 22.0 17.6 15.1 12.5 9.63 1.55 1.60 1.66 1.69 1.71 1.74 127 110 89.0 76.9 63.6 49.3 12×3 0.3125 0.2500 0.1875 5⁄ 16 1⁄ 4 3⁄ 16 29.72 24.12 18.35 8.73 132 7.09 109 5.39 85.1 22.0 18.2 14.2 29.7 24.4 18.8 3.89 3.93 3.97 13.8 11.7 9.28 9.19 10.6 7.79 8.80 6.19 6.84 1.26 1.28 1.31 43.6 36.5 28.7 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 129 STRUCTURAL TUBING Rectangular Dimensions and properties Y X X Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. X-X Axis Y-Y Axis I S Z r I S Z r J lb in.2 in.4 in.3 in.3 in. in.4 in.3 in.3 in. in.4 92.2 15.4 72.0 12.0 21.4 16.6 3.74 3.79 12×2 0.2500 0.1875 1⁄ 4 3⁄ 16 22.42 17.08 6.59 5.02 10×8 0.5000 0.3750 0.3125 0.2500 0.1875 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 55.66 42.79 36.10 29.23 22.18 16.4 12.6 10.6 8.59 6.52 226 180 154 127 97.9 45.2 35.9 30.8 25.4 19.6 55.1 43.1 36.7 30.0 23.0 3.72 3.78 3.81 3.84 3.87 160 127 109 90.2 69.7 39.9 31.8 27.3 22.5 17.4 47.2 37.0 31.5 25.8 19.7 3.12 3.18 3.21 3.24 3.27 306 239 203 166 127 10×6 0.5000 0.3750 0.3125 0.2500 0.1875 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 48.85 37.69 31.84 25.82 19.63 14.4 11.1 9.36 7.59 5.77 181 145 125 103 79.8 36.2 29.0 25.0 20.6 16.0 45.6 35.9 30.7 25.1 19.3 3.55 3.62 3.65 3.69 3.72 80.8 65.4 56.5 46.9 36.5 26.9 21.8 18.8 15.6 12.2 31.9 25.2 21.5 17.7 13.6 2.37 2.43 2.46 2.49 2.51 187 147 126 103 79.1 10×5 0.3750 0.3125 0.2500 0.1875 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 35.13 29.72 24.12 18.35 10.3 128 8.73 110 7.09 91.2 5.39 70.8 25.5 22.0 18.2 14.2 32.3 27.6 22.7 17.4 3.51 3.55 3.59 3.62 42.9 37.2 31.1 24.3 17.1 14.9 12.4 9.71 19.9 17.0 14.0 10.8 2.04 2.07 2.09 2.12 107 91.5 75.2 58.0 10×4 0.5000 0.3750 0.3125 0.2500 0.1875 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 42.05 32.58 27.59 22.42 17.08 12.4 136 9.58 110 8.11 95.5 6.59 79.3 5.02 61.7 27.1 22.0 19.1 15.9 12.3 36.1 28.7 24.6 20.2 15.6 3.31 3.39 3.43 3.47 3.51 30.8 25.5 22.4 18.8 14.8 15.4 12.8 11.2 9.39 7.39 18.5 14.9 12.8 10.6 8.20 1.58 1.63 1.66 1.69 1.72 86.9 70.4 60.8 50.4 39.1 10×3 0.3750 0.3125 0.2500 0.1875 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 30.0 25.5 20.72 15.80 8.83 7.48 6.09 4.64 92.8 80.8 67.4 52.7 18.6 16.2 13.5 10.5 25.1 21.6 17.8 13.8 3.24 3.29 3.33 3.37 13.0 11.5 9.79 7.80 8.66 10.3 7.68 8.92 6.53 7.42 5.20 5.79 1.21 1.24 1.27 1.30 39.8 34.9 29.3 23.0 10×2 0.3750 0.3125 0.2500 0.1875 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 27.48 23.34 19.02 14.53 8.08 6.86 5.59 4.27 75.4 15.1 66.1 13.2 55.5 11.1 43.7 8.74 21.5 18.5 15.4 11.9 3.06 3.10 3.15 3.20 4.85 4.42 3.85 3.14 4.85 4.42 3.85 3.14 0.775 0.802 0.830 0.858 16.5 14.9 12.8 10.3 4.62 3.76 4.62 3.76 5.38 0.837 4.24 0.865 6.05 5.33 4.50 3.56 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 15.9 12.8 1 - 130 DIMENSIONS AND PROPERTIES Y X X STRUCTURAL TUBING Rectangular Dimensions and properties Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. lb in.2 X-X Axis Y-Y Axis I S Z r I S Z r J in.4 in.3 in.3 in. in.4 in.3 in.3 in. in.4 8×6 0.5000 0.3750 0.3125 0.2500 0.1875 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 42.05 32.58 27.59 22.42 17.08 12.4 103 9.58 83.7 8.11 72.4 6.59 60.1 5.02 46.8 25.8 20.9 18.1 15.0 11.7 32.2 25.6 21.9 18.0 13.9 2.89 2.96 2.99 3.02 3.05 65.7 53.5 46.4 38.6 30.1 21.9 17.8 15.5 12.9 10.0 26.4 21.0 18.0 14.8 11.4 2.31 2.36 2.39 2.42 2.45 135 107 91.3 74.9 57.6 8×4 0.6250 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 42.30 35.24 27.48 23.34 19.02 14.53 9.86 12.4 10.4 8.08 6.86 5.59 4.27 2.90 21.3 18.8 15.5 13.5 11.3 8.83 6.14 28.8 24.7 19.9 17.1 14.1 11.0 7.53 2.62 2.69 2.77 2.80 2.84 2.88 2.91 27.4 24.6 20.6 18.1 15.3 12.0 8.45 13.7 12.3 10.3 9.05 7.63 6.02 4.23 17.3 15.0 12.2 10.5 8.72 6.77 4.67 1.49 1.54 1.60 1.62 1.65 1.68 1.71 73.2 64.1 52.2 45.2 37.5 29.1 20.0 8×3 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 31.84 24.93 21.21 17.32 13.25 9.01 9.36 7.33 6.23 5.09 3.89 2.65 61.0 15.3 51.0 12.7 44.7 11.2 37.6 9.40 29.6 7.40 20.7 5.17 21.0 17.0 14.7 12.2 9.49 6.55 2.55 2.64 2.68 2.72 2.76 2.80 12.1 10.4 9.25 7.90 6.31 4.48 8.05 10.1 6.92 8.31 6.16 7.24 5.26 6.05 4.21 4.73 2.99 3.29 1.14 1.19 1.22 1.25 1.27 1.30 35.7 29.9 26.3 22.1 17.3 12.1 8×2 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 22.37 19.08 15.62 11.97 8.16 6.58 5.61 4.59 3.52 2.40 40.1 10.0 14.2 35.5 8.87 12.3 30.1 7.52 10.3 23.9 5.97 8.02 16.8 4.20 5.56 2.47 2.51 2.56 2.60 2.65 3.85 3.52 3.08 2.52 1.83 3.85 3.52 3.08 2.52 1.83 4.83 4.28 3.63 2.88 2.03 0.765 0.792 0.819 0.847 0.875 12.6 11.4 9.84 7.94 5.66 7×5 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 35.24 27.48 23.34 19.02 14.53 9.86 10.4 8.08 6.86 5.59 4.27 2.90 63.5 52.2 45.5 38.0 29.8 20.7 23.1 18.5 15.9 13.2 10.2 7.00 2.48 2.54 2.58 2.61 2.64 2.67 37.2 30.8 26.9 22.6 17.7 12.4 14.9 12.3 10.8 9.04 7.10 4.95 18.2 14.6 12.6 10.4 8.10 5.58 1.90 1.95 1.98 2.01 2.04 2.07 79.9 64.2 55.3 45.6 35.3 24.2 7×4 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 24.93 21.21 17.32 13.25 9.01 7.33 6.23 5.09 3.89 2.65 44.0 12.6 16.0 38.5 11.0 13.8 32.3 9.23 11.5 25.4 7.26 8.91 17.7 5.07 6.15 2.45 2.49 2.52 2.55 2.59 18.1 16.0 13.5 10.7 7.51 9.06 10.8 7.98 9.36 6.75 7.78 5.34 6.06 3.76 4.19 1.57 1.60 1.63 1.66 1.68 43.3 37.5 31.2 24.2 16.7 85.1 75.1 61.9 53.9 45.1 35.3 24.6 18.1 14.9 13.0 10.9 8.50 5.91 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STEEL PIPE AND STRUCTURAL TUBING 1 - 131 STRUCTURAL TUBING Rectangular Dimensions and properties Y X X Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. X-X Axis Y-Y Axis I S Z r I S Z r J lb in.2 in.4 in.3 in.3 in. in.4 in.3 in.3 in. in.4 7×3 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 22.37 19.08 15.62 11.97 8.16 6.58 5.61 4.59 3.52 2.40 35.7 31.5 26.6 21.1 14.8 10.2 13.5 9.00 11.8 7.61 9.79 6.02 7.63 4.22 5.29 2.33 2.37 2.41 2.45 2.48 9.08 8.11 6.95 5.57 3.96 6.05 5.41 4.63 3.71 2.64 7.32 6.40 5.36 4.20 2.93 1.18 1.20 1.23 1.26 1.29 25.1 22.0 18.5 14.6 10.2 6×4 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 28.43 22.37 19.08 15.62 11.97 8.16 8.36 6.58 5.61 4.59 3.52 2.40 35.3 29.7 26.2 22.1 17.4 12.2 11.8 15.4 9.90 12.5 8.72 10.9 7.36 9.06 5.81 7.06 4.08 4.88 2.06 2.13 2.16 2.19 2.23 2.26 18.4 15.6 13.8 11.7 9.32 6.57 9.21 7.82 6.92 5.87 4.66 3.29 11.5 9.44 8.21 6.84 5.34 3.71 1.48 1.54 1.57 1.60 1.63 1.66 42.1 34.6 30.1 25.0 19.5 13.5 6×3 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 25.03 19.82 16.96 13.91 10.70 7.31 7.36 5.83 4.98 4.09 3.14 2.15 27.7 23.8 21.1 17.9 14.3 10.1 9.25 12.6 7.92 10.4 7.03 9.11 5.98 7.62 4.76 5.97 3.36 4.15 1.94 2.02 2.06 2.09 2.13 2.17 8.91 7.78 6.98 6.00 4.83 3.45 5.94 5.19 4.65 4.00 3.22 2.30 7.59 6.34 5.56 4.67 3.68 2.57 1.10 1.16 1.18 1.21 1.24 1.27 23.9 20.3 17.9 15.1 11.9 8.27 6×2 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 17.27 14.83 12.21 9.42 6.46 5.08 4.36 3.59 2.77 1.90 17.8 16.0 13.8 11.1 7.92 5.94 5.34 4.60 3.70 2.64 8.33 7.33 6.18 4.88 3.42 1.87 1.92 1.96 2.00 2.04 2.84 2.62 2.31 1.90 1.39 2.84 2.62 2.31 1.90 1.39 3.61 3.22 2.75 2.20 1.56 0.748 0.775 0.802 0.829 0.857 8.72 7.94 6.88 5.56 3.98 5×4 0.3750 0.3125 0.2500 0.1875 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 19.82 16.96 13.91 10.70 5.83 4.98 4.09 3.14 18.7 16.6 14.1 11.2 7.50 6.65 5.65 4.49 9.44 8.24 6.89 5.39 1.79 1.83 1.86 1.89 13.2 11.7 9.98 7.96 6.58 5.85 4.99 3.98 8.08 7.05 5.90 4.63 1.50 1.53 1.56 1.59 26.3 22.9 19.1 14.9 5×3 0.5000 0.3750 0.3125 0.2500 0.1875 0.1250 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 21.63 17.27 14.83 12.21 9.42 6.46 6.36 5.08 4.36 3.59 2.77 1.90 16.9 14.7 13.2 11.3 9.06 6.44 6.75 5.89 5.27 4.52 3.62 2.58 9.20 7.71 6.77 5.70 4.49 3.14 1.63 1.70 1.74 1.77 1.81 1.84 7.33 6.48 5.85 5.05 4.08 2.93 4.88 4.32 3.90 3.37 2.72 1.95 6.34 5.35 4.72 3.98 3.15 2.21 1.07 1.13 1.16 1.19 1.21 1.24 18.2 15.6 13.8 11.7 9.21 6.44 *Outside dimensions across flatsides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 132 DIMENSIONS AND PROPERTIES Y X X STRUCTURAL TUBING Rectangular Dimensions and properties Y Dimensions Properties** Nominal* Wall Weight Size Thickness per ft Area in. in. 2 X-X Axis S I 4 Z 3 Y-Y Axis r 3 S I 4 Z 3 3 r J lb in. in. in. in. in. in. in. in. in. in.4 12.70 10.51 8.15 5.61 3.73 3.09 2.39 1.65 9.74 8.48 6.89 4.96 3.90 3.39 2.75 1.98 5.31 4.51 3.59 2.53 1.62 1.66 1.70 1.73 2.16 1.92 1.60 1.17 2.16 1.92 1.60 1.17 2.70 2.32 1.86 1.32 0.762 0.789 0.816 0.844 6.24 5.43 4.40 3.15 5×2 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 4×3 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 12.70 10.51 8.15 5.61 3.73 3.09 2.39 1.65 7.45 6.45 5.23 3.76 3.72 3.23 2.62 1.88 4.75 4.03 3.20 2.25 1.41 1.45 1.48 1.51 4.71 4.10 3.34 2.41 3.14 2.74 2.23 1.61 3.88 3.30 2.62 1.85 1.12 1.15 1.18 1.21 9.89 8.41 6.67 4.68 4×2 0.3750 0.3125 0.2500 0.1875 0.1250 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 12.17 10.58 8.81 6.87 4.75 3.58 3.11 2.59 2.02 1.40 5.75 5.32 4.69 3.87 2.82 2.87 2.66 2.35 1.93 1.41 4.00 3.60 3.09 2.48 1.77 1.27 1.31 1.35 1.38 1.42 1.83 1.71 1.54 1.29 0.954 1.83 1.71 1.54 1.29 0.954 2.39 2.17 1.88 1.52 1.09 0.715 0.743 0.770 0.798 0.826 4.97 4.58 4.01 3.26 2.34 3×2 0.3125 0.2500 0.1875 0.1250 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 8.45 7.11 5.59 3.90 2.48 2.09 1.64 1.15 2.44 2.21 1.86 1.38 1.63 1.47 1.24 0.920 2.20 1.92 1.57 1.13 0.992 1.03 1.06 1.10 1.26 1.15 0.977 0.733 1.26 1.15 0.977 0.733 1.64 1.44 1.18 0.855 0.714 0.742 0.771 0.800 2.97 2.63 2.16 1.57 21⁄2×11⁄2 0.2500 0.1875 1⁄ 4 3⁄ 16 5.41 4.32 1.59 1.27 1.05 0.844 1.15 0.815 0.920 0.736 0.964 0.852 0.458 0.405 0.610 0.793 0.537 1.14 0.540 0.669 0.565 0.976 *Outside dimensions across flat sides. **Properties are based upon a nominal outside corner radius equal to two times the wall thickness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION BARS AND PLATES 1 - 133 BARS AND PLATES Product Availability Plates are readily available in seven of the structural steel specifications listed in Section A3.1 of the AISC LRFD Specification. These are: ASTM A36, A242, A529, A572, A588, A514, and A852. Bars are available in all of these steels except A514 and A852. Table 1-1 shows the availability of each steel in terms of plate thickness. The Manual user is referred to the discussion on p. 1-5, Selection of the Appropriate Structural Steel, for guidance in selection of both plate and structural shapes. Classification Bars and plates are generally classified as follows: Bars: 6 in. or less in width, .203 in. and over in thickness. Over 6 in. to 8 in. in width, .230 in. and over in thickness. Plates: Over 8 in. to 48 in. in width, .230 in. and over in thickness. Over 48 in. in width, .180 in. and over in thickness. Bars Bars are available in various widths, thicknesses, diameters, and lengths. The preferred practice is to specify widths in 1⁄4-in. increments and thickness and diameter in 1⁄8-in. increments. Plates Defined according to rolling procedure: Sheared plates are rolled between horizontal rolls and trimmed (sheared or gas cut) on all edges. Universal (UM) plates are rolled between horizontal and vertical rolls and trimmed (sheared or gas cut) on ends only. Stripped plates are furnished to required widths by shearing or gas cutting from wider sheared plates. Sizes Plate mills are located in various districts, but the sizes of plates produced differ greatly and the catalogs of individual mills should be consulted for detail data. The extreme width of UM plates currently rolled is 60 inches and for sheared plates it is 200 inches, but their availability together with limiting thickness and lengths should be checked with the mills before specifying. The preferred increments for width and thickness are: Widths: Various. The catalogs of individual mills should be consulted to determine the most economical widths. Thickness: 1⁄32-in. increments up to 1⁄2-in. 1⁄ -in. increments over 1⁄ -in. to 1 in. 16 2 1⁄ -in. increments over 1 in. to 3 in. 8 1⁄ -in. increments over 3 in. 4 Ordering Plate thickness may be specified in inches or by weight per square foot, but no decimal edge thickness can be assured by the latter method. Separate tolerance tables apply to each method. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 134 DIMENSIONS AND PROPERTIES Table 1-7. Theoretical Weights of Rolled Floor Plates Gauge No. Theoretical Weight per sq. ft lb Nominal Thickness in. 18 2.40 1⁄ 8 16 3.00 3⁄ 14 13 12 Nominal Thickness in. Theoretical Weight per sq. ft, lb 6.16 1⁄ 2 21.47 8.71 9⁄ 16 24.02 3.75 1⁄ 4 11.26 5⁄ 8 26.58 4.50 5⁄ 13.81 3⁄ 4 31.68 5.25 3⁄ 8 16.37 7⁄ 8 36.78 7⁄ 18.92 1 41.89 16 16 16 Theoretical Weight per sq. ft, lb Note: Thickness is measured near the edge of the plate, exclusive of raised pattern. Invoicing Standard practice is to invoice plates to the fabricator at theoretical weight at point of shipment. Permissible variations in weight are in accordance with the tables of ASTM Specification A6. All plates are invoiced at theoretical weight and, except as noted, are subject to the same weight variations which apply to rectangular plates. Odd shapes in most instances require gas cutting, for which gas cutting extras are applicable. All plates ordered gas cut for whatever reason, or beyond published shearing limits, take extras for gas cutting in addition to all other extras. Rolled steel bearing plates are often gas cut to prevent distortion due to shearing but would also take the regular extra for the thickness involved. Extras for thickness, width, length, cutting, quality and quantity, etc., which are added to the base price of plates, are subject to revision, and should be obtained by inquiry to the producer. The foregoing general statements are made as a guide toward economy in design. Floor Plates Floor plates having raised patterns are available from several mills, each offering its own style of surface projections and in a variety of widths, thicknesses, and lengths. A maximum width of 96 inches and a maximum thickness of one inch are available, but availability of matching widths, thicknesses, and lengths should be checked with the producer. Floor plates are generally not specified to chemical composition limits or mechanical property requirements; a commercial grade of carbon steel is furnished. However, when strength or corrosion resistance is a consideration, raised pattern floor plates are procurable in any of the regular steel specifications. As in the case of plain plates, the individual manufacturers should be consulted for precise information. The nominal or ordered thickness is that of the flat plate, exclusive of the height or raised pattern. The usual weights are as shown in Table 1-7. AMERICAN INSTITUTE OF STEEL CONSTRUCTION BARS AND PLATES 1 - 135 SQUARE AND ROUND BARS Weight and area Weight lb per ft Area Sq in. Size in. 0 Weight lb per ft Area Sq in. Size in. 1⁄ 16 1⁄ 8 3⁄ 16 0.013 0.053 0.120 0.010 0.042 0.094 0.0039 0.0156 0.0352 0.0031 0.0123 0.0276 1⁄ 16 1⁄ 8 3⁄ 16 30.63 31.91 33.23 34.57 24.05 25.07 26.10 27.15 9.000 9.379 9.766 10.160 7.069 7.366 7.670 7.980 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 0.213 0.332 0.479 0.651 0.167 0.261 0.376 0.512 0.0625 0.0977 0.1406 0.1914 0.0491 0.0767 0.1104 0.1503 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 35.94 37.34 38.76 40.21 28.23 29.32 30.44 31.58 10.563 10.973 11.391 11.816 8.296 8.618 8.946 9.281 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 0.851 1.077 1.329 1.608 0.668 0.846 1.044 1.263 0.2500 0.3164 0.3906 0.4727 0.1964 0.2485 0.3068 0.3712 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 41.68 43.19 44.71 46.27 32.74 33.92 35.12 36.34 12.250 12.691 13.141 13.598 9.621 9.968 10.321 10.680 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 1.914 2.246 2.605 2.991 1.503 1.764 2.046 2.349 0.5625 0.6602 0.7656 0.8789 0.4418 0.5185 0.6013 0.6903 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 47.85 49.46 51.09 52.76 37.58 38.85 40.13 41.43 14.063 14.535 15.016 15.504 11.045 11.416 11.793 12.177 1⁄ 16 1⁄ 8 3⁄ 16 3.403 3.841 4.307 4.798 2.673 3.017 3.382 3.769 1.0000 1.1289 1.2656 1.4102 0.7854 0.8866 0.9940 1.1075 1⁄ 16 1⁄ 8 3⁄ 16 54.44 56.16 57.90 59.67 42.76 44.11 45.47 46.86 16.000 16.504 17.016 17.535 12.566 12.962 13.364 13.772 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 5.317 5.862 6.433 7.032 4.176 4.604 5.053 5.523 1.5625 1.7227 1.8906 2.0664 1.2272 1.3530 1.4849 1.6230 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 61.46 63.28 65.13 67.01 48.27 49.70 51.15 52.63 18.063 18.598 19.141 19.691 14.186 14.607 15.033 15.466 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 7.656 8.308 8.985 9.690 6.013 6.525 7.057 7.610 2.2500 2.4414 2.6406 2.8477 1.7672 1.9175 2.0739 2.2365 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 68.91 70.83 72.79 74.77 54.12 55.63 57.17 58.72 20.250 20.816 21.391 21.973 15.904 16.349 16.800 17.257 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 10.421 11.179 11.963 12.774 8.185 8.780 9.396 10.032 3.0625 3.2852 3.5156 3.7539 2.4053 2.5802 2.7612 2.9483 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 76.78 78.81 80.87 82.96 60.30 61.90 63.51 65.15 22.563 23.160 23.766 24.379 17.721 18.190 18.666 19.147 1⁄ 16 1⁄ 8 3⁄ 16 13.611 14.475 15.366 16.283 10.690 11.369 12.068 12.789 4.0000 4.2539 4.5156 4.7852 3.1416 3.3410 3.5466 3.7583 1⁄ 16 1⁄ 8 3⁄ 16 85.07 87.21 89.38 91.57 66.81 68.49 70.20 71.92 25.000 25.629 26.266 26.910 19.635 20.129 20.629 21.135 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 17.227 18.197 19.194 20.217 13.530 14.292 15.075 15.879 5.0625 5.3477 5.6406 5.9414 3.9761 4.2000 4.4301 4.6664 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 93.79 96.04 98.31 100.61 73.66 75.43 77.21 79.02 27.563 28.223 28.891 29.566 21.648 22.166 22.691 23.221 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 21.267 22.344 23.447 24.577 16.703 17.549 18.415 19.303 6.2500 6.5664 6.8906 7.2227 4.9087 5.1573 5.4119 5.6727 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 102.93 105.29 107.67 110.07 80.84 82.69 84.56 86.45 30.250 30.941 31.641 32.348 23.758 24.301 24.851 25.406 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 25.734 26.917 28.126 29.362 20.211 21.140 22.090 23.061 7.5625 7.9102 8.2656 8.6289 5.9396 6.2126 6.4918 6.7771 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 112.50 114.96 117.45 119.96 88.36 90.29 92.24 94.22 33.063 33.785 34.516 35.254 25.967 26.535 27.109 27.688 1 2 3 4 5 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 136 DIMENSIONS AND PROPERTIES SQUARE AND ROUND BARS Weight and area Weight lb per ft Area Sq in. Size in. 6 Weight lb per ft Area Sq in. Size in. 1⁄ 16 1⁄ 8 3⁄ 16 122.50 125.07 127.66 130.28 96.21 98.23 100.26 102.32 36.000 36.754 37.516 38.285 28.274 28.867 29.465 30.069 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 132.92 135.59 138.29 141.02 104.40 106.49 108.61 110.75 39.063 39.848 40.641 41.441 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 143.77 146.55 149.35 152.18 112.91 115.10 117.30 119.52 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 155.04 157.92 160.83 163.77 1⁄ 16 1⁄ 8 3⁄ 16 275.63 279.47 283.33 287.23 216.48 219.49 222.53 225.59 81.000 82.129 83.266 84.410 63.617 64.504 65.397 66.296 30.680 31.296 31.919 32.548 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 291.15 295.10 299.07 303.07 228.67 231.77 234.89 238.03 85.563 86.723 87.891 89.066 67.201 68.112 69.029 69.953 42.250 43.066 43.891 44.723 33.183 33.824 34.472 35.125 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 307.10 311.15 315.24 319.34 241.20 244.38 247.59 250.81 90.250 91.441 92.641 93.848 70.882 71.818 72.760 73.708 121.77 124.03 126.32 128.63 45.563 46.410 47.266 48.129 35.785 36.451 37.122 37.800 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 323.48 327.64 331.82 336.04 254.06 257.33 260.61 263.92 95.063 96.285 97.516 98.754 74.662 75.622 76.589 77.561 1⁄ 16 1⁄ 8 3⁄ 16 166.74 169.73 172.74 175.79 130.95 133.30 135.67 138.06 49.000 49.879 50.766 51.660 38.485 39.175 39.871 40.574 1⁄ 16 1⁄ 8 3⁄ 16 340.28 344.54 348.84 353.16 267.25 270.61 273.98 277.37 100.000 101.254 102.516 103.785 78.540 79.525 80.516 81.513 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 178.86 181.96 185.08 188.23 140.48 142.91 145.36 147.84 52.563 53.473 54.391 55.316 41.283 41.997 42.718 43.446 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 357.50 361.88 366.28 370.70 280.78 284.22 287.67 291.15 105.063 106.348 107.641 108.941 82.516 83.525 84.541 85.563 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 191.41 194.61 197.84 201.10 150.33 152.85 155.38 157.94 56.250 57.191 58.141 59.098 44.179 44.918 45.664 46.415 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 375.16 379.64 384.14 388.67 294.65 298.17 301.70 305.26 110.250 111.566 112.891 114.223 86.590 87.624 88.664 89.710 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 204.38 207.69 211.03 214.39 160.52 163.12 165.74 168.38 60.063 61.035 62.016 63.004 47.173 47.937 48.707 49.483 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 393.23 397.82 402.43 407.07 308.85 312.45 316.07 319.71 115.563 116.910 118.266 119.629 90.763 91.821 92.886 93.957 1⁄ 16 1⁄ 8 3⁄ 16 217.78 221.19 224.64 228.11 171.04 173.73 176.43 179.15 64.000 65.004 66.016 67.035 50.266 51.054 51.849 52.649 1⁄ 16 1⁄ 8 3⁄ 16 411.74 416.43 421.15 425.89 323.38 327.06 330.77 334.50 121.000 122.379 123.766 125.160 95.033 96.116 97.206 98.301 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 231.60 235.12 238.67 242.25 181.90 184.67 187.45 190.26 68.063 69.098 70.141 71.191 53.456 54.269 55.088 55.914 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 430.66 435.46 440.29 445.14 338.24 342.01 345.80 349.61 126.563 127.973 129.391 130.816 99.402 100.510 101.623 102.743 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 245.85 249.48 253.13 256.82 193.09 195.94 198.81 201.70 72.250 73.316 74.391 75.473 56.745 57.583 58.426 59.276 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 450.02 454.92 459.85 464.81 353.44 357.30 361.17 365.06 132.250 133.691 135.141 136.598 103.869 105.001 106.139 107.284 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 260.53 264.26 268.02 271.81 204.62 207.55 210.50 213.48 76.563 77.660 78.766 79.879 60.132 60.994 61.863 62.737 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 469.80 474.81 479.84 484.91 368.98 372.91 376.87 380.85 138.063 139.535 141.016 142.504 108.434 109.591 110.754 111.923 490.00 384.85 144.000 113.098 7 8 9 10 11 12 AMERICAN INSTITUTE OF STEEL CONSTRUCTION BARS AND PLATES 1 - 137 AREA OF RECTANGULAR SECTIONS Square inches Width in. Thickness, inches 3⁄ 16 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 3⁄ 4 13⁄ 16 1 0.047 0.093 0.141 0.188 0.063 0.125 0.188 0.250 0.078 0.156 0.234 0.313 0.094 0.188 0.281 0.375 0.109 0.219 0.328 0.438 0.125 0.250 0.375 0.500 0.141 0.281 0.422 0.563 0.156 0.313 0.469 0.625 0.172 0.344 0.516 0.688 0.188 0.375 0.563 0.75 0.203 0.406 0.609 0.813 0.219 0.438 0.656 0.875 0.234 0.469 0.703 0.938 0.250 0.500 0.750 1.00 11⁄4 11⁄2 13⁄4 2 0.234 0.281 0.328 0.375 0.313 0.375 0.438 0.500 0.391 0.469 0.547 0.625 0.469 0.563 0.656 0.750 0.547 0.656 0.766 0.875 0.625 0.750 0.875 1.00 0.703 0.844 0.984 1.13 0.781 0.938 1.09 1.25 0.859 1.03 1.20 1.38 0.938 1.13 1.31 1.50 1.02 1.22 1.42 1.63 1.09 1.31 1.53 1.75 1.17 1.41 1.64 1.88 1.25 1.50 1.75 2.00 21⁄4 21⁄2 23⁄4 3 0.422 0.469 0.516 0.563 0.563 0.625 0.688 0.750 0.703 0.781 0.859 0.938 0.844 0.938 1.03 1.13 0.984 1.09 1.20 1.31 1.13 1.25 1.38 1.50 1.27 1.41 1.55 1.69 1.41 1.56 1.72 1.88 1.55 1.72 1.89 2.06 1.69 1.88 2.06 2.25 1.83 2.03 2.23 2.44 1.97 2.19 2.41 2.63 2.11 2.34 2.58 2.81 2.25 2.50 2.75 3.00 31⁄4 31⁄2 33⁄4 4 0.609 0.656 0.703 0.750 0.813 0.875 0.938 1.00 1.02 1.09 1.17 1.25 1.22 1.31 1.41 1.50 1.42 1.53 1.64 1.75 1.63 1.75 1.88 2.00 1.83 1.97 2.11 2.25 2.03 2.19 2.34 2.50 2.23 2.41 2.58 2.75 2.44 2.63 2.81 3.00 2.64 2.84 3.05 3.25 2.84 3.06 3.28 3.50 3.05 3.28 3.52 3.75 3.25 3.50 3.75 4.00 41⁄4 41⁄2 43⁄4 5 0.797 0.844 0.891 0.938 1.06 1.13 1.19 1.25 1.33 1.41 1.48 1.56 1.59 1.69 1.78 1.88 1.86 1.97 2.08 2.19 2.13 2.25 2.38 2.50 2.39 2.53 2.67 2.81 2.66 2.81 2.97 3.13 2.92 3.09 3.27 3.44 3.19 3.38 3.56 3.75 3.45 3.66 3.86 4.06 3.72 3.94 4.16 4.38 3.98 4.22 4.45 4.69 4.25 4.50 4.75 5.00 51⁄4 51⁄2 53⁄4 6 0.984 1.03 1.08 1.13 1.31 1.38 1.44 1.50 1.64 1.72 1.80 1.88 1.97 2.06 2.16 2.25 2.30 2.41 2.52 2.63 2.63 2.75 2.88 3.00 2.95 3.09 3.23 3.38 3.28 3.44 3.59 3.75 3.61 3.78 3.95 4.13 3.94 4.13 4.31 4.50 4.27 4.47 4.67 4.88 4.59 4.81 5.03 5.25 4.92 5.16 5.39 5.63 5.25 5.50 5.75 6.00 61⁄4 61⁄2 63⁄4 7 1.17 1.22 1.27 1.31 1.56 1.63 1.69 1.75 1.95 2.03 2.11 2.19 2.34 2.44 2.53 2.63 2.73 2.84 2.95 3.06 3.13 3.25 3.38 3.50 3.52 3.66 3.80 3.94 3.91 4.06 4.22 4.38 4.30 4.47 4.64 4.81 4.69 4.88 5.06 5.25 5.08 5.28 5.48 5.69 5.47 5.69 5.91 6.13 5.86 6.09 6.33 6.56 6.25 6.50 6.75 7.00 71⁄4 71⁄2 73⁄4 8 1.36 1.41 1.45 1.50 1.81 1.88 1.94 2.00 2.27 2.34 2.42 2.50 2.72 2.81 2.91 3.00 3.17 3.28 3.39 3.50 3.63 3.75 3.88 4.00 4.08 4.22 4.36 4.50 4.53 4.69 4.84 5.00 4.98 5.16 5.33 5.50 5.44 5.63 5.81 6.00 5.89 6.09 6.30 6.50 6.34 6.56 6.78 7.00 6.80 7.03 7.27 7.50 7.25 7.50 7.75 8.00 81⁄2 9 1.59 1.69 2.13 2.25 2.66 2.81 3.19 3.38 3.72 3.94 4.25 4.50 4.78 5.06 5.31 5.63 5.84 6.19 6.38 6.75 6.91 7.31 7.44 7.88 7.97 8.44 8.50 9.00 91⁄2 10 1.78 1.88 2.38 2.50 2.97 3.13 3.56 3.75 4.16 4.38 4.75 5.00 5.34 5.63 5.94 6.25 6.53 6.88 7.13 7.50 7.72 8.13 8.31 8.75 8.91 9.38 9.50 10.0 101⁄2 11 1.97 2.06 2.63 2.75 3.28 3.44 3.94 4.13 4.59 4.81 5.25 5.50 5.91 6.19 6.56 6.88 7.22 7.56 7.88 8.25 8.53 8.94 9.19 9.63 9.84 10.3 10.5 11.0 111⁄2 12 2.16 2.25 2.88 3.00 3.59 3.75 4.31 4.50 5.03 5.25 5.75 6.00 6.47 6.75 7.19 7.50 7.91 8.63 8.25 9.00 9.34 9.75 10.8 11.3 11.5 12.0 1⁄ 4 1⁄ 2 3⁄ 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 7⁄ 8 10.1 10.5 15⁄ 16 1 1 - 138 DIMENSIONS AND PROPERTIES WEIGHT OF RECTANGULAR SECTIONS Pounds per linear foot Width in. Thickness, inches 3⁄ 16 1⁄ 4 5⁄ 16 3⁄ 8 7⁄ 16 1⁄ 2 9⁄ 16 5⁄ 8 11⁄ 16 3⁄ 4 13⁄ 16 7⁄ 8 15⁄ 16 1 0.160 0.319 0.479 0.638 0.213 0.425 0.638 0.851 0.266 0.532 0.798 1.06 0.319 0.638 0.957 1.28 0.372 0.744 1.12 1.49 0.425 0.851 1.28 1.70 0.479 0.957 1.44 1.91 0.532 1.06 1.60 2.13 0.585 1.17 1.75 2.34 0.638 1.28 1.91 2.55 0.691 1.38 2.07 2.76 0.744 1.49 2.23 2.98 0.798 1.60 2.39 3.19 0.851 1.70 2.55 3.40 11⁄4 11⁄2 13⁄4 2 0.798 0.957 1.12 1.28 1.06 1.28 1.49 1.70 1.33 1.60 1.86 2.13 1.60 1.91 2.23 2.55 1.86 2.23 2.61 2.98 2.13 2.55 2.98 3.40 2.39 2.87 3.35 3.83 2.66 3.19 3.72 4.25 2.92 3.51 4.09 4.68 3.19 3.83 4.47 5.10 3.46 4.15 4.84 5.53 3.72 4.47 5.21 5.95 3.99 4.79 5.58 6.38 4.25 5.10 5.95 6.81 21⁄4 21⁄2 23⁄4 3 1.44 1.60 1.75 1.91 1.91 2.13 2.34 2.55 2.39 2.66 2.92 3.19 2.87 3.19 3.51 3.83 3.35 3.72 4.09 4.47 3.83 4.25 4.68 5.10 4.31 4.79 5.26 5.74 4.79 5.32 5.85 6.38 5.26 5.85 6.43 7.02 5.74 6.38 7.02 7.66 6.22 6.91 7.60 8.29 6.70 7.44 8.19 8.93 7.18 7.98 8.77 9.57 7.66 8.51 9.36 10.2 31⁄4 31⁄2 33⁄4 4 2.07 2.23 2.39 2.55 2.76 2.98 3.19 3.40 3.46 3.72 3.99 4.25 4.15 4.47 4.79 5.10 4.84 5.21 5.58 5.95 5.53 5.95 6.38 6.81 6.22 6.70 7.18 7.66 6.91 7.44 7.98 8.51 7.60 8.19 8.77 9.36 8.29 8.93 9.57 10.2 8.99 9.68 10.4 11.1 9.68 10.4 11.2 11.9 10.4 11.2 12.0 12.8 11.1 11.9 12.8 13.6 41⁄4 41⁄2 43⁄4 5 2.71 2.87 3.03 3.19 3.62 3.83 4.04 4.25 4.52 4.79 5.05 5.32 5.42 5.74 6.06 6.38 6.33 6.70 7.07 7.44 7.23 7.66 8.08 8.51 8.13 8.61 9.09 9.57 9.04 9.57 10.1 10.6 9.94 10.5 11.1 11.7 10.8 11.5 12.1 12.8 11.8 12.4 13.1 13.8 12.7 13.4 14.1 14.9 13.6 14.4 15.2 16.0 14.5 15.3 16.2 17.0 51⁄4 51⁄2 53⁄4 6 3.35 3.51 3.67 3.83 4.47 4.68 4.89 5.10 5.58 5.85 6.11 6.38 6.70 7.02 7.34 7.66 7.82 8.19 8.56 8.93 8.93 9.36 9.78 10.2 10.0 10.5 11.0 11.5 11.2 11.7 12.2 12.8 12.3 12.9 13.5 14.0 13.4 14.0 14.7 15.3 14.5 15.2 15.9 16.6 15.6 16.4 17.1 17.9 16.7 17.5 18.3 19.1 17.9 18.7 19.6 20.4 61⁄4 61⁄2 63⁄4 7 3.99 4.15 4.31 4.47 5.32 5.53 5.74 5.95 6.65 6.91 7.18 7.44 7.98 8.29 8.61 8.93 9.30 9.68 10.0 10.4 10.6 11.1 11.5 11.9 12.0 12.4 12.9 13.4 13.3 13.8 14.4 14.9 14.6 15.2 15.8 16.4 16.0 16.6 17.2 17.9 17.3 18.0 18.7 19.4 18.6 19.4 20.1 20.8 19.9 20.7 21.5 22.3 21.3 22.1 23.0 23.8 71⁄4 71⁄2 73⁄4 8 4.63 4.79 4.94 5.10 6.17 6.38 6.59 6.81 7.71 7.98 8.24 8.51 9.25 9.57 9.89 10.2 10.8 11.2 11.5 11.9 12.3 12.8 13.2 13.6 13.9 14.4 14.8 15.3 15.4 16.0 16.5 17.0 17.0 17.5 18.1 18.7 18.5 19.1 19.8 20.4 20.0 20.7 21.4 22.1 21.6 22.3 23.1 23.8 23.1 23.9 24.7 25.5 24.7 25.5 26.4 27.2 81⁄2 9 5.42 5.74 7.23 7.66 9.04 9.57 10.8 11.5 12.7 13.4 14.5 15.3 16.3 17.2 18.1 19.1 19.9 21.1 21.7 23.0 23.5 24.9 25.3 26.8 27.1 28.7 28.9 30.6 91⁄2 10 6.06 6.38 8.08 8.51 10.1 10.6 12.1 12.8 14.1 14.9 16.2 17.0 18.2 19.1 20.2 21.3 22.2 23.4 24.2 25.5 26.3 27.6 28.3 29.8 30.3 31.9 32.3 34.0 101⁄2 11 6.70 7.02 8.93 9.36 11.2 11.7 13.4 14.0 15.6 16.4 17.9 18.7 20.1 21.1 22.3 23.4 24.6 25.7 26.8 28.1 29.0 30.4 31.3 32.8 33.5 35.1 35.7 37.4 111⁄2 12 7.34 7.66 9.78 10.2 12.2 12.8 14.7 15.3 17.1 17.9 19.6 20.4 22.0 23.0 24.5 25.5 26.9 28.1 29.3 30.6 31.8 33.2 34.2 35.7 36.7 38.3 39.1 40.8 1⁄ 4 1⁄ 2 3⁄ 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 CRANE RAILS 1 - 139 CRANE RAILS General Notes The ASCE rails and the 104- to 175-lb crane rails shown in Figure 1-2 are recommended for crane runway use. For complete details and for profiles and properties of rails not listed, consult manufacturers’ catalogs. Rails should be arranged so that joints on opposite sides of the crane runway will be staggered with respect to each other and with due consideration to the wheelbase of the crane. Rail joints should not occur at crane girder splices. Light 40-lb rails are available in 30-ft lengths, 60-lb rails in 30-, 33- or 39-ft lengths, standard rails in 33- or 39-ft lengths and crane rails up to 80 ft. Consult manufacturer for availability of other lengths. Odd lengths, which must be included to complete a run or obtain the necessary stagger, should be not less than 10 feet long. For crane rail service, 40-lb rails are furnished to manufacturers’ specifications and tolerances. 60- and 85-lb rails are furnished to manufacturers’ specifications and tolerances, or to ASTM A1. Crane rails are furnished to ASTM A759. Rails will be furnished with standard drilling in both standard and odd lengths unless stipulated otherwise on order. For controlled cooling, heat treatment, and rail end preparation, see manufacturers’ catalogs. Purchase orders for crane rails should be noted “For crane service.” (See Table 1-8.) For maximum wheel loadings see manufacturers’ catalogs. Splices Bolted Splices It is often more desirable to use properly installed and maintained bolted splice bars in making up rail joints for crane service than welded splice bars. Standard rail drilling and joint-bar punching, as furnished by manufacturers of light standard rails for track work, include round holes in rail ends and slotted holes in joint bars to receive standard oval-neck tack bolts. Holes in rails are oversize and punching in joint bars is spaced to allow 1⁄16- to 1⁄8-in. clearance between rail ends (see manufacturers’ catalogs for spacing and dimensions of holes and slots). Although this construction is satisfactory for track and light crane service, its use in general crane service may lead to joint failure. For best service in bolted splices, it is recommended that tight joints be stipulated for all rails for crane service. This will require rail ends to be finished by milling or grinding, and the special rail drilling and joint-bar punching tabulated below. Special rail drilling is accepted by some mills, or rails may be ordered blank for shop drilling. End finishing of standard rails can be done at the mill; light rails must be end-finished in the fabricating shop or ground at the site prior to erection. In the crane rail range, from 104 to 175 lbs per yard, rails and joint bars are manufactured to obtain a tight fit and no further special end finishing, drilling, or punching is required. Because of cumulative tolerance variations in holes, bolt diameters, and rail ends, a slight gap may sometimes occur in the so-called tight joints. Conversely, it may sometimes be necessary to ream holes through joined bar and rail to permit entry of bolts. Joint bars for crane service are provided in various sections to match the rails. Joint bars for light and standard rails may be purchased blank for special shop punching to obtain tight joints. See Bethlehem Steel Corp. Booklet 3351 for dimensions, material specifications, and the identification necessary to match the crane rail section. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 140 DIMENSIONS AND PROPERTIES c Bars can be sheared off r 13° c of g y 13° 1/ 4 Rad. R X X h 1/ 4 Rad. t 1/ 2 Rad. d 1/ 2 Rad. h g 13° 13° m m n b A.S.C.E. 40, 60 & 85 lb. c BETHLEHEM 104 lb. c 4 3 (approx.) 12° 13° 3 4 Rad. 3 4 Rad. 7/ 8 7/ 8 Rad. h 13° h 12° m BETHLEHEM 135 lb. Rad. m BETHLEHEM 171 lb. c 4 1/32 (approx.) 12° 2 Rad. 11/8 Rad. 12° h 2 53/64 m BETHLEHEM 175 lb. Nomenclature of sketch for A.S.C.E. rails also applies to the other sections. Fig. 1-2. Crane rails. AMERICAN INSTITUTE OF STEEL CONSTRUCTION CRANE RAILS 1 - 141 Table 1-8. Crane Rails Dimensions and Properties Type Nominal Wt. per Classi- Yd. d fication lb in. Sx Gage g b m n c r t h R Area lx in. in. in. in. in. in. in. in. in. in.2 in.4 17⁄ 32 5⁄ 8 11⁄ 16 48⁄ 64 13⁄ 16 7⁄ 8 57⁄ 64 31⁄ 32 11⁄16 11⁄16 11⁄4 19⁄64 11⁄ 64 7⁄ 32 1⁄ 4 9⁄ 32 9⁄ 32 19⁄ 64 19⁄ 64 10⁄ 32 1⁄ 2 15⁄ 32 5⁄ 8 1⁄ 2 111⁄16 12 12 3.00 4.10 2.55 12 155⁄64 12 3.94 6.54 3.59 3.89 1.68 21⁄8 12 23⁄8 12 27⁄16 12 21⁄2 12 29⁄16 12 23⁄4 12 21⁄ 64 25⁄ 64 7⁄ 16 31⁄ 64 33⁄ 64 35⁄ 64 9⁄ 16 9⁄ 16 123⁄32 17⁄8 21⁄2 12 1 ASCE Light 30 31⁄8 125⁄64 31⁄8 ASCE Light 40 31⁄2 171⁄128 31⁄2 ASCE Light 50 37⁄8 123⁄32 37⁄8 ASCE Light 60 41⁄4 1115⁄128 41⁄4 ASCE 70 45⁄8 23⁄64 45⁄8 ASCE 80 5 23⁄16 5 ASCE Std. 85 53⁄16 217⁄64 53⁄16 ASCE Std. 100 53⁄4 265⁄128 53⁄4 Bethlehem Crane 104 5 27⁄16 5 Bethlehem Crane 135 53⁄4 215⁄32 53⁄16 Bethlehem Crane 171 6 25⁄8 6 Bethlehem Crane 175 6 221⁄32 6 Hd. Base y in.3 in.3 in. — — 21⁄16 12 4.90 10.1 5.10 217⁄64 12 5.93 14.6 6.64 7.12 2.05 215⁄32 12 6.81 19.7 8.19 8.87 2.22 25⁄8 12 7.86 26.4 10.1 11.1 2.38 23⁄4 12 8.33 30.1 11.1 12.2 2.47 25⁄64 12 9.84 44.0 14.6 16.1 2.73 27⁄16 31⁄2 10.3 29.8 10.7 13.5 2.21 12 13.3 50.8 17.3 18.1 2.81 — 1.88 37⁄16 14 11⁄4 213⁄16 4.3 Flat 11⁄4 23⁄4 Vert. 16.8 73.4 24.5 24.4 3.01 41⁄4 18 11⁄2 37⁄64 Vert. 17.1 70.5 23.4 23.6 2.98 Joint-bar bolts, as distinguished from oval-neck track bolts, have straight shanks to the head and are manufactured to ASTM A449 specifications. Nuts are manufactured to ASTM A563 Gr. B specifications. ASTM A325 bolts and nuts may be used. Bolt assembly includes an alloy steel spring washer, furnished to AREA specifications. After installation, bolts should be retightened within 30 days and every three months thereafter. Welded Splices When welded splices are specified, consult the manufacturer for recommended rail-end preparation, welding procedure, and method of ordering. Although joint continuity, made possible by this method of splicing, is desirable, it should be noted that the careful control required in all stages of the welding operation may be difficult to meet during crane rail installation. Rails should not be attached to structural supports by welding. Rails with holes for joint bar bolts should not be used in making welded splices. Fastenings Hook Bolts Hook bolts (Figure 1-3) are used primarily with light rails when attached to beams too narrow for clamps. Rail adjustment to ±1⁄2-in. is inherent in the threaded shank. Hook bolts are paired alternately three to four inches apart, spaced at about 24-in. centers. The special rail drilling required must be done at the fabricator’s shop. Hook bolts are not recommended for use with heavy duty cycle cranes (CMAA Classes, D, E, and F). It is generally recommended that hook bolts should not be used in runway systems which are longer than 500 feet because the bolts do not allow for longitudinal movement of the rail. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 142 DIMENSIONS AND PROPERTIES Table 1-9. Splices for Tight Joints g A B C C B D C B L Rail End Joint Bar l l Grip Grip H H G Cut when specified 40-60-85-104 Rail Joint Bar Drilling Wt. Per Yard g lb in. 40 171⁄128 60 1115⁄128 85 217⁄64 104 27⁄16 135 215⁄32 171 25⁄8 175 221⁄32 Hole Dia. A in. 13⁄ * 16 13⁄ * 16 15⁄ * 16 11⁄16 13⁄16 13⁄16 13⁄16 105-135-171-175 B C in. in. in. 21⁄2 5 — 21⁄2 5 — 21⁄2 5 — 4 5 6 4 5 6 4 5 6 4 Bolt Washer Punching 5 6 Wt. 2 Bars Bolts, Nuts, Washers ThickIn- ness side and With Less Dia. Width Fig. Fig. Hole Dia. D B C L G Dia. Grip I H in. in. in. in. in. in. in. in. in. in. in. in. lb lb 13⁄ * 16 13⁄ * 16 15⁄ * 16 11⁄16 13⁄16 13⁄16 13⁄16 415⁄16* 5 — 20 23⁄16 3⁄ 4 115⁄16 31⁄2 21⁄2 16.5 5 — 24 211⁄16 3⁄ 4 219⁄32 4 211⁄16 36.5 29.6 415⁄16* 5 — 24 311⁄32 7⁄ 8 35⁄32 43⁄4 33⁄16 56.6 45.3 715⁄16 5 6 34 31⁄2 1 31⁄2 51⁄4 31⁄2 715⁄16 5 6 34 — 11⁄8 35⁄8 51⁄2 311⁄16 715⁄16 5 6 34 — 11⁄8 47⁄16 61⁄4 41⁄16 — 11⁄8 41⁄8 61⁄4 315⁄16 7⁄ ×3⁄ 16 8 7⁄ ×3⁄ 16 8 7⁄ ×3⁄ 16 8 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2 7⁄ ×1⁄ 16 2 20.0 415⁄16* 13⁄ 16 13⁄ 16 15⁄ 16 11⁄16 13⁄16 13⁄16 13⁄16 715⁄16 5 6 34 73.5 55.4 — 75.3 — 90.8 — 87.7 *Special rail drilling and joint-bar punching. Rail Clips Rail clips are forged or cast devices which are shaped to match specific rail profiles. They are usually bolted to the runway girder flange with one bolt or are sometimes welded. Rail clips have been used satisfactorily with all classes of cranes. However, one drawback is that when a single bolt is used the clip can rotate in response to rail longitudinal movement. This clip rotation can cause a camming action, thus forcing the rail out of alignment. Because of this limitation, rail clips should only be used in crane systems subject to infrequent use, and for runways less than 500 feet in length. AMERICAN INSTITUTE OF STEEL CONSTRUCTION CRANE RAILS 1 - 143 Rail Clamps Rail clamps are a common method of attachment for heavy duty cycle cranes. Rail clamps are detailed to provide two types: tight and floating (Figure 1-4). Each clamp consists of two plates: an upper clamp plate and a lower filler plate. The lower plate is flat and roughly matches the height of the toe of the rail flange. The upper plate covers the lower plate and extends over the top of the lower rail flange. In the tight clamp the upper plate is detailed to fit tightly to the lower tail flange top, thus “clamping” it tightly in place when the fasteners are tightened. In the past, the tight clamp had been illustrated with the filler plates fitted tightly against the rail flange toe. This tight fit-up was rarely achieved in practice and is not considered to be necessary to achieve a tight type clamp. In the floating type clamp, the pieces are detailed to provide a clearance both alongside the rail flange toe and below the upper plate. The floating type does not, in reality, clamp the rail but merely holds the rail within the limits of the clamp clearances. Fig. 1-3. Hook bolts. Reversible 1 1/2 fillers Reversible fillers Clamp plates 3 Off-center punching 11/2 Clamp plates 3 Off-center punching 11/2 1 1/2 Rail base + 1/ 4 ( 1/2 to 9/16 ) "float" Max. adjustment Self-locking nut or nut and lock washer Filler Machine bolt Gage Gage Tight clamp Floating clamp Fig. 1-4. Rail clamps. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 144 DIMENSIONS AND PROPERTIES High strength bolts are recommended for both clamp types. Both types should be spaced three feet or less apart. Dimensions shown above are suggested. See manufacturers’ catalogs for recommended gages, bolt sizes, and detail dimensions not shown. Patented Rail Clips Each manufacturer’s literature presents in detail the desirable aspects of the various designs. In general patented rail clips are easy to install due to their range of adjustment while providing the proper limitations of lateral movement and allowance for longitudinal movement. Patented rail clips should be considered as a viable alternative to conventional hook bolts, clips, or clamps. Because of their desirable characteristics, patented rail clips can be used without restriction except as limited by the specific manufacturer’s recommendations. Installations using patented rail clips sometimes incorporate pads beneath the rail. When this is done the lateral float of the rail should be limited as in the case of the tight rail clamps. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 145 TORSION PROPERTIES Torsional analysis is not required for the routine design of most structural steel members. When torsional analysis is required, the Table of Torsion Properties will be of assistance in utilizing current analysis methods. The reader is referred to the AISC publication Torsional Analysis of Steel Members (American Institute of Steel Construction, 1983) for additional information and appropriate design aids. Torsion Properties are also required to determine the design compressive strength for torsional and flexural-torsional buckling as specified in the AISC LRFD Specification Appendix E3. Nomenclature = warping constant for section, in.6* = modulus of elasticity of steel (29,000 ksi) = shear modulus of elasticity of steel (11,200 ksi) = flexural constant in Equation E3-1, LRFD Specification = torsional constant for a section, in.4 = statical moment for a point in the flange directly above the vertical edge of the web, in.3 3 _Qw = statical moment at mid-depth of the section, in. ro = polar radius of gyration about the shear center, in. Sw = warping statical moment at a point in the section, in.4 Wno = normalized warping function at a point at the flange edge, in.2 Cw E G H J Qf *Calculated values of Cw are given for all tabulated shapes. However, for many angles and T shapes, Cw is so small that for practical purposes it can be taken as zero. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 146 DIMENSIONS AND PROPERTIES TORSION PROPERTIES W shapes √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in. in.2 in.4 in.3 in.3 137 153 167 190 168 166 165 164 1190 1040 922 789 282 251 225 194 811 709 636 551 989000 649000 577000 511000 446000 397000 378000 333000 283000 245000 189000 75.4 95.1 103 110 121 130 138 151 173 187 209 166 158 156 154 152 151 151 149 149 148 147 2240 1540 1380 1240 1100 986 940 836 714 621 481 484 354 323 294 264 240 230 208 179 157 119 1380 992 894 813 730 665 624 560 481 434 364 393000 306000 242000 192000 181000 161000 140000 119000 99300 79600 60.6 67.9 76.8 87.6 91.3 101 109 125 136 147 125 121 118 115 114 113 112 111 111 110 1160 940 762 622 589 530 468 402 336 270 322 272 228 192 184 168 151 134 113 92.0 1030 856 715 596 566 506 453 391 346 299 1620000 1480000 1090000 816000 637000 554000 493000 441000 398000 366000 330000 306000 282000 57.5 59.8 68.6 80.0 92.0 100 108 116 127 134 143 151 160 172 169 162 156 152 150 148 146 146 145 144 143 143 3530 3270 2520 1960 1570 1390 1240 1130 1020 944 858 799 740 674 634 513 415 344 309 281 258 235 219 200 187 175 1910 1790 1420 1130 928 830 757 691 628 585 538 505 472 168000 148000 128000 116000 107000 98500 90200 82200 68100 90.3 98.1 109 116 123 130 137 145 159 109 108 108 107 106 105 105 105 104 576 512 446 407 378 349 321 294 245 408000 357000 319000 281000 250000 224000 198000 95.8 105 113 122 134 145 158 135 133 132 130 130 129 128 1130 1000 906 808 721 650 580 Torsional Constant J Warping Constant Cw Designation in.4 in.6 W44×335 W ×290 W ×262 W ×230 74.4 51.5 37.7 24.9 536000 463000 406000 346000 W40×593 W ×503 W ×431 W ×372 W ×321 W ×297 W ×277 W ×249 W ×215 W ×199 W ×174 451 186 142 109 79.4 61.2 51.1 37.7 24.4 18.1 11.2 W40×466 W ×392 W ×331 W ×278 W ×264 W ×235 W ×211 W ×183 W ×167 W ×149 277 172 106 64.7 56.1 41.3 30.4 19.6 14.0 9.60 W36×848 W ×798 W ×650 W ×527 W ×439 W ×393 W ×359 W ×328 W ×300 W ×280 W ×260 W ×245 W ×230 W36×256 W ×232 W ×210 W ×194 W ×182 W ×170 W ×160 W ×150 W ×135 W33×354 W ×318 W ×291 W ×263 W ×241 W ×221 W ×201 W33×169 W ×152 W ×141 W ×130 W ×118 1270 1070 600 330 195 143 109 84.5 64.2 52.6 41.5 34.6 28.6 53.3 39.8 28.0 22.2 18.4 15.1 12.4 10.1 6.99 115 84.4 65.0 48.5 35.8 27.5 20.5 17.7 12.4 9.70 7.37 5.30 82400 71700 64400 56600 48300 110 122 131 141 154 93.7 93.8 93.3 92.8 92.2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 329 286 258 228 196 Statical Moment 176 159 138 128 120 111 103 95.1 79.9 520 468 416 383 359 334 312 291 255 263 237 216 195 174 158 142 709 634 577 519 469 428 386 109 95.1 86.5 76.9 66.6 314 279 257 233 207 TORSION PROPERTIES 1 - 147 TORSION PROPERTIES W shapes Designation W30×477 W ×391 W ×326 W ×292 W ×261 W ×235 W ×211 W ×191 W ×173 W30×148 W ×132 W ×124 W ×116 W ×108 W ×99 W ×90 W27×539 W ×448 W ×368 W ×307 W ×258 W ×235 W ×217 W ×194 W ×178 W ×161 W ×146 √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in.6 in. in.2 in.4 in.3 in.3 480000 364000 286000 249000 215000 190000 166000 146000 129000 63.6 73.6 84.8 92.8 102 111 124 135 148 329 268 223 200 177 160 141 126 113 896 716 595 530 470 422 374 337 303 49400 42100 38600 34900 30900 26800 24000 93.6 106 112 119 127 136 146 77.3 77.3 76.9 76.5 76.1 75.7 75.0 239 204 188 171 152 133 119 86.8 74.0 68.8 62.8 56.1 49.5 45.0 250 219 204 189 173 156 142 440000 336000 254000 199000 159000 140000 128000 111000 98300 87300 77200 47.8 54.1 62.4 71.4 82.2 88.5 94.6 104 114 124 135 111 106 102 99.4 98.2 96.0 95.0 93.9 93.7 92.9 92.2 1490 1190 930 750 613 548 503 442 393 352 314 342 283 231 192 161 146 135 120 107 96.6 87.0 940 766 620 511 424 384 354 314 284 256 231 Torsional Constant J Warping Constant Cw in.4 307 174 103 74.9 53.8 40.0 27.9 20.6 15.3 14.6 9.72 7.99 6.43 4.99 3.77 2.92 499 297 169 101 61.0 46.3 37.0 26.5 19.5 14.7 10.9 124 120 117 115 114 112 112 111 110 1450 1140 919 812 710 633 556 494 439 Statical Moment W27×129 W ×114 W ×102 W ×94 W ×84 11.2 7.33 5.29 4.03 2.81 32500 27600 24000 21300 17900 86.7 98.7 108 117 128 66.4 66.4 65.7 65.4 64.9 183 155 137 122 103 69.5 59.2 52.7 47.3 40.6 197 171 153 139 122 W24×492 W ×408 W ×335 W ×279 W ×250 W ×229 W ×207 W ×192 W ×176 W ×162 W ×146 W ×131 W ×117 W ×104 456 271 154 91.7 67.3 51.8 38.6 31.0 24.1 18.5 13.4 9.50 6.72 4.72 283000 214000 160000 125000 108000 95800 83900 76200 68400 62600 54600 47100 40800 35200 40.1 45.2 51.9 59.4 64.5 69.2 75.0 79.8 85.7 93.6 103 113 125 139 92.1 88.1 84.6 82.0 80.6 79.6 78.5 77.7 77.0 77.0 76.3 75.6 74.9 74.3 1150 909 709 570 502 451 401 367 333 304 268 233 204 178 281 233 189 157 141 128 116 107 97.8 89.4 79.5 69.7 61.5 54.1 774 626 509 418 372 338 303 280 255 234 209 185 164 144 W24×103 W ×94 W ×84 W ×76 W ×68 7.10 5.26 3.70 2.68 1.87 16600 15000 12800 11100 9430 77.8 85.9 94.6 104 114 53.0 53.1 52.6 52.2 51.9 117 105 91.3 79.8 68.0 49.4 44.4 39.0 34.4 29.5 140 127 112 100 88.3 W24×62 W ×55 1.71 1.18 4620 3870 83.6 92.2 40.7 40.4 42.3 35.7 23.2 19.8 76.6 67.1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 148 DIMENSIONS AND PROPERTIES TORSION PROPERTIES W shapes √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in.6 in. in.2 in.4 in.3 in.3 41.3 31.1 23.9 15.4 11.3 8.98 6.83 5.21 61800 54300 48500 41100 36000 32700 29200 26200 62.2 67.2 72.5 83.1 90.8 97.1 105 114 67.0 66.0 65.6 65.4 64.7 64.2 63.7 63.2 345 307 277 235 208 191 172 155 W21×93 W ×83 W ×73 W ×68 W ×62 6.03 4.34 3.02 2.45 1.83 9940 8630 7410 6760 5960 65.3 71.8 79.7 84.5 91.8 43.6 43.0 42.5 42.3 42.0 85.3 75.0 65.2 59.9 53.2 38.2 34.2 30.3 28.0 25.1 110 98.0 86.2 79.9 72.2 W21×57 W ×50 W ×44 1.77 1.14 0.77 3190 2570 2110 68.3 76.4 84.2 33.4 33.1 32.8 35.6 28.9 24.0 20.9 17.2 14.5 64.3 55.0 47.7 75700 65600 57400 49900 43200 37900 33200 28900 25700 22700 33.3 35.5 37.8 40.3 43.4 46.6 50.1 54.3 58.6 63.2 58.8 57.5 56.4 55.2 54.2 53.3 52.5 51.6 51.0 50.4 483 427 382 339 299 267 237 210 189 169 Torsional Constant J Warping Constant Cw Designation in.4 W21×201 W ×182 W ×166 W ×147 W ×132 W ×122 W ×111 W ×101 W18×311 W ×283 W ×258 W ×234 W ×211 W ×192 W ×175 W ×158 W ×143 W ×130 177 135 104 79.7 59.3 45.2 34.2 25.4 19.4 14.7 Statical Moment 102 92.3 84.4 71.4 64.0 59.2 53.7 49.0 141 127 116 105 94.3 85.7 77.2 69.4 63.2 57.1 265 238 216 187 167 154 139 127 376 338 306 274 245 221 199 178 161 145 W18×119 W ×106 W ×97 W ×86 W ×76 10.6 7.48 5.86 4.10 2.83 20300 17400 15800 13600 11700 70.4 77.6 83.6 92.7 103 50.4 49.8 49.4 48.9 48.4 151 131 120 104 90.7 50.6 44.6 41.2 36.3 31.9 131 115 105 92.8 81.4 W18×71 W ×65 W ×60 W ×55 W ×50 3.48 2.73 2.17 1.66 1.24 4700 4240 3850 3430 3040 59.1 63.4 67.8 73.1 79.7 33.7 33.4 33.1 32.9 32.6 52.1 47.5 43.5 39.0 34.9 25.8 23.8 22.1 19.9 18.0 72.7 66.6 61.4 55.9 50.4 W18×46 W ×40 W ×35 1.22 0.81 0.51 1710 1440 1140 60.2 67.8 76.1 26.4 26.1 25.9 24.2 20.6 16.5 15.3 13.3 10.7 45.3 39.2 33.2 W16×100 W ×89 W ×77 W ×67 7.73 5.45 3.57 2.39 11900 10200 8590 7300 63.1 69.6 78.9 88.9 41.7 41.1 40.6 40.1 107 93.3 79.3 68.2 39.0 34.4 29.7 25.9 99.0 87.3 75.0 64.9 W16×57 W ×50 W ×45 W ×40 W ×36 2.22 1.52 1.11 0.79 0.54 2660 2270 1990 1730 1460 55.7 62.2 68.1 75.3 83.7 28.0 27.6 27.4 27.1 26.9 35.6 30.8 27.2 23.9 20.2 19.0 16.7 15.0 13.4 11.4 52.6 46.0 41.1 36.5 32.0 W16×31 W ×26 0.46 0.26 739 565 64.5 75.0 21.3 21.1 13.0 10.0 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.17 7.20 27.0 22.1 TORSION PROPERTIES 1 - 149 TORSION PROPERTIES W shapes Torsional Constant J Designation W14×808 W ×730 W ×665 W ×605 W ×550 W ×500 W ×455 W14×426 W ×398 W ×370 W ×342 W ×311 W ×283 W ×257 W ×233 W ×211 W ×193 W ×176 W ×159 W ×145 4 in. 1860 1450 1120 870 670 514 395 331 273 222 178 136 104 79.1 59.5 44.6 34.8 26.5 19.8 15.2 Warping Constant Cw 6 in. √ EC w GJ Normalized Warping Constant Wno 2 Warping Statical Moment Sw 4 Statical Moment Qf 3 Qw in.3 in. in. in. in. 433000 362000 305000 258000 219000 187000 160000 24.6 25.4 26.6 27.7 29.1 30.7 32.4 82.2 78.3 75.5 73.0 70.6 68.5 66.5 1950 1720 1510 1320 1160 1020 899 337 319 287 259 233 209 189 916 831 740 660 588 524 468 144000 129000 116000 103000 89100 77700 67800 59000 51500 45900 40500 35600 31700 33.6 35.0 36.8 38.7 41.2 44.0 47.1 50.7 54.7 58.4 62.9 68.2 73.5 65.3 64.1 62.9 61.6 60.3 59.1 57.9 56.9 55.9 55.1 54.4 53.7 53.0 827 756 689 623 553 493 438 389 345 312 279 248 224 176 163 151 138 125 113 102 91.7 82.3 75.4 68.0 61.3 55.8 434 401 368 336 301 271 243 218 195 177 160 143 130 190 171 154 138 125 49.9 45.3 41.2 37.2 33.7 117 106 95.9 86.6 78.3 W14×132 W ×120 W ×109 W ×99 W ×90 12.3 9.37 7.12 5.37 4.06 25500 22700 20200 18000 16000 73.3 79.2 85.7 93.2 101 50.2 49.7 49.1 48.7 48.3 W14×82 W ×74 W ×68 W ×61 5.08 3.88 3.02 2.20 6710 5990 5380 4710 58.5 63.2 67.9 74.5 34.1 33.7 33.4 33.1 73.8 66.6 60.4 53.3 28.1 25.7 23.5 21.0 69.3 62.8 57.3 51.1 W14×53 W ×48 W ×43 1.94 1.46 1.05 2540 2240 1950 58.2 63.0 69.3 26.7 26.5 26.2 35.5 31.6 27.8 17.3 15.6 13.9 43.6 39.2 34.8 W14×38 W ×34 W ×30 0.80 0.57 0.38 1230 1070 887 63.1 69.7 77.7 23.0 22.8 22.6 20.0 17.5 14.7 11.5 10.2 8.59 30.7 27.3 23.6 W14×26 W ×22 0.36 0.21 405 314 54.0 62.2 16.9 16.8 6.98 5.58 20.1 16.6 243 185 143 108 83.8 64.7 48.8 35.6 25.8 18.5 12.9 9.13 6.86 5.10 3.84 2.93 2.18 57000 48600 42000 35800 31200 27200 23600 20100 17200 14700 12400 10700 9410 8270 7330 6540 5780 24.6 26.1 27.6 29.3 31.0 33.0 35.4 38.2 41.5 45.4 49.9 55.1 59.6 64.8 70.3 76.0 82.9 46.4 45.0 44.0 42.8 41.8 41.0 40.1 39.2 38.4 37.7 37.0 36.4 35.9 35.5 35.2 34.9 34.5 W12×336 W ×305 W ×279 W ×252 W ×230 W ×210 W ×190 W ×170 W ×152 W ×136 W ×120 W ×106 W ×96 W ×87 W ×79 W ×72 W ×65 8.94 7.02 459 403 357 313 279 249 220 192 168 146 126 110 98.2 87.2 78.1 70.3 62.7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 119 107 96.3 86.4 78.4 71.1 64.1 56.9 50.4 44.5 38.9 34.6 31.3 28.0 25.3 22.9 20.6 301 269 241 214 193 174 156 137 121 107 93.2 81.9 73.6 66.0 59.5 53.9 48.4 1 - 150 DIMENSIONS AND PROPERTIES TORSION PROPERTIES W shapes √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in. in.2 in.4 in.3 in.3 3570 3160 66.3 72.0 28.9 28.7 46.3 41.2 18.2 16.3 43.2 39.0 1.78 1.31 0.95 1880 1650 1440 52.3 57.1 62.6 23.3 23.1 22.9 30.2 26.7 23.6 14.7 13.1 11.8 36.2 32.4 28.8 W12×35 W ×30 W ×26 0.74 0.46 0.30 879 720 607 55.5 63.7 72.4 19.6 19.4 19.2 16.8 13.9 11.8 W12×22 W ×19 W ×16 W ×14 0.29 0.18 0.10 0.07 164 131 96.9 80.4 38.3 43.4 50.1 54.5 12.0 11.8 11.7 11.6 W10×112 W ×100 W ×88 W ×77 W ×68 W ×60 W ×54 W ×49 15.1 10.9 7.53 5.11 3.56 2.48 1.82 1.39 6020 5150 4330 3630 3100 2640 2320 2070 32.1 35.0 38.6 42.9 47.5 52.5 57.5 62.1 26.3 25.8 25.3 24.8 24.4 24.0 23.8 23.6 85.7 74.7 64.2 54.9 47.6 41.2 36.6 33.0 30.8 27.2 23.8 20.7 18.1 15.9 14.3 13.0 73.7 64.9 56.4 48.8 42.6 37.3 33.3 30.2 W10×45 W ×39 W ×33 1.51 0.98 0.58 1200 992 790 45.4 51.2 59.4 19.0 18.7 18.5 23.6 19.8 16.0 11.5 9.77 7.98 27.5 23.4 19.4 W10×30 W ×26 W ×22 0.62 0.40 0.24 414 345 275 41.6 47.3 54.5 14.5 14.3 14.1 10.7 9.05 7.30 7.09 6.08 4.95 18.3 15.6 13.0 W10×19 W ×17 W ×15 W ×12 0.23 0.16 0.10 0.05 104 85.1 68.3 50.9 34.2 37.1 42.1 51.3 3.93 3.24 2.62 1.99 3.76 3.13 2.56 2.00 10.8 9.33 8.00 6.32 W8×67 W ×58 W ×48 W ×40 W ×35 W ×31 5.06 3.34 1.96 1.12 0.77 0.54 1440 1180 931 726 619 530 27.1 30.2 35.1 41.0 45.6 50.4 16.7 16.3 15.8 15.5 15.3 15.1 14.7 12.5 10.4 8.42 7.39 6.46 35.1 29.9 24.5 19.9 17.3 15.2 W8×28 W ×24 0.54 0.35 312 259 38.7 43.8 12.4 12.2 9.43 7.94 5.64 4.83 13.6 11.6 W8×21 W ×18 0.28 0.17 152 122 37.5 43.1 10.4 10.3 5.47 4.44 4.03 3.31 10.2 8.52 W8×15 W ×13 W ×10 0.14 0.09 0.04 51.8 40.8 30.9 31.0 34.3 44.7 7.82 7.74 7.57 2.47 1.97 1.53 2.39 1.93 1.56 6.78 5.70 4.43 W6×25 W ×20 W ×15 0.46 0.24 0.10 150 113 76.5 29.1 34.9 44.5 9.01 8.78 8.58 6.23 4.82 3.34 3.92 3.10 2.18 9.46 7.45 5.39 W6×16 W ×12 W ×9 0.22 0.09 0.04 38.2 24.7 17.7 21.2 26.7 33.8 5.92 5.75 5.60 2.42 1.61 1.19 2.28 1.55 1.19 5.84 4.15 3.12 W5×19 W ×16 0.31 0.19 50.8 40.6 20.6 23.5 5.94 5.81 3.21 2.62 2.44 2.02 5.81 4.82 W4×13 0.15 14.0 15.5 3.87 1.36 1.27 3.14 Torsional Constant J Warping Constant Cw Designation in.4 in.6 W12×58 W ×53 2.10 1.58 W12×50 W ×45 W ×40 9.89 9.80 9.72 9.56 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5.13 4.14 3.09 2.59 32.3 27.2 22.0 17.5 15.2 13.1 Statical Moment 9.86 8.30 7.15 25.6 21.6 18.6 4.87 4.01 3.04 2.59 14.7 12.4 10.0 8.72 TORSION PROPERTIES 1 - 151 TORSION PROPERTIES M shapes √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in.6 in. in.2 in.4 in.3 in.3 0.05 0.04 34.0 31.3 42.0 45.0 9.02 9.01 1.56 1.45 1.98 1.86 7.14 6.58 M10×9 M ×8 0.03 0.02 14.6 12.8 35.5 40.7 6.59 6.57 0.91 0.80 1.32 1.18 4.60 4.06 M8×6.5 0.02 26.0 4.45 0.48 0.82 2.72 M5×18.9 0.34 17.7 5.73 2.98 2.28 5.53 Torsional Constant J Warping Constant Cw Designation in.4 M12×11.8 M ×10.8 5.23 41.3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Statical Moment 1 - 152 DIMENSIONS AND PROPERTIES TORSION PROPERTIES S shapes Designation S24×121 S ×106 √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in.6 in. in.2 in.4 in.3 in.3 11400 10600 48.0 52.1 47.1 46.1 103 98.8 47.1 47.1 154 141 121 112 103 Torsional Constant J Warping Constant Cw in.4 12.8 10.1 Statical Moment S24×100 S ×90 S ×80 7.58 6.04 4.88 6380 6000 5640 46.7 50.7 54.7 41.9 41.2 40.5 66.0 63.8 61.6 33.5 33.5 33.5 S20×96 S ×86 8.39 6.64 4710 4390 38.1 41.4 34.9 34.2 57.8 55.5 29.2 29.2 99.7 92.5 S20×75 S ×66 4.59 3.58 2750 2550 39.4 42.9 30.7 30.0 38.9 37.3 22.6 22.6 77.0 70.5 S18×70 S ×54.7 4.15 2.37 1800 1560 33.5 41.3 27.0 26.0 29.2 26.9 17.1 17.1 63.0 52.9 S15×50 S ×42.9 2.12 1.54 811 744 31.5 35.4 20.3 19.8 17.8 16.9 11.8 11.8 39.0 35.1 S12×50 S ×40.8 2.82 1.75 505 437 21.5 25.4 15.5 14.9 14.0 12.9 9.30 9.30 31.0 26.9 S12×35 S ×31.8 1.08 0.90 324 307 27.9 29.7 14.5 14.3 10.0 9.74 7.48 7.48 22.7 21.3 S10×35 S ×25.4 1.29 0.60 189 153 19.5 25.7 11.8 11.1 7.13 6.34 5.24 5.24 17.9 14.4 S8×23 S ×18.4 0.55 0.34 61.8 53.5 17.1 20.2 7.90 7.58 3.50 3.22 3.10 3.10 9.74 8.38 S6×17.25 S ×12.5 0.37 0.17 18.4 14.5 11.3 14.9 5.03 4.70 1.61 1.41 1.63 1.63 5.35 4.30 S5×10 0.11 6.66 12.3 3.51 0.86 1.11 2.88 S4×9.5 S ×7.7 0.12 0.07 3.10 2.62 8.18 9.84 2.59 2.47 0.53 0.48 0.70 0.70 2.05 1.79 S3×7.5 S ×5.7 0.09 0.04 1.10 0.85 5.63 7.42 1.72 1.60 0.28 0.24 0.40 0.40 1.20 1.00 AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 153 TORSION PROPERTIES HP shapes √ EC w GJ Normalized Warping Constant Wno Warping Statical Moment Sw Qf Qw in.6 in. in.2 in.4 in.3 in.3 8.02 5.40 3.60 2.01 19900 16800 14200 11200 80.2 89.8 101 120 49.9 49.2 48.5 47.8 149 128 110 88.0 38.5 33.5 29.1 23.8 97.2 84.3 72.9 59.2 HP13×100 HP ×87 HP ×73 HP ×60 6.25 4.12 2.54 1.39 11300 9430 7680 6020 68.4 77.0 88.5 106 40.9 40.2 39.6 39.0 103 87.7 72.8 57.8 29.9 25.8 21.8 17.7 76.3 65.6 55.2 44.5 HP12×84 HP ×74 HP ×63 HP ×53 4.24 2.98 1.83 1.12 7160 6170 4990 4090 66.1 73.2 84.0 97.2 35.6 35.2 34.6 34.2 75.0 65.5 54.1 44.7 23.5 20.8 17.5 14.7 59.8 52.7 44.2 37.0 HP10×57 HP ×42 1.97 0.81 2240 1540 54.3 70.2 24.1 23.4 34.8 24.7 13.1 9.64 33.2 24.2 HP8×36 0.77 578 44.1 15.4 14.0 6.62 16.8 Torsional Constant J Warping Constant Cw Designation in.4 HP14×117 HP ×102 HP ×89 HP ×73 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Statical Moment 1 - 154 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Channels Designation Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units C15×50 C15×40 C15×33.9 2.67 1.46 1.02 492 411 358 5.49 5.72 5.94 .937 .927 .920 C12×30 C15×25 C15×20.7 0.87 0.54 0.37 151 130 112 4.55 4.72 4.93 .919 .909 .899 C10×30 C1××25 C5××20 C10×15.3 1.23 0.69 0.37 0.21 79.3 68.4 56.9 45.6 3.63 3.75 3.93 4.19 .921 .912 .900 .883 C9×20 C9×15 C9×13.4 0.43 0.21 0.17 39.4 31.0 28.2 3.46 3.69 3.79 .899 .882 .874 C8×18.75 C9×13.75 C9×11.5 0.44 0.19 0.13 25.1 19.2 16.5 3.06 3.27 3.42 .894 .874 .862 C7×12.25 C9×9.8 0.16 0.10 11.2 9.18 2.87 3.02 .862 .846 C6×13 C9×10.5 C9×8.2 0.24 0.13 0.08 7.22 5.95 4.72 2.37 2.49 2.65 .858 .843 .824 C5×9 C9×6.7 0.11 0.06 2.93 2.22 2.10 2.26 .814 .790 C4×7.25 C9×5.4 0.08 0.04 1.24 0.92 1.75 1.89 .768 .741 C3×6 C9×5 C9×4.1 0.07 0.04 0.03 0.46 0.38 0.31 1.39 1.45 1.53 .689 .674 .656 *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 155 FLEXURAL-TORSIONAL PROPERTIES Channels Designation Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units MC18×58 MC10×51.9 MC10×45.8 MC10×42.7 2.81 2.03 1.45 1.23 1070 986 897 852 6.56 6.70 6.88 6.97 .944 .939 .933 .930 MC13×50 MC10×40 MC10×35 MC10×31.8 2.98 1.57 1.14 0.94 558 463 413 380 5.07 5.33 5.50 5.64 .875 .860 .849 .842 MC12×50 MC10×45 MC10×40 MC10×35 MC10×31 MC10×10.6 3.24 2.35 1.70 1.25 1.01 0.06 411 374 336 297 268 11.7 4.77 4.87 5.01 5.18 5.34 4.27 .859 .851 .842 .832 .821 .983 MC10×41.1 MC10×33.6 MC10×28.5 2.27 1.21 0.79 270 224 194 4.26 4.47 4.68 .790 .771 .752 MC10×25 MC10×22 0.64 0.51 125 111 4.46 4.63 .802 .790 MC10×8.4 0.04 3.68 .972 MC9×25.4 MC9×23.9 0.69 0.60 4.08 4.15 .770 .763 MC8×22.8 MC9×21.4 MC9×20 MC9×18.7 MC9×8.5 0.57 0.50 0.44 0.38 0.06 75.3 70.9 47.9 45.1 8.22 3.85 3.91 3.59 3.65 3.24 .716 .709 .780 .773 .910 MC7×22.7 MC9×19.1 0.63 0.41 58.5 49.4 3.53 3.71 .662 .638 MC6×18 0.38 34.6 3.46 .562 MC6×16.3 MC9×15.1 0.34 0.29 22.1 20.6 3.11 3.18 .643 .634 MC6×12 0.15 11.2 2.80 .740 7.01 104 98.2 *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 156 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Single Angles Polar Radius of Gyration _ ro* Flexural Constant H* in.6 in. No Units ×1 ×17⁄8 ×13⁄4 ×15⁄8 ×19⁄16 ×11⁄2 7.13 5.08 3.46 2.21 1.30 0.960 0.682 32.5 23.4 16.1 10.4 6.16 4.55 3.23 4.31 4.35 4.37 4.41 4.45 4.47 4.48 0.632 0.630 0.629 0.627 0.627 0.627 0.624 L8×6×1 L × × 3⁄4 L × ×19⁄16 L × ×11⁄2 L × ×17⁄16 4.35 1.90 0.822 0.584 0.396 16.3 7.28 3.20 2.28 1.55 3.89 3.96 4.01 4.02 4.04 — — — — — L8×4×1 L8×4×17⁄8 L × ×13⁄4 L8×4×15⁄8 L × ×19⁄16 L × ×11⁄2 L8×4×17⁄16 3.68 2.48 1.61 0.933 0.704 0.501 0.328 12.9 8.89 5.75 3.42 2.53 1.80 1.22 3.77 3.79 3.82 3.85 3.86 3.88 3.89 — — — — — — — L7×4×3⁄4 L × ×5⁄8 L × ×1⁄2 L7×4×7⁄16 L × ×3⁄8 1.47 0.873 0.459 0.300 0.200 3.33 3.36 3.38 3.40 3.42 — — — — — Designation L8×8×11⁄8 L L L L L L × × × × × × Torsional Constant J Warping Constant Cw in.4 3.97 2.37 1.25 0.851 0.544 *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 157 FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units L6×6×1 L6×6×17⁄8 L6×6×13⁄4 L6×6×15⁄8 L6×6×19⁄16 L6×6×11⁄2 L6×6×17⁄16 L6×6×13⁄8 L6×6×15⁄16 3.68 2.51 1.61 0.954 0.704 0.501 0.340 0.218 0.129 9.24 6.41 4.17 2.50 1.85 1.32 0.899 0.575 0.338 3.19 3.22 3.26 3.29 3.31 3.32 3.34 3.36 3.38 0.637 0.632 0.629 0.628 0.627 0.627 0.627 0.626 0.625 L6×4×3⁄4 L6×4×5⁄8 L6×4×9⁄16 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16 1.33 0.792 0.585 0.417 0.284 0.183 0.108 2.64 1.59 1.18 0.843 0.575 0.369 0.217 2.86 2.89 2.9 2.92 2.94 2.96 2.97 — — — — — — — L6×31⁄2×1⁄2 L6×31⁄2×3⁄8 L6×31⁄2×5⁄16 0.396 0.174 0.103 0.779 0.341 0.201 2.88 2.92 2.93 — — — L5×5×7⁄8 L6×4×3⁄4 L6×4×5⁄8 L6×4×1⁄2 L6×4×7⁄16 L6×4×3⁄8 L6×4×5⁄16 2.07 1.33 0.792 0.417 0.284 0.183 0.108 3.53 2.32 1.40 0.744 0.508 0.327 0.193 2.65 2.68 2.71 2.74 2.77 2.79 2.81 0.634 0.634 0.630 0.630 0.629 0.627 0.626 Designation *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 158 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units L5×31⁄2×3⁄4 L5×31⁄2×5⁄8 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 1.11 0.660 0.348 0.153 0.0905 0.0479 1.52 0.918 0.491 0.217 0.128 0.0670 2.37 2.40 2.44 2.47 2.49 2.50 — — — — — — L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 0.322 0.219 0.141 0.0832 0.0438 0.444 0.304 0.196 0.116 0.0606 2.39 2.41 2.42 2.43 2.45 — — — — — L4×4×3⁄4 L5×3×5⁄8 L5×3×1⁄2 L5×3×7⁄16 L5×3×3⁄8 L5×3×5⁄16 L5×3×1⁄4 1.02 0.610 0.322 0.219 0.141 0.0832 0.0438 1.12 0.680 0.366 0.252 0.162 0.0963 0.0505 2.11 2.14 2.17 2.19 2.20 2.22 2.23 0.639 0.631 0.632 0.631 0.625 0.623 0.627 L4×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 0.301 0.132 0.0782 0.0412 0.302 0.134 0.0798 0.0419 2.04 2.08 2.09 2.11 — — — — Designation *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 159 FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units L4×3×5⁄8 L4×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 0.529 0.281 0.192 0.123 0.0731 0.0386 0.472 0.255 0.176 0.114 0.0676 0.0356 1.91 1.95 1.96 1.98 2.00 2.01 — — — — — — L31⁄2×31⁄2×1⁄2 L31⁄2×31⁄2×7⁄16 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×5⁄16 L31⁄2×31⁄2×1⁄4 0.281 0.192 0.123 0.0731 0.0386 0.238 0.164 0.106 0.0634 0.0334 1.89 1.91 1.91 1.93 1.95 0.631 0.629 0.628 0.627 0.626 L31⁄2×3×1⁄2 L31⁄2×3×3⁄8 L31⁄2×3×5⁄16 L31⁄2×3×1⁄4 0.260 0.114 0.0680 0.0360 0.191 0.0858 0.0512 0.0270 1.76 1.79 1.81 1.83 — — — — L31⁄2×21⁄2×1⁄2 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4 0.234 0.103 0.0322 0.159 0.0714 0.0225 1.67 1.70 1.73 — — — L3×3×1⁄2 L4×3×7⁄16 L4×3×3⁄8 L4×3×5⁄16 L4×3×1⁄4 L4×3×3⁄16 0.234 0.160 0.103 0.0611 0.0322 0.0142 0.144 0.100 0.0652 0.0390 0.0206 0.00899 1.60 1.61 1.63 1.65 1.66 1.68 0.634 0.632 0.629 0.628 0.627 0.626 Designation *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 160 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Single Angles Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units L3×21⁄2×1⁄2 L3×21⁄2×7⁄16 L3×21⁄2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 0.213 0.146 0.0943 0.0560 0.0296 0.0131 0.112 0.0777 0.0507 0.0304 0.0161 0.00705 1.47 1.49 1.50 1.52 1.54 1.55 — — — — — — L3×2×1⁄2 L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 0.192 0.0855 0.0509 0.0270 0.0120 0.0908 0.0413 0.0248 0.0132 0.00576 1.40 1.43 1.45 1.46 1.48 — — — — — L21⁄2×21⁄2×1⁄2 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16 0.185 0.0816 0.0483 0.0253 0.0110 0.0791 0.0362 0.0218 0.0116 0.00510 1.31 1.34 1.36 1.37 1.39 0.639 0.632 0.630 0.628 0.627 L21⁄2×2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 0.0728 0.0432 0.0227 0.00990 0.0268 0.0162 0.00868 0.00382 1.22 1.24 1.25 1.27 — — — — L2×2×3⁄8 L2×2×5⁄16 L2×2×1⁄4 L2×2×3⁄16 L2×2×1⁄8 0.0640 0.0381 0.0201 0.00880 0.00274 0.0174 0.0106 0.00572 0.00254 0.00079 1.05 1.07 1.09 1.10 1.12 0.637 0.633 0.630 0.628 0.626 Designation *See LRFD Specification Appendix E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 161 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Polar Radius of Gyration _ ro* Flexural Constant H* in.6 in. No Units 37.2 25.7 18.9 12.4 434 279 204 139 8.81 8.67 8.65 8.67 0.724 0.733 0.731 0.723 WT20×296.5** WT ×251.5** WT ×215.5 WT ×186 WT ×160.5 WT ×148.5 WT ×138.5 WT ×124.5 WT ×107.5 WT ×99.5 WT ×87 223 140 88.5 58.2 37.7 30.6 25.8 19.1 12.4 9.14 5.60 2340 1420 881 559 350 279 218 158 101 83.5 65.3 8.30 8.17 8.09 8.00 7.92 7.88 7.75 7.71 7.66 7.83 8.12 0.761 0.760 0.756 0.756 0.756 0.756 0.770 0.770 0.770 0.746 0.699 WT20×233** WT ×196** WT ×165.5 WT ×139 WT ×132 WT ×117.5 WT ×105.5 WT ×91.5 WT ×83.5 WT ×74.5 139 86.1 53.0 32.4 28.0 20.6 15.2 10.0 7.01 4.68 1360 802 485 278 233 156 113 72.1 62.9 51.9 8.39 8.27 8.19 8.07 8.02 7.88 7.84 7.79 8.02 8.24 0.680 0.678 0.674 0.676 0.680 0.690 0.690 0.691 0.658 0.626 WT18×424** WT ×399** WT ×325** WT ×263.5** WT ×219.5** WT ×196.5** WT ×179.5** WT ×164** WT ×150 WT ×140 WT ×130 WT ×122.5 WT ×115 622 527 295 163 96.7 70.7 54.3 42.1 32.0 26.2 20.7 17.3 14.3 6880 5700 3010 1570 894 637 480 363 278 226 181 151 125 8.08 8.02 7.82 7.63 7.52 7.44 7.38 7.32 7.30 7.27 7.28 7.28 7.27 0.802 0.801 0.797 0.797 0.794 0.796 0.797 0.799 0.797 0.796 0.791 0.788 0.784 Designation WT22×167.5 WT ×145 WT ×131 WT ×115 Torsional Constant J Warping Constant Cw in.4 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 162 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units WT18×128 WT ×116 WT ×105 WT ×97 WT ×91 WT ×85 WT ×80 WT ×75 WT ×67.5 26.6 19.8 13.9 11.1 9.19 7.51 6.17 5.04 3.48 205 151 119 92.7 77.6 63.2 53.6 46.0 37.3 7.43 7.40 7.49 7.45 7.45 7.44 7.46 7.50 7.65 0.703 0.703 0.687 0.687 0.686 0.684 0.678 0.670 0.644 WT16.5×177** WT ×159** WT ×145.5** WT ×131.5** WT ×120.5 WT ×110.5 WT ×100.5 57.2 42.1 32.4 24.2 17.9 13.7 10.2 468 335 256 188 146 113 84.9 7.00 6.94 6.90 6.86 6.91 6.90 6.89 0.802 0.803 0.801 0.802 0.792 0.788 0.784 8.83 6.16 4.84 3.67 2.64 55.4 43.0 35.4 29.3 23.4 6.74 6.82 6.85 6.93 7.02 0.714 0.700 0.691 0.678 0.659 151 85.9 50.8 37.2 26.7 19.9 13.9 10.3 7.61 1170 636 361 257 184 132 96.4 71.2 53.0 6.65 6.54 6.40 6.34 6.31 6.25 6.27 6.25 6.25 0.819 0.815 0.817 0.818 0.815 0.817 0.809 0.806 0.802 7.27 4.85 3.98 3.21 2.49 1.88 1.42 37.6 28.5 23.9 20.5 17.3 14.3 10.5 6.10 6.19 6.20 6.24 6.31 6.38 6.34 0.716 0.698 0.693 0.683 0.669 0.654 0.655 Designation WT16.5×84.5 WT ×76 WT ×70.5 WT ×65 WT ×59 WT15×238.5** WT ×195.5** WT ×163** WT ×146** WT ×130.5 WT ×117.5 WT ×105.5 WT ×95.5 WT ×86.5 WT15×74 WT ×66 WT ×62 WT ×58 WT ×54 WT ×49.5 WT ×45 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 163 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Designation WT13.5×269.5** WT ×224** WT ×184** WT ×153.5** WT ×140.5** WT ×129 WT ×117.5 WT ×108.5 WT ×97 WT ×89 WT ×80.5 WT ×73 WT13.5×64.5 WT ×57 WT ×51 WT ×47 WT ×42 WT12×246** WT ×204** WT ×167.5** WT ×139.5** WT ×125** WT ×114.5 WT ×103.5 WT ×96 WT ×88 WT ×81 WT ×73 WT ×65.5 WT ×58.5 WT ×52 Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units 245 146 83.6 49.8 39.0 30.2 23.0 18.5 13.2 9.74 7.31 5.44 1740 977 532 304 232 178 135 105 74.3 57.7 42.7 31.7 6.27 6.11 5.97 5.85 5.80 5.77 5.74 5.72 5.66 5.70 5.67 5.65 0.830 0.829 0.828 0.828 0.830 0.828 0.825 0.830 0.826 0.815 0.813 0.810 5.48 5.54 5.52 5.57 5.63 0.731 0.716 0.714 0.703 0.685 5.71 5.55 5.40 5.28 5.22 5.19 5.14 5.11 5.09 5.09 5.08 5.09 5.08 5.07 0.838 0.836 0.837 0.837 0.838 0.836 0.836 0.836 0.835 0.831 0.827 0.818 0.813 0.809 5.60 3.65 2.64 2.01 1.40 223 133 76.0 45.3 33.3 25.7 19.1 15.4 12.0 9.22 6.70 4.74 3.35 2.35 24.0 17.5 12.6 10.2 7.79 1340 748 405 230 165 125 91.3 72.5 55.8 43.8 31.9 23.1 16.4 11.6 WT12×51.5 WT ×47 WT ×42 WT ×38 WT ×34 3.54 2.62 1.84 1.34 0.932 12.3 9.57 6.90 5.30 4.08 4.88 4.89 4.89 4.93 4.99 0.733 0.727 0.721 0.709 0.692 WT12×31 WT ×27.5 0.850 0.588 3.92 2.93 5.13 5.18 0.619 0.606 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 164 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Structural Tees Designation WT10.5×100.5 WT10.5×91 WT10.5×83 WT10.5×73.5 WT10.5×66 WT10.5×61 WT10.5×55.5 WT10.5×50.5 Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units 20.6 15.4 11.9 7.69 5.62 4.47 3.40 2.60 85.4 63.0 47.3 32.5 23.4 18.4 13.8 10.4 4.67 4.64 4.59 4.64 4.61 4.58 4.56 4.54 0.859 0.859 0.861 0.847 0.845 0.846 0.846 0.846 WT10.5×46.5 WT10.5×41.5 WT10.5×36.5 WT10.5×34 WT10.5×31 3.01 2.16 1.51 1.22 0.513 9.33 6.50 4.42 3.62 2.78 4.37 4.33 4.31 4.31 4.31 0.729 0.732 0.732 0.727 0.722 WT10.5×28.5 WT10.5×25 WT10.5×22 0.884 0.570 0.383 2.50 1.89 1.40 4.36 4.44 4.49 0.665 0.640 0.623 4.42 4.36 4.30 4.23 4.19 4.14 4.10 4.06 4.03 3.99 0.875 0.873 0.874 0.875 0.873 0.875 0.872 0.872 0.874 0.874 WT9×155.5** WT9×141.5** WT9×129** WT9×117** WT9×105.5** WT9×96 WT9×87.5 WT9×79 WT9×71.5 WT9×65 87.2 66.5 51.5 39.4 29.4 22.4 17.0 12.6 9.70 7.30 339 251 189 140 102 75.7 56.5 41.2 30.7 22.8 WT9×59.5 WT9×53 WT9×48.5 WT9×43 WT9×38 5.30 3.73 2.92 2.04 1.41 17.4 12.1 9.29 6.42 4.37 4.03 4.00 3.97 3.95 3.92 0.862 0.860 0.862 0.860 0.862 WT9×35.5 WT9×32.5 WT9×30 WT9×27.5 WT9×25 1.74 1.36 1.08 0.829 0.613 3.96 3.01 2.35 1.84 1.36 3.72 3.69 3.67 3.68 3.66 0.751 0.755 0.756 0.749 0.748 WT9×23 WT9×20 WT9×17.5 0.609 0.403 0.252 1.20 0.788 0.598 3.67 3.65 3.74 0.694 0.692 0.662 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 165 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units WT8×50 WT ×44.5 WT ×38.5 WT ×33.5 3.85 2.72 1.78 1.19 10.4 7.19 4.61 3.01 3.62 3.60 3.56 3.53 0.877 0.877 0.877 0.879 WT8×28.5 WT ×25 WT ×22.5 WT ×20 WT ×18 1.10 0.760 0.655 0.396 0.271 1.99 1.34 0.974 0.673 0.516 3.30 3.28 3.27 3.24 3.30 0.770 0.770 0.767 0.769 0.745 WT8×15.5 WT ×13 0.229 0.130 0.366 0.243 3.26 3.32 0.695 0.667 5.67 5.47 5.36 5.25 5.15 5.06 4.98 0.959 0.966 0.966 0.966 0.967 0.967 0.967 4.92 4.87 4.81 4.77 4.71 4.66 4.61 4.56 4.52 4.49 4.46 4.42 4.40 0.968 0.968 0.968 0.968 0.968 0.969 0.969 0.970 0.970 0.971 0.971 0.971 0.971 Designation WT7×404** WT ×365** WT ×332.5** WT ×302.5** WT ×275** WT ×250** WT ×227.5** 918 714 555 430 331 255 196 6970 5250 3920 2930 2180 1620 1210 WT7×213** WT ×199** WT ×185** WT ×171** WT ×155.5** WT ×141.5** WT ×128.5** WT ×116.5** WT ×105.5 WT ×96.5 WT ×88 WT ×79.5 WT ×72.5 164 135 110 88.3 67.5 51.8 39.3 29.6 22.2 17.3 13.2 9.84 7.56 991 801 640 502 375 281 209 154 113 87.2 65.2 47.9 36.3 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 166 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units WT7×66 WT ×60 WT ×54.5 WT ×49.5 WT ×45 6.13 4.67 3.55 2.68 2.03 26.6 20.0 15.0 11.1 8.31 4.21 4.18 4.16 4.14 4.12 0.966 0.966 0.968 0.968 0.968 WT7×41 WT ×37 WT ×34 WT ×30.5 2.53 1.94 1.51 1.10 5.63 4.19 3.21 2.29 3.25 3.21 3.19 3.18 0.912 0.917 0.915 0.915 WT7×26.5 WT ×24 WT ×21.5 0.970 0.726 0.524 1.46 1.07 0.751 2.89 2.87 2.85 0.868 0.866 0.866 WT7×19 WT ×17 WT ×15 0.398 0.284 0.190 0.554 0.400 0.287 2.87 2.86 2.90 0.800 0.793 0.772 WT7×13 WT ×11 0.179 0.104 0.207 0.134 2.82 2.86 0.713 0.691 Designation *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 167 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Designation WT6×168** WT ×152.5** WT ×139.5** WT ×126** WT ×115** WT ×105** WT ×95 WT ×85 WT ×76 WT ×68 WT ×60 WT ×53 WT ×48 WT ×43.5 WT ×39.5 WT ×36 WT ×32.5 Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units 120 92.0 70.9 53.5 41.6 32.2 24.4 17.7 12.8 9.22 6.43 4.55 3.42 2.54 1.92 1.46 1.09 481 356 267 195 148 112 82.1 58.3 41.3 28.9 19.7 13.6 10.1 7.34 5.43 4.07 2.97 4.07 4.00 3.94 3.88 3.84 3.79 3.74 3.69 3.65 3.61 3.58 3.54 3.51 3.49 3.46 3.45 3.43 0.958 0.959 0.957 0.958 0.958 0.958 0.959 0.960 0.960 0.960 0.959 0.961 0.961 0.960 0.960 0.961 0.960 WT6×29 WT ×26.5 1.05 0.788 2.08 1.53 3.01 3.00 0.944 0.940 WT6×25 WT ×22.5 WT ×20 0.889 0.656 0.476 1.23 0.885 0.620 2.67 2.64 2.62 0.899 0.898 0.901 WT6×17.5 WT ×15 WT ×13 0.369 0.228 0.150 0.437 0.267 0.174 2.56 2.55 2.54 0.835 0.830 0.826 WT6×11 WT ×9.5 WT ×8 WT ×7 0.146 0.0899 0.0511 0.0350 0.137 0.0934 0.0678 0.0493 2.52 2.54 2.62 2.64 0.683 0.663 0.624 0.610 *See LRFD Specification Section E3. **Group 4 or Group 5 shape. See Notes in Table 1-2. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 168 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units WT5×56 WT5×50 WT5×44 WT5×38.5 WT5×34 WT5×30 WT5×27 WT5×24.5 7.50 5.41 3.75 2.55 1.78 1.23 0.909 0.693 16.9 11.9 8.02 5.31 3.62 2.46 1.78 1.33 3.04 3.00 2.98 2.93 2.92 2.89 2.87 2.85 0.963 0.964 0.964 0.964 0.965 0.965 0.966 0.966 WT5×22.5 WT5×19.5 WT5×16.5 0.753 0.487 0.291 0.981 0.616 0.356 2.44 2.42 2.40 0.940 0.936 0.927 WT5×15 WT5×13 WT5×11 0.310 0.201 0.119 0.273 0.173 0.107 2.17 2.15 2.17 0.848 0.848 0.831 WT5×9.5 WT5×8.5 WT5×7.5 WT5×6 0.116 0.0776 0.0518 0.0272 0.0796 0.061 0.0475 0.0255 2.08 2.12 2.16 2.16 0.728 0.702 0.672 0.662 Designation *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 169 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units WT4×33.5 WT ×29 WT ×24 WT ×20 WT ×17.5 WT ×15.5 2.52 1.66 0.979 0.559 0.385 0.268 3.56 2.28 1.30 0.715 0.480 0.327 2.41 2.39 2.34 2.31 2.29 2.29 0.962 0.961 0.966 0.961 0.963 0.961 WT4×14 WT ×12 0.268 0.173 0.230 0.144 1.97 1.96 0.935 0.936 WT4×10.5 WT ×9 0.141 0.0855 0.0916 0.0562 1.80 1.81 0.877 0.863 WT4×7.5 WT ×6.5 WT ×5 0.0679 0.0433 0.0212 0.0382 0.0269 0.0114 1.72 1.74 1.69 0.762 0.732 0.748 WT3×12.5 WT ×10 WT ×7.5 0.229 0.120 0.0504 0.171 0.0858 0.0342 1.76 1.73 1.71 0.952 0.952 0.937 WT3×8 WT ×6 WT ×4.5 0.111 0.0449 0.0202 0.0426 0.0178 0.0074 1.37 1.37 1.34 0.880 0.846 0.852 WT2.5×9.5 WT ×8 0.154 0.0930 0.0775 0.0453 1.44 1.43 0.964 0.962 WT2×6.5 0.0750 0.0213 1.16 0.947 Designation *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 170 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Structural Tees Polar Radius of Gyration _ ro* Flexural Constant H* in.6 in. No Units 0.0307 0.0196 0.0330 0.0252 2.69 2.67 0.564 0.572 MT5×4.5 MT ×4 0.0213 0.0116 0.0133 0.00916 2.21 2.21 0.584 0.582 MT4×3.25 0.0146 0.00421 1.73 0.611 MT2.5×9.45** 0.165 0.0732 1.37 0.951 Torsional Constant J Warping Constant Cw in.4 MT6×5.9 MT ×5.4 Designation *See LRFD Specification Section E3. **This shape has tapered flanges while other MT shapes have parallel flanges. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 171 FLEXURAL-TORSIONAL PROPERTIES Structural Tees Designation Torsional Constant J Warping Constant Cw Polar Radius of Gyration _ ro* Flexural Constant H* in.4 in.6 in. No Units ST12×60.5 ST ×53 6.38 5.04 27.5 15.0 5.14 4.87 0.640 0.685 ST12×50 ST ×45 ST ×40 3.76 3.01 2.43 19.5 12.1 6.94 5.27 5.12 4.89 0.584 0.616 0.657 ST10×48 ST ×43 4.15 3.30 15.0 9.17 4.36 4.20 0.625 0.661 ST10×37.5 ST ×33 2.28 1.78 7.21 4.02 4.28 4.10 0.612 0.655 ST9×35 ST ×27.35 2.05 1.18 7.03 2.26 4.01 3.71 0.583 0.662 ST7.5×25 ST ×21.45 1.05 0.767 2.02 0.995 3.22 3.04 0.637 0.689 ST6×25 ST ×20.4 1.39 0.872 1.97 0.787 2.60 2.42 0.663 0.733 ST6×17.5 ST ×15.9 0.538 0.449 0.556 0.364 2.49 2.39 0.697 0.731 ST5×17.5 ST ×12.7 0.633 0.300 0.725 0.173 2.23 1.98 0.653 0.768 ST4×11.5 ST ×9.2 0.271 0.167 0.168 0.0642 1.74 1.59 0.707 0.789 ST3×8.625 ST ×6.25 0.182 0.0838 0.0772 0.0197 1.36 1.21 0.706 0.820 ST2.5×5 0.0568 0.0100 1.02 0.842 ST2×4.75 ST ×3.85 0.0589 0.0364 0.00995 0.00457 0.907 0.841 0.800 0.872 ST1.5×3.75 ST ×2.85 0.0440 0.0220 0.00496 0.00189 0.737 0.672 0.832 0.913 *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 172 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. 3⁄ 8 0 Back to Back of Angles, in. 3⁄ 4 3⁄ 8 0 3⁄ 4 Designation ro* H* ro* H* ro* H* ro* H* ro* H* ro* H* L8×8×11⁄8 L × ×1 L × × 7⁄8 L × × 3⁄4 L × × 5⁄8 L × × 1⁄2 4.58 4.58 4.58 4.58 4.58 4.59 0.837 0.833 0.831 0.828 0.825 0.822 4.68 4.68 4.68 4.68 4.68 4.69 0.844 0.840 0.838 0.835 0.832 0.829 4.79 4.79 4.78 4.78 4.78 4.78 0.851 0.847 0.845 0.842 0.839 0.836 4.58 4.58 4.58 4.58 4.58 4.59 0.837 0.833 0.831 0.828 0.825 0.822 4.68 4.68 4.68 4.68 4.68 4.69 0.844 0.840 0.838 0.835 0.832 0.829 4.79 4.79 4.78 4.78 4.78 4.78 0.851 0.847 0.845 0.842 0.839 0.836 L8×6×1 L × × 3⁄4 L × × 1⁄2 4.07 4.08 4.11 0.721 0.714 0.708 4.15 4.16 4.18 0.731 0.724 0.718 4.23 4.24 4.26 0.742 0.735 0.728 4.19 4.17 4.17 0.925 0.919 0.914 4.31 4.29 4.28 0.929 0.924 0.919 4.44 4.41 4.40 0.933 0.928 0.923 L8×4×1 L × × 3⁄4 L × × 1⁄2 3.87 3.89 3.93 0.566 0.562 0.558 3.93 3.94 3.97 0.578 0.573 0.568 3.99 4.00 4.03 0.591 0.586 0.580 4.12 4.08 4.05 0.982 0.980 0.977 4.26 4.22 4.19 0.983 0.981 0.979 4.41 4.36 4.33 0.984 0.982 0.980 L7×4×3⁄4 L × ×1⁄2 L × ×3⁄8 3.42 3.45 3.46 0.609 0.604 0.602 3.48 3.5 3.51 0.623 0.616 0.614 3.55 3.57 3.57 0.637 0.629 0.627 3.58 3.55 3.54 0.968 0.965 0.963 3.71 3.68 3.67 0.971 0.967 0.965 3.85 3.82 3.80 0.973 0.969 0.968 L6×6×1 L × × 7⁄8 L × × 3⁄4 L × × 5⁄8 L × × 1⁄2 L × × 3⁄8 3.43 3.43 3.44 3.44 3.44 3.44 0.843 0.838 0.833 0.830 0.827 0.822 3.54 3.54 3.54 3.54 3.54 3.54 0.852 0.847 0.842 0.839 0.836 0.831 3.65 3.65 3.65 3.64 3.64 3.64 0.861 0.856 0.852 0.848 0.845 0.841 3.43 3.43 3.44 3.44 3.44 3.44 0.843 0.838 0.833 0.830 0.827 0.822 3.54 3.54 3.54 3.54 3.54 3.54 0.852 0.847 0.842 0.839 0.836 0.831 3.65 3.65 3.65 3.64 3.64 3.64 0.861 0.856 0.852 0.848 0.845 0.841 L6×4×3⁄4 L × ×5⁄8 L × ×1⁄2 L × ×3⁄8 2.98 2.98 3.00 3.01 0.672 0.668 0.663 0.661 3.05 3.05 3.06 3.07 0.687 0.683 0.678 0.675 3.13 3.13 3.14 3.15 0.704 0.699 0.693 0.690 3.10 3.09 3.08 3.07 0.948 0.946 0.943 0.940 3.23 3.21 3.20 3.19 0.952 0.950 0.947 0.944 3.36 3.34 3.34 3.32 0.956 0.954 0.951 0.948 L6×31⁄2×3⁄8 L × 1⁄2×5⁄16 2.97 2.97 0.610 0.610 3.02 3.02 0.624 0.624 3.09 3.09 0.640 0.639 3.05 3.03 0.961 0.960 3.17 3.16 0.964 0.963 3.31 3.29 0.967 0.966 L5×5×7⁄8 L × ×3⁄4 L × ×1⁄2 L × ×3⁄8 L × ×5⁄16 2.87 2.85 2.86 2.87 2.87 0.844 0.839 0.830 0.824 0.821 2.97 2.96 2.96 2.96 2.97 0.855 0.850 0.841 0.835 0.833 3.09 3.07 3.07 3.07 3.07 0.865 0.861 0.852 0.846 0.844 2.87 2.85 2.86 2.87 2.87 0.844 0.839 0.830 0.824 0.821 2.97 2.96 2.96 2.96 2.97 0.855 0.850 0.841 0.835 0.833 3.09 3.07 3.07 3.07 3.07 0.865 0.861 0.852 0.846 0.844 *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TORSION PROPERTIES 1 - 173 FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. Back to Back of Angles, in. 3⁄ 8 0 3⁄ 4 3⁄ 8 0 3⁄ 4 Designation ro* H* ro* H* ro* H* ro* H* ro* H* ro* H* L5×31⁄2×3⁄4 L5×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 2.50 2.51 2.52 2.53 0.697 0.685 0.682 0.679 2.58 2.59 2.59 2.60 0.715 0.703 0.699 0.695 2.67 2.67 2.67 2.68 0.734 0.722 0.717 0.713 2.61 2.59 2.58 2.58 0.943 0.936 0.932 0.930 2.74 2.71 2.70 2.70 0.948 0.941 0.938 0.936 2.87 2.84 2.83 2.82 0.953 0.947 0.943 0.942 L5×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 2.45 2.46 2.47 2.48 0.626 0.623 0.621 0.618 2.52 2.52 2.53 2.54 0.645 0.641 0.638 0.634 2.59 2.60 2.60 2.61 0.665 0.661 0.657 0.653 2.55 2.54 2.54 2.53 0.962 0.959 0.957 0.956 2.69 2.67 2.67 2.66 0.965 0.963 0.961 0.960 2.82 2.80 2.80 2.79 0.969 0.966 0.965 0.964 L4×4×3⁄4 L3×3×5⁄8 L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 2.29 2.29 2.29 2.29 2.29 2.29 0.847 0.839 0.834 0.827 0.824 0.823 2.40 2.40 2.39 2.39 2.39 2.39 0.861 0.853 0.848 0.841 0.838 0.837 2.52 2.51 2.50 2.50 2.50 2.49 0.873 0.867 0.862 0.855 0.852 0.850 2.29 2.29 2.29 2.29 2.29 2.29 0.847 0.839 0.834 0.827 0.824 0.823 2.40 2.40 2.39 2.39 2.39 2.39 0.861 0.853 0.848 0.841 0.838 0.837 2.52 2.51 2.50 2.50 2.50 2.49 0.873 0.867 0.862 0.855 0.852 0.850 L4×31⁄2×1⁄2 L5×31⁄2×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 2.15 2.15 2.15 2.16 0.783 0.774 0.774 0.770 2.24 2.24 2.24 2.24 0.801 0.792 0.791 0.787 2.34 2.34 2.34 2.34 0.818 0.809 0.808 0.805 2.17 2.17 2.17 2.17 0.881 0.875 0.872 0.870 2.29 2.28 2.28 2.28 0.892 0.887 0.884 0.882 2.41 2.40 2.40 2.39 0.903 0.898 0.895 0.893 L4×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 2.04 2.04 2.05 2.06 0.719 0.714 0.710 0.706 2.12 2.12 2.13 2.13 0.740 0.735 0.731 0.726 2.22 2.21 2.22 2.22 0.762 0.757 0.752 0.747 2.10 2.09 2.09 2.09 0.924 0.919 0.917 0.914 2.22 2.21 2.21 2.20 0.933 0.928 0.925 0.923 2.35 2.34 2.33 2.33 0.940 0.935 0.933 0.931 L31⁄2×31⁄2×3⁄8 L31⁄2×31⁄2×1⁄4 2.00 2.01 0.831 0.824 2.10 2.10 0.847 0.839 2.22 2.21 0.862 0.855 2.00 2.01 0.831 0.824 2.10 2.10 0.847 0.839 2.22 2.21 0.862 0.855 L31⁄2×3×3⁄8 L5×31⁄2×5⁄16 L5×31⁄2×1⁄4 1.86 1.87 1.87 0.771 0.766 0.762 1.95 1.96 1.96 0.791 0.787 0.782 2.06 2.06 2.06 0.812 0.807 0.803 1.89 1.89 1.89 0.884 0.881 0.878 2.00 2.00 2.00 0.897 0.894 0.891 2.13 2.12 2.12 0.909 0.906 0.903 L31⁄2×21⁄2×3⁄8 L31⁄2×31⁄2×1⁄4 1.76 1.77 0.696 0.691 1.84 1.85 0.721 0.715 1.94 1.93 0.748 0.740 1.82 1.81 0.932 0.927 1.94 1.93 0.941 0.936 2.08 2.06 0.948 0.944 L3×3×1⁄2 L3×3×3⁄8 L3×3×5⁄16 L3×3×1⁄4 L3×3×3⁄16 1.72 1.72 1.72 1.72 1.72 0.842 0.834 0.830 0.825 0.822 1.83 1.82 1.82 1.82 1.82 0.860 0.852 0.848 0.844 0.841 1.95 1.94 1.93 1.93 1.93 0.877 0.869 0.866 0.862 0.858 1.72 1.72 1.72 1.72 1.72 0.842 0.834 0.830 0.825 0.822 1.83 1.82 1.82 1.82 1.82 0.860 0.852 0.848 0.844 0.841 1.95 1.94 1.93 1.93 1.93 0.877 0.869 0.866 0.862 0.858 *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 174 DIMENSIONS AND PROPERTIES FLEXURAL-TORSIONAL PROPERTIES Double Angles Long Legs Vertical Short Legs Vertical Back to Back of Angles, in. 3⁄ 8 0 Back to Back of Angles, in. 3⁄ 4 3⁄ 8 0 3⁄ 4 Designation ro* H* ro* H* ro* H* ro* H* ro* H* ro* H* L3×21⁄2×3⁄8 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 1.58 1.59 1.59 0.763 0.754 0.750 1.67 1.67 1.67 0.789 0.779 0.775 1.78 1.78 1.77 0.813 0.804 0.800 1.61 1.61 1.61 0.896 0.889 0.885 1.73 1.72 1.72 0.910 0.903 0.899 1.86 1.84 1.84 0.922 0.916 0.912 L3×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 1.49 1.50 1.50 1.50 0.672 0.667 0.664 0.661 1.57 1.57 1.57 1.57 0.704 0.698 0.694 0.690 1.66 1.66 1.66 1.66 0.737 0.730 0.726 0.721 1.55 1.55 1.54 1.54 0.949 0.946 0.943 0.940 1.68 1.68 1.67 1.66 0.956 0.954 0.951 0.949 1.82 1.82 1.80 1.80 0.963 0.961 0.958 0.956 L21⁄2×21⁄2×3⁄8 L21⁄2×21⁄2×5⁄16 L21⁄2×21⁄2×1⁄4 L21⁄2×21⁄2×3⁄16 1.43 1.43 1.43 1.43 0.839 0.834 0.829 0.825 1.54 1.54 1.53 1.53 0.861 0.856 0.851 0.847 1.66 1.66 1.65 1.65 0.880 0.876 0.871 0.867 1.43 1.43 1.43 1.43 0.839 0.834 0.829 0.825 1.54 1.54 1.53 1.53 0.861 0.856 0.851 0.847 1.66 1.66 1.65 1.65 0.880 0.876 0.871 0.867 L21⁄2×2×3⁄8 L3×21⁄2×5⁄16 L3×21⁄2×1⁄4 L3×21⁄2×3⁄16 1.29 1.30 1.30 1.31 0.752 0.746 0.741 0.736 1.39 1.39 1.39 1.39 0.785 0.779 0.773 0.767 1.50 1.50 1.50 1.49 0.816 0.810 0.804 0.798 1.33 1.33 1.33 1.32 0.912 0.908 0.903 0.899 1.45 1.45 1.45 1.44 0.927 0.923 0.919 0.915 1.59 1.58 1.58 1.57 0.939 0.935 0.932 0.928 L2×2×3⁄8 L3×2×5⁄16 L3×2×1⁄4 L3×2×3⁄16 L3×2×1⁄8 1.15 1.15 1.15 1.15 1.15 0.846 0.840 0.834 0.828 0.822 1.26 1.26 1.25 1.25 1.25 0.873 0.867 0.861 0.855 0.850 1.39 1.38 1.38 1.37 1.37 0.896 0.890 0.885 0.880 0.875 1.15 1.15 1.15 1.15 1.15 0.846 0.840 0.834 0.828 0.822 1.26 1.26 1.25 1.25 1.25 0.873 0.867 0.861 0.855 0.850 1.39 1.38 1.38 1.37 1.37 0.896 0.890 0.885 0.880 0.875 *See LRFD Specification Section E3. AMERICAN INSTITUTE OF STEEL CONSTRUCTION SURFACE AREAS AND BOX AREAS 1 - 175 SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length Case A Case B Case C Case D Designation Case A Case B Case C Case D Designation W44×335 W44×290 W44×262 W44×230 W44 W40×593 W44×503 W44×431 W44×372 W44×321 W44×297 W44×277 W44×249 W44×215 W44×199 W44×174 11.0 11.0 10.9 10.9 12.4 12.3 12.2 12.2 8.67 8.59 8.53 8.46 10.0 9.91 9.84 9.78 10.9 10.7 10.5 10.4 10.3 10.3 10.3 10.2 10.2 10.1 10.0 12.3 12.1 11.9 11.8 11.6 11.6 11.6 11.5 11.5 11.4 11.3 8.56 8.38 8.23 8.11 8.01 7.96 7.93 7.88 7.81 7.76 7.68 9.95 9.75 9.58 9.45 9.33 9.28 9.25 9.19 9.12 9.07 8.99 W40×466 W44×392 W44×331 W44×278 W44×264 W44×235 W36×211 W36×183 W36×167 W36×149 9.79 9.61 9.47 9.35 9.32 9.28 9.22 9.17 9.11 9.05 10.8 10.6 10.5 10.3 10.3 10.3 10.2 10.2 10.1 10.0 8.13 7.96 7.81 7.69 7.66 7.61 7.55 7.48 7.42 7.35 9.18 8.99 8.83 8.69 8.66 8.60 8.53 8.47 8.40 8.34 W36×848 W36×798 W36×650 W36×527 W36×439 W36×393 W36×359 W36×328 W36×300 W36×280 W36×260 W36×245 W36×230 11.1 11.0 10.7 10.4 10.3 10.2 10.1 10.0 9.99 9.95 9.90 9.87 9.84 12.6 12.5 12.1 11.9 11.7 11.6 11.5 11.4 11.4 11.3 11.3 11.2 11.2 8.59 8.49 8.21 7.97 7.79 7.70 7.63 7.57 7.51 7.47 7.42 7.39 7.36 10.1 9.99 9.67 9.41 9.20 9.10 9.02 8.95 8.90 8.85 8.80 8.77 8.73 W36×256 W44×232 W44×210 W44×194 W36×182 W36×170 W36×160 W36×150 W36×135 9.02 8.96 8.91 8.88 8.85 8.82 8.79 8.76 8.71 10.0 9.97 9.93 9.89 9.85 9.82 9.79 9.76 9.70 7.26 7.20 7.13 7.09 7.06 7.03 7.00 6.97 6.92 8.27 8.21 8.15 8.10 8.07 8.03 8.00 7.97 7.92 W33×354 W36×318 W36×291 W36×263 W36×241 W36×221 W33×201 9.66 9.58 9.52 9.46 9.42 9.38 9.33 11.0 10.9 10.8 10.8 10.7 10.7 10.6 7.27 7.19 7.13 7.07 7.02 6.97 6.93 8.61 8.52 8.46 8.39 8.34 8.29 8.24 W33×169 W36×152 W36×141 W36×130 W36×118 8.30 8.27 8.23 8.20 8.15 9.26 9.23 9.19 9.15 9.11 6.60 6.55 6.51 6.47 6.43 7.55 7.51 7.47 7.43 7.39 W30×477 W36×391 W36×326 W36×292 W36×261 W36×235 W36×211 W36×191 W36×173 9.30 9.11 8.96 8.88 8.81 8.75 8.71 8.66 8.62 10.6 10.4 10.2 10.2 10.1 10.0 9.97 9.92 9.87 7.02 6.83 6.68 6.61 6.53 6.47 6.42 6.37 6.32 8.35 8.13 7.96 7.88 7.79 7.73 7.67 7.62 7.57 W30×148 W36×132 W36×124 W36×116 W36×108 W36×99 W36×90 7.53 7.49 7.47 7.44 7.41 7.37 7.35 8.40 8.37 8.34 8.31 8.28 8.25 8.22 5.99 5.93 5.90 5.88 5.84 5.81 5.79 6.86 6.81 6.78 6.75 6.72 6.68 6.66 Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 176 DIMENSIONS AND PROPERTIES SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length Case A Case B Case C Case D Designation Case A Case B Case C Case D Designation W27×539 W ×448 W ×368 W ×307 W ×281 W ×258 W ×235 W ×217 W ×194 W ×178 W ×161 W ×146 8.82 8.61 8.42 8.27 8.21 8.15 8.09 8.04 7.98 7.95 7.91 7.87 10.09 9.86 9.64 9.47 9.40 9.34 9.27 9.22 9.15 9.12 9.08 9.03 6.69 6.48 6.29 6.14 6.08 6.02 5.96 5.91 5.85 5.81 5.77 5.73 7.96 7.73 7.51 7.34 7.27 7.21 7.14 7.09 7.02 6.98 6.94 6.89 W27×129 W ×114 W ×102 W ×94 W ×84 6.92 6.88 6.85 6.82 6.78 7.75 7.72 7.68 7.65 7.61 5.44 5.39 5.35 5.32 5.28 6.27 6.23 6.18 6.15 6.11 W24×492 W ×408 W ×335 W ×279 W ×250 W ×229 W ×207 W ×192 W ×176 W ×162 W ×146 W ×131 W ×117 W ×104 8.07 7.86 7.66 7.51 7.44 7.38 7.32 7.27 7.23 7.22 7.17 7.12 7.08 7.04 9.25 9.01 8.79 8.62 8.54 8.47 8.40 8.35 8.31 8.30 8.24 8.19 8.15 8.11 6.12 5.91 5.71 5.56 5.49 5.43 5.37 5.32 5.28 5.25 5.20 5.15 5.11 5.07 7.29 7.06 6.84 6.67 6.59 6.52 6.45 6.40 6.35 6.33 6.27 6.22 6.18 6.14 W24×103 W ×94 W ×84 W ×76 W ×68 6.18 6.16 6.12 6.09 6.06 6.93 6.92 6.87 6.84 6.80 4.84 4.81 4.77 4.74 4.70 5.59 5.56 5.52 5.49 5.45 W24×62 W ×55 5.57 5.54 6.16 6.13 4.54 4.51 5.13 5.10 W21×201 W18×182 W18×166 W18×147 W18×132 W18×122 W18×111 W18×101 6.75 6.69 6.65 6.61 6.57 6.54 6.51 6.48 7.80 7.74 7.68 7.66 7.61 7.57 7.54 7.50 4.89 4.83 4.78 4.72 4.68 4.65 4.61 4.58 5.93 5.87 5.82 5.76 5.71 5.68 5.64 5.61 W21×93 W18×83 W18×73 W ×68 W18×62 5.54 5.50 5.47 5.45 5.42 6.24 6.20 6.16 6.14 6.11 4.31 4.27 4.23 4.21 4.19 5.01 4.96 4.92 4.90 4.87 W21×57 W18×50 W18×44 5.01 4.97 4.94 5.56 5.51 5.48 4.06 4.02 3.99 4.60 4.56 4.53 W18×311 W18×283 W18×258 W18×234 W18×211 W18×192 W18×175 W18×158 W18×143 W18×130 6.41 6.32 6.24 6.17 6.10 6.03 5.97 5.92 5.87 5.83 7.41 7.31 7.23 7.14 7.06 6.99 6.92 6.86 6.81 6.76 4.72 4.63 4.56 4.48 4.41 4.35 4.29 4.23 4.18 4.14 5.72 5.62 5.54 5.45 5.37 5.30 5.24 5.17 5.12 5.07 W18×119 W18×106 W18×97 W ×86 W18×76 5.81 5.77 5.74 5.70 5.67 6.75 6.70 6.67 6.62 6.59 4.10 4.06 4.03 3.99 3.95 5.04 4.99 4.96 4.91 4.87 W18×71 W18×65 W18×60 W ×55 W18×50 4.85 4.82 4.80 4.78 4.76 5.48 5.46 5.43 5.41 5.38 3.71 3.69 3.67 3.65 3.62 4.35 4.32 4.30 4.27 4.25 Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth. AMERICAN INSTITUTE OF STEEL CONSTRUCTION SURFACE AREAS AND BOX AREAS 1 - 177 SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length Case A Case B Case C Case D Designation Case A Case B Case C Case D Designation W18×46 W ×40 W ×35 4.41 4.38 4.34 4.91 4.88 4.84 3.51 3.48 3.45 4.02 3.99 3.95 W16×100 W ×89 W ×77 W ×67 5.28 5.24 5.19 5.16 6.15 6.10 6.05 6.01 3.70 3.66 3.61 3.57 4.57 4.52 4.47 4.43 W16×57 W ×50 W ×45 W ×40 W ×36 4.39 4.36 4.33 4.31 4.28 4.98 4.95 4.92 4.89 4.87 3.33 3.30 3.27 3.25 3.23 3.93 3.89 3.86 3.83 3.81 W16×31 W ×26 3.92 3.89 4.39 4.35 3.11 3.07 3.57 3.53 W14×808 W ×730 W ×665 W ×605 W ×550 W ×500 W ×455 7.74 7.61 7.46 7.32 7.19 7.07 6.96 9.28 9.10 8.93 8.77 8.62 8.49 8.36 5.35 5.23 5.08 4.94 4.81 4.68 4.57 6.90 6.72 6.55 6.39 6.24 6.10 5.98 W14×426 W ×398 W ×370 W ×342 W ×311 W ×283 W ×257 W ×233 W ×211 W ×193 W ×176 W ×159 W ×145 6.89 6.81 6.74 6.67 6.59 6.52 6.45 6.38 6.32 6.27 6.22 6.18 6.14 8.28 8.20 8.12 8.03 7.94 7.86 7.78 7.71 7.64 7.58 7.53 7.47 7.43 4.50 4.43 4.36 4.29 4.21 4.13 4.06 4.00 3.94 3.89 3.84 3.79 3.76 5.89 5.81 5.73 5.65 5.56 5.48 5.40 5.32 5.25 5.20 5.15 5.09 5.05 W14×132 W ×120 W ×109 W ×99 W ×90 5.93 5.90 5.86 5.83 5.81 7.16 7.12 7.08 7.05 7.02 3.67 3.64 3.60 3.57 3.55 4.90 4.86 4.82 4.79 4.76 W14×82 W14×74 W14×68 W ×61 4.75 4.72 4.69 4.67 5.59 5.56 5.53 5.50 3.23 3.20 3.18 3.15 4.07 4.04 4.01 3.98 W14×53 W14×48 W14×43 4.19 4.16 4.14 4.86 4.83 4.80 2.99 2.97 2.94 3.66 3.64 3.61 W14×38 W14×34 W14×30 3.93 3.91 3.89 4.50 4.47 4.45 2.91 2.89 2.87 3.48 3.45 3.43 W14×26 W ×22 3.47 3.44 3.89 3.86 2.74 2.71 3.16 3.12 W12×336 W ×305 W14×279 W14×252 W14×230 W14×210 W14×190 W14×170 W14×152 W ×136 W14×120 W14×106 W14×96 W14×87 W14×79 W14×72 W14×65 5.77 5.67 5.59 5.50 5.43 5.37 5.30 5.23 5.17 5.12 5.06 5.02 4.98 4.95 4.92 4.89 4.87 6.88 6.77 6.68 6.58 6.51 6.43 6.36 6.28 6.21 6.15 6.09 6.03 5.99 5.96 5.93 5.90 5.87 3.92 3.82 3.74 3.65 3.58 3.52 3.45 3.39 3.33 3.27 3.21 3.17 3.13 3.10 3.07 3.05 3.02 5.03 4.93 4.83 4.74 4.66 4.58 4.51 4.43 4.37 4.30 4.24 4.19 4.15 4.11 4.08 4.05 4.02 W12×58 W14×53 4.39 4.37 5.22 5.20 2.87 2.84 3.70 3.68 W12×50 W14×45 W ×40 3.90 3.88 3.86 4.58 4.55 4.52 2.71 2.68 2.66 3.38 3.35 3.32 Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 178 DIMENSIONS AND PROPERTIES SURFACE AREAS AND BOX AREAS W shapes Square feet per foot of length Case A Case B Case C Case D Designation Case A Case B Case C Case D Designation W12×35 W12×30 W12×26 3.63 3.60 3.58 4.18 4.14 4.12 2.63 2.60 2.58 3.18 3.14 3.12 W12×22 W12×19 W12×16 W12×14 2.97 2.95 2.92 2.90 3.31 3.28 3.25 3.23 2.39 2.36 2.33 2.32 2.72 2.69 2.66 2.65 W10×112 W12×100 W12×88 W12×77 W12×68 W12×60 W12×54 W12×49 4.30 4.25 4.20 4.15 4.12 4.08 4.06 4.04 5.17 5.11 5.06 5.00 4.96 4.92 4.89 4.87 2.76 2.71 2.66 2.62 2.58 2.54 2.52 2.50 3.63 3.57 3.52 3.47 3.42 3.38 3.35 3.33 W10×45 W12×39 W12×33 3.56 3.53 3.49 4.23 4.19 4.16 2.35 2.32 2.29 3.02 2.98 2.95 W10×30 W12×26 W12×22 3.10 3.08 3.05 3.59 3.56 3.53 2.23 2.20 2.17 2.71 2.68 2.65 W10×19 W12×17 W12×15 W12×12 2.63 2.60 2.58 2.56 2.96 2.94 2.92 2.89 2.04 2.02 2.00 1.97 2.38 2.35 2.33 2.30 W8×67 W8×58 W8×48 W8×40 W8×35 W8×31 3.42 3.37 3.32 3.28 3.25 3.23 4.11 4.06 4.00 3.95 3.92 3.89 2.19 2.14 2.09 2.05 2.02 2.00 2.88 2.83 2.77 2.72 2.69 2.67 W8×28 W8×24 2.87 2.85 3.42 3.39 1.89 1.86 2.43 2.40 W8×21 W8×18 2.61 2.59 3.05 3.03 1.82 1.79 2.26 2.23 W8×15 W8×13 W8×10 2.27 2.25 2.23 2.61 2.58 2.56 1.69 1.67 1.64 2.02 2.00 1.97 W6×25 W ×20 W8×15 2.49 2.46 2.42 3.00 2.96 2.92 1.57 1.54 1.50 2.08 2.04 2.00 W6×16 W8×12 W8×9 1.98 1.93 1.90 2.31 2.26 2.23 1.38 1.34 1.31 1.72 1.67 1.64 W5×19 W8×16 2.04 2.01 2.45 2.43 1.28 1.25 1.70 1.67 W4×13 1.63 1.96 1.03 1.37 Case A: Shape perimeter, minus one flange surface. Case B: Shape perimeter. Case C: Box perimeter, equal to one flange surface plus twice the depth. Case D: Box perimeter, equal to two flange surfaces plus twice the depth. AMERICAN INSTITUTE OF STEEL CONSTRUCTION CAMBER 1 - 179 CAMBER Beams and Girders Camber and sweep are used to form a desired curvature in either rolled beams or welded girders. Camber denotes a curve in the vertical plane. Beams and girders can be cambered to compensate for the anticipated deflection or for architectural reasons. Note that the required camber is determined at service (unfactored) load levels. Sweep denotes a curve in the horizontal plane. Camber and sweep may be induced through cold bending or through the application of heat. The minimum radius for cold cambering in members up to a nominal depth of 30 inches is between 10 and 14 times the depth of the member; deeper members will require a larger minimum radius. Cold bending may be used to provide sweep in members to practically any radius desired. Note that a length limit of 40 to 50 feet is practical. Heat cambering, sweeping, and straightening are provided through controlled heat application. The member is rapidly heated in selected areas which tend to expand, but are restrained by the adjacent cooler areas, causing plastic deformation of the heated areas and a change in the shape of the cooled member. The mechanical properties of steels are largely unaffected by such heating operations, provided the maximum temperature does not exceed 1,100°F for quenched and tempered alloy steels, and 1,300°F for other steels. The temperature should be carefully checked by temperature-indicating crayons or other suitable means during the heating process. Cambering and sweeping induces residual stresses similar to those that develop in rolled structural shapes as elements of the shape cool from the rolling temperature at different rates. In general, these residual stresses do not affect the ultimate strength of structural members. Additionally, the effect of residual stresses is incorporated in the provisions of the LRFD Specification. Note that when a cambered beam bearing on a wall or other support is loaded, expansion of the unrestrained end must be considered. In Figure 1-5(a), the end will move a distance ∆, where ∆= 4Cd L If instead the cambered beam is supported on a simple shear connection at both ends, the top and bottom flange will each move a distance of one-half ∆ since end rotation will occur approximately about the neutral axis. The designer should be aware of the magnitude of these movements and make provisions to accommodate them. Figure 1-5(a) considers the geometry of a girder in the horizontal position, and Figure 1-5(b) illustrates the condition when the girder is not level. Trusses “Cambering” of trusses is accomplished by geometric relocation of panel points and adjustment of member lengths; it does not involve physical cold bending or the application of heat as with beams and girders. The following discussion of cambering to compensate for the anticipated deflection of a truss is applicable for any parabolic condition; large-radius circular curves will be approximated very closely by the technique described. Cambering to compensate for the axial deformation of the members of a truss is beyond the scope of this Manual; refer to a textbook on mechanics of materials. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 180 DIMENSIONS AND PROPERTIES Distances approximately equal for small angles Distances equal for parabolic curve, approximately equal for circular curve. See sketch below. ∆ ∆ θ d C 90° C L /2 ∆ L /2 tanθ = 2C Fixed End L /2 ∆ = d tanθ Unrestrained End ∆ = 4Cd L θ 2θ for circular curve 2C for parabolic curve (a) Beam or Girder Ends at Same Elevations 4Cd ∆= L 4Cd ∆= L ∆ = 4Cd L ∆ = 4Cd L d B Grade angle B L L approx . (b) Beam or Girder Ends at Different Elevations Fig. 1-5. Camber for beams and girders. AMERICAN INSTITUTE OF STEEL CONSTRUCTION B A+B A B A Horiz. line Vert. A ° 90 A B ° e B 90 Grade lin A+B A C A CAMBER 1 - 181 The usual method of providing camber in building trusses is to progressively raise each panel point. The lengths of the verticals are not changed, but the lengths of the diagonals are calculated on the basis of the adjusted elevation for the several panel points. For any simple-span truss, the offset above a straight base line, at the several panel points, can be computed from the following equations if the vertical curve forming the camber is taken as a parabola. 2 2 B B D = C − C = C 1 − A A where A = Horizontal distance from end panel point to mid-span of the truss (half the truss span). B = Horizontal distance from mid-span of the truss to panel point for which offset is to be determined. C = Required mid-span camber. D = Offset from the base-line at panel point corresponding to distance B. A and B must be expressed in the same units; similarly C and D must be expressed in the same units, but not necessarily the same units as A and B. When the truss is divided into any number of approximately equal panels, it may be convenient to express distances A and B in panel lengths. For the truss of Figure 1-6(a) with eight equal panels, distance A is taken as four panel lengths. Assuming the camber at the midpoint is specified as 11⁄2-in., the offset at panel point 1, where B equals three panel lengths, is: 2 3 D = 1 -in. 1 − 4 = 21⁄32-in. 1⁄ 2 The offset at panel point 2, where B equals two panel lengths, is: 2 2 D = 1 -in. 1 − 4 = 11⁄8-in. 1⁄ 2 The offset at panel point 3, where B equals one panel length, is: 2 1 D = 1 -in. 1 − 4 = 113⁄32-in. 1⁄ 2 Finally, the offset at panel point 4, where B equals zero, is D = C = 11⁄2-in. An alternative method of determining the amount of camber at intermediate panel points when all panel points are approximately the same distance apart is as follows. Using the truss in Figure 1-6(a) as an example, sketch the camber diagram and number the panel points, starting with the first panel point from the end of the truss, from 1 to 4, AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 182 DIMENSIONS AND PROPERTIES as shown in Figure 1-6(b) on line A. Next, on line B, reverse the numbering as shown. Finally, on line C, enter the product of the numbers on lines A and B. The camber at any panel point is the amount of camber at the centerline of the truss multiplied by the fraction whose numerator is the figure on line C at the given panel point, and whose denominator is the figure on line C at the center line of the truss. Thus, at panel point 1, the camber is 7⁄ 16 × 11⁄2jin. = 21⁄32jin. at panel point 2, the camber is 12⁄ 16 × 11⁄2jin. = 11⁄8jin. at panel point 3, the camber is 15⁄ 16 × 11⁄2jin. = 113⁄32jin. and at panel point 4, the camber is 16⁄ 16 × 11⁄2jin. = 11⁄2jin. cL 4 3 2 1 21/ 32 0 1 1/2 1 13/32 11/8 Baseline EQ EQ EQ EQ (a) Calculated camber ordinates by formula 1 2 3 cL 4 line A line B 1 x7 2 x6 3 x5 4 x4 line C 7 12 15 16 Panel point (b) Alternative calculation method for approximately equal panels Fig. 1-6. Camber for trusses. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 183 STANDARD MILL PRACTICE General Information Rolling structural shapes and plates involves such factors as roll wear, subsequent roll dressing, temperature variations, etc., which cause the finished product to vary from published profiles. Such variations are limited by the provisions of the American Society for Testing and Materials Specification A6. Contained in this section is a summary of these provisions, not a reproduction of the complete specification. In its entirety, A6 covers a group of common requirements, which, unless otherwise specified in the purchase order or in an individual specification, apply to rolled steel plates, shapes, sheet piling, and bars. As indicated in Table 1-1, carbon steel refers to ASTM designations A36 and A529; high-strength, low-alloy steel refers to designations A242, A572, and A588; alloy steel refers to designation A514; and low-alloy steel refers to A852. For further information on mill practices, including permissible variations for rolled tees, zees, and bulb angles in structural and bar sizes, pipe, tubing, sheets, and strip, and for other grades of steel, see ASTM A6, A53, A500, A568, and A618; the Steel Products Manuals of the Iron and Steel Society (American Institute of Mining, Metallurgical, and Petroleum Engineers); and producers’ catalogs. The data on spreading rolls to increase areas and weights, and mill cambering of beams, is not a part of ASTM A6. Additional material on mill practice is included in the descriptive material preceding the “Dimensions and Properties” tables for shapes and plates. Letter symbols representing dimensions on sketches shown herein are in accordance with ASTM A6, AISI and mill catalogs and not necessarily as defined by the general nomenclature of this manual. Methods of increasing areas and weights by spreading rolls Cambering of rolled beams . . . . . . . . . . . . . . . . . . Positions for measuring camber and sweep . . . . . . . . . W Shapes, permissible variations . . . . . . . . . . . . . . S Shapes, M Shapes, and Channels, permissible variations . Tees split from W , M, and S Shapes, permissible variations Angles split from Channels, permissible variations . . . . . Angles, structural size, permissible variations . . . . . . . . Angles, bar size, permissible variations . . . . . . . . . . . Steel Pipe and Tubing, permissible variations . . . . . . . . Plates, permissible variations for sheared, length and width . Plates, permissible variations for universal mill, length . . . Plates, permissible variations for universal mill, width . . . Plates, permissible variations for camber . . . . . . . . . . Plates, permissible variations for flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-183 1-186 1-187 1-188 1-190 1-191 1-191 1-192 1-193 1-194 1-196 1-196 1-196 1-197 1-198 Methods of Increasing Areas and Weights by Spreading Rolls W Shapes To vary the area and weight within a given nominal size, the flange width, the flange thickness, and the web thickness are changed as shown in Figure 1-7(a). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 184 DIMENSIONS AND PROPERTIES S Shapes and American Standard Channels To vary the area and weight within a given nominal size, the web thickness and the flange width are changed by an equal amount as shown in Figures 1-7(b) and (c). Angles To vary area and weight for a given leg length, the thickness of each leg is changed. Note that the leg length is changed slightly by this method (Figure 1-7(d)). Constant for a given nominal size (a) Constant for a given nominal size (except S24 and S20) (b) Constant for a given nominal size (c) (d) Fig. 1-7. Varying areas and weights. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 185 Cambering of Rolled Beams All beams are straightened after rolling to meet permissible variations for sweep and camber listed hereinafter for W shapes and S shapes. The following data refer to the subsequent cold cambering of beams to produce a predetermined dimension. The maximum lengths that can be cambered depend on the length to which a given section can be rolled, with a maximum of 100 feet. Table 1-10 outlines the maximum and minimum induced camber of W shapes and S shapes. Consult the producer for specific camber and/or lengths outside the above listed available lengths and sections. Mill camber in beams of less depth than tabulated should not be specified. A single minimum value for camber, within the ranges shown above for the length ordered, should be specified. Camber is measured at the mill and will not necessarily be present in the same amount in the section of beam as received due to release of stress induced during the cambering operation. In general 75 percent of the specified camber is likely to remain. Camber will approximate a simple regular curve nearly the full length of the beam, or between any two points specified. Camber is ordinarily specified by the ordinate at the mid-length of the portion of the beam to be curved. Ordinates at the other points should not be specified. Although mill cambering to achieve reverse or other compound curves is not considered practical, fabricating shop facilities for cambering by heat can accomplish such results as well as form regular curves in excess of the limits tabulated above. Refer to the earlier section Effect of Heat of Steel for further information. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 186 DIMENSIONS AND PROPERTIES Table 1-10. Cambering of Rolled Beams Maximum and Minimum Induced Camber Sections, Nominal Depth, in. Specified Length of Beam, ft Over 30 to 42, incl. Over 42 to 52, incl. Over 52 to 65, incl. Over 65 to 85, incl. Over 85 to 100, incl. Max. and Min. Camber Acceptable, in. W shapes, 24 and over W shapes, 14 to 21, incl. and S shapes, 12 in. and over 1 to 2, incl. 3⁄ 4 to 21⁄2, incl. 1 to 3, incl. 2 to 4, incl. 3 to 5, incl. 3 to 6, incl. 1 to 3, incl. — — — Permissible Variations for Camber Ordinate Lengths Plus Variation 1⁄ 50 ft and less Over 50 ft 1⁄ -in. 2 2-in. 1⁄ -in. 8 plus for each 10 ft or fraction thereof in excess of 50 ft AMERICAN INSTITUTE OF STEEL CONSTRUCTION Minus Variation 0 0 STANDARD MILL PRACTICE 1 - 187 Table 1-11. Positions for Measuring Camber and Sweep Camber Sweep Camber Sweep* Horizontal surface W SHAPES Camber S SHAPES and M SHAPES Sweep* Camber Horizontal surface Horz Camber onta CHANNELS ANGLES l sur face TEES *Due to the extreme variations in flexibility of these shapes, straightness tolerances for sweep are subject to negotiations between manufacturer and purchaser for individual sections involved. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 188 DIMENSIONS AND PROPERTIES Table 1-12. W Shapes, HP Shapes B 1/ 2 B± B 1/ 2 B± E E T′ C T′ C A A T T 1/2 B±E 1/ 2 B± E Permissible Variations in Cross Section Section Nominal Size, in. A, Depth, in. B, Fig. Width, in. Over Theoretical Under Theoretical Over Theoretical To 12, inc. 1⁄ 2 1⁄ 8 1⁄ 4 3⁄ Over 12 1⁄ 8 1⁄ 8 1⁄ 4 3⁄ T+T′ Flanges, out of square, Max, in. E a, Web off Center, Max, in. C, Max. Depth at any Crosssection over Theoretical Depth, in. 16 1⁄ 4 3⁄ 16 1⁄ 4 16 5⁄ 3⁄ 16 1⁄ 4 Under Theoretical 16 Permissible Variations in Length Variations from Specified Length for Lengths for Given, in. 30 ft and Under W Shapes Over 30 ft Over Under Over Under Beams 24 in. and under in nominal depth 3⁄ 8 3⁄ 8 3⁄ 1 8 plus ⁄16 for each additional 5 ft or fraction thereof 3⁄ 8 Beams over 24 in. nom. depth; all columns 1⁄ 2 1⁄ 2 1⁄ 1⁄ 2 1 2 plus ⁄16 for each additional 5 ft or fraction thereof Notes: aVariation of 5⁄ in. max. for sections over 426 lb / ft. 16 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Continued on next page STANDARD MILL PRACTICE 1 - 189 Table 1-12 (cont.). WP Shapes, HP Shapes Other Permissible Variations Area and weight variation: ±2.5 percent theorectical or specified amount. Ends out-of-square: 1⁄64-in. per in. of depth, or of flange width if it is greater than the depth. Camber and Sweep Permissible Variation, in. Sizes Length Sizes with flange width equal to or greater than 6 in. All Sizes with flange width less than 6 in. All 45 ft. and under Certain sections with a flange width approx. equal to depth & specified on order as b columns Over 45 ft. Camber 1⁄ 8 1⁄ 8 in. × Sweep in. × (total length ft.) 10 (total length ft.) 10 1⁄ 8 in. × (total length ft.) 5 (total length ft.) with 3⁄8 in. max. 10 1⁄ 8 in. × 3⁄ 8 (total length ft. − 45) in. + 1⁄8 in. × 10 bApplies only to W8×31 and heavier, W10×49 and heavier, W12×65 and heavier, W14×90 and heavier. If the other sections are specified on the order as columns, the tolerance will be subject to negotiation with the manufacturer. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 190 DIMENSIONS AND PROPERTIES Table 1-13. S Shapes, M Shapes, and Channels Permissible Variations in Cross Section B B T′ T′ * A A T T * Back of square and centerline of web to be parallel when measuring “out-of-square” A, Depth in.a Section T + T ′b, Out of Square per Inch of Over Under Over Under B, in. Theoretical Theoretical Theoretical Theoretical Nominal Size in. S shapes 3 to 7, incl. Over 7 to 14, and M incl. shapes Over 14 to 24, incl. 1⁄ 2 1⁄ 8 1⁄ 16 3⁄ 32 1⁄ 8 5⁄ 32 1⁄ 8 5⁄ 32 1⁄ 3⁄ 16 1⁄ 8 3⁄ 16 3⁄ 16 1⁄ 32 32 1⁄ 8 1⁄ 16 3⁄ 32 1⁄ 8 1⁄ 8 1⁄ 8 5⁄ 32 1⁄ 32 3⁄ 1⁄ 8 1⁄ 8 3⁄ 16 1⁄ 3⁄ Channels 3 to 4, incl. Over 7 to 14, incl. Over 14 B, Flange Width, in. 16 1⁄ 1⁄ 32 32 32 32 Permissible Variations in Length Variations from Specified Length for Lengths Given, in. Over 30 to 40 ft., incl. to 30 ft., incl. Section S shapes, M shapes and Channels Over 40 to 50 ft., incl. Over Under Over Under Over 1⁄ 1⁄ 4 3⁄ 4 1⁄ 1 2 4 Under 1⁄ 4 Over 50 to 65 ft., incl. Over 65 ft. Over Under Over Under 11⁄8 1⁄ 4 11⁄4 1⁄ 4 Other Permissible Variations Area and weight variation: ±2.5 percent theoretical or specified amount. Ends out-of square: S shapes and channels 1⁄64-in. per in. of depth. total length,ft Camber = 1⁄8-in. × 5 Notes: aA is measured at center line of web for beams; and at back of web for channels. bT + T′ applies when flanges of channels are toed in or out. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 191 Table 1-14. Tees Split from W, M, and S Shapes, Angles Split from Channels Permissible Variations in Depth A A A Dimension A may be approximately one-half beam or channel depth, or any dimension resulting from off-center splitting, or splitting on two lines as specified on the order. Depth of Beam from which Tees or Angles are Split Variations in Depth A Over and Under Tees Angles To 6 in., excl. 1⁄ 8 1⁄ 8 6 to 16, excl. 3⁄ 16 3⁄ 16 16 to 20, excl. 1⁄ 4 1⁄ 4 20 to 24, excl. 5⁄ 16 — 24 and over 3⁄ 8 — The above variations for depths to tees or angles include the permissible variations in depth for the beams and channels before splitting. Other Permissible Variations Other permissible variations in cross section as well as permissible variations in length, area, and weight variation, and ends out-of-square will correspond to those of the beam or channel before splitting, except total length,ft Camber = 1⁄8-in. × 5 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 192 DIMENSIONS AND PROPERTIES Table 1-15. Angles, Structural Size Permissible Variations in Cross Section T B B T B Length of Leg, in. Nominal Size, in.a Section Angles Over Theoretical Under Theoretical T, Out of Square per in. of B, in. 1⁄ 8 3⁄ 32 b 3⁄ 128 3 to 4, incl. Over 4 to 6, incl. 1⁄ 8 1⁄ 8 b 3⁄ 128 Over 6 3⁄ 16 1⁄ 8 b 3⁄ 128 Permissible Variations in Length Variations from Specified Length for Lengths Given, in. Over 30 to 40 ft., incl. to 30 ft., incl. Section Angles Over 40 to 50 ft., incl. Over 50 to 65 ft., incl. Over 65 ft. Over Under Over Under Over Under Over Under Over Under 1⁄ 2 1⁄ 4 3⁄ 4 1⁄ 4 1 1⁄ 4 11⁄8 1⁄ 4 11⁄4 1⁄ 4 Other Permissible Variations Area and weight variation: ±2.5 percent theoretical or specified amount. Ends out-of square: 3⁄128-in. per in. of leg length, or 11⁄2 degrees. Variations based on the longer leg of unequal angle. total length,ft Camber = 1⁄8-in. × , applied to either leg 5 Notes; aFor unequal leg angles, longer leg determines classification. 1 b1⁄ 128 in. per in. = 1 ⁄2 deg. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 193 Table 1-16. Angles, Bar Size* Permissible Variation in Cross Section T B B a Specified Length of Leg, in. T Variations from Thickness for Thicknesses Given, Over and Under, in. 3⁄ 16 and Under Over 3⁄16 to 3⁄ incl. 8 1 and Under 0.008 0.010 Over 1 to 2, incl. 0.010 0.010 Over 2 to 3, excl. 0.012 0.015 Over 3⁄8 B Length of T, Out of Leg Over Square per and Under, in. Inch of B, in. 1⁄ 32 b 3⁄ 128 0.012 3⁄ 64 b 3⁄ 128 0.015 1⁄ 16 b 3⁄ 128 Permissible Variations in Length Variations Over Specified Length for Lengths Given No Variation Under Section All sizes of barsize angles 50 to 10 ft. excl. 10 to 20 ft. excl. 20 to 30 ft. excl. 30 to 40 ft. excl. 40 to 65 ft. excl. 5⁄ 8 1 11⁄2 2 21⁄2 Other Permissible Variations total length,ft 5 Straightness: Because of warpage, permissible variations for straightness do not apply to bars if any subsequent heating operation has been performed. Ends out-of-square: 3⁄128-in. per inch of leg length or 11⁄2 degrees. Variation based on longer leg of an unequal angle. Camber: 1⁄4-in. in any 5 feet, or 1⁄4 in. × Notes: *A member is ‘‘bar size’’ when its greatest cross-sectional dimension is less than three inches. aFor unequal leg angles, longer leg determines classification. 1 b1⁄ 128 in. per in. = 1 ⁄2 degrees. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 194 DIMENSIONS AND PROPERTIES Table 1-17. Steel Pipe and Tubing Dimensions and Weight Tolerances Round Tubing and Pipe (see also Table 1-4) ASTM A53 Weight—The weight of the pipe as specified in Table X2 and Table X3 (ASTM Specification A53) shall not vary by more than ±10 percent. Note that the weight tolerance of ±10 percent is determined from the weights of the customary lifts of pipe as produced for shipment by the mill, divided by the number of feet of pipe in the lift. On pipe sizes over four inches where individual lengths may be weighed, the weight tolerance is applicable to the individual length. Diameter—For pipe two inches and over in nominal diameter, the outside diameter shall not vary more than ±1 percent from the standard specified. Thickness—The minimum wall thickness at any point shall not be more than 12.5 percent under the nominal wall thickness specified. ASTM 500 Diameter—For pipe two inches and over in nominal diameter, the outside diameter shall not vary more than ±0.75 percent from the standard specified. Thickness—The wall thickness at any point shall not be more than 10 percent under or over the nominal wall thickness specified. ASTM A501 and ASTM 618 Outside dimensions—For round hot-formed structural tubing two inches and over in nominal size, the outside diameter shall not vary more than ±1 percent from the standard specified. Weight (A501 only)—The weight of structural tubing shall be less than the specified value by more than 3.5 percent. Mass (A618 only)—The mass of structural tubing shall not be less than the specified value by more than 3.5 percent. Length—Structural tubing is commonly produced in random mill lengths and in definite cut lengths. When cut lengths are specified for structural tubing, the length tolerances shall be in accordance with the following table: Over 22 to 44 ft, incl. 22 ft and under Length tolerance for specified cut lengths, in. Over Under Over Under 1⁄ 1⁄ 3⁄ 1⁄ 2 4 4 4 Straightness—The permissible variation for straightness of structural tubing shall be 1⁄8-in. times the number of feet of total length divided by 5. Continued on next page AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 195 Table 1-17 (cont.). Steel Pipe and Tubing Dimensions and Weight Tolerances Square and Rectangular Tubing (see also Table 1-4) ASTM A500 and ASTM A618 Outside Dimensions—The specified dimensions, measured across the flats at positions at least two inches from either end-of-square or rectangular tubing and including an allowance for convexity or concavity, shall not exceed the plus and minus tolerance shown in the following table: a Largest Outside Dimension Across Flats, in. Tolerance Plus an Minus, in. 21⁄2 and under Over 21⁄2 to 31⁄2, incl. Over 31⁄2 to 51⁄2, incl. Over 51⁄2 0.020 0.025 0.030 1 percent aThe respective outside dimension tolerances include the allowances for convexity and concavity. Lengths—Structural tubing is commonly produced in random lengths, in multiple lengths, and in definite cut lengths. When cut lengths are specified for structural tubing, the length tolerances shall be in accordance with the following table: 22 ft and under Length tolerance for specified cut lengths, in. Over 22 to 44 ft, incl. Over Under Over Under 1⁄ 1⁄ 3⁄ 1⁄ 2 4 4 4 Mass (A618 only)—The mass of structural tubing shall not be less than the specified value by more than 3.5 percent. Straightness—The permissible variation for straightness of structural tubing shall be 1⁄8-in. times the number of feet of total length divided by five. Squareness of sides—For square or rectangular structural tubing, adjacent sides may deviate from 90 degrees by a tolerance of plus or minus two degrees maximum. Radius of corners—For square or rectangular structural tubing, the radius of any outside corner of the section shall not exceed three times the specified wall thickness. Twists—The tolerances for twist or variation with respect to axial alignment of the section, for square and rectangular structural tubing, shall be as shown in the following table: Specified Dimension of Longest Side, in. Maximum Twist per 3 ft of Length, in. 11⁄ 2 and under Over 11⁄2 to 21⁄2, incl. Over 21⁄2 to 4, incl. Over 4 to 6 incl. Over 6 to 8, incl. Over 8 0.050 0.062 0.075 0.087 0.100 0.112 Twist is measured by holding down one end of a square or rectangular tube on a flat surface plate with the bottom side of the tube parallel to the surface plate and noting the height that either corner, at the opposite end of the bottom side of the tube, extends above the surface plate. Wall thickness (A500 only)—The tolerance for wall thickness exclusive of the weld area shall be plus and minus 10 percent of the nominal wall thickness specified. The wall thickness is to be measured at the center of the flat. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 196 DIMENSIONS AND PROPERTIES Table 1-18. Rectangular Sheared Plates and Universal Mill Plates Permissible Variations in Width and Length for Sheared Plates (11⁄2-in. and under in thickness) Permissible Variations in Length Only for Universal Mill Plates (21⁄2-in. and under in thickness) Specified Dimensions, in. Variations over Specified Width and Length for Thickness, in., and Equivalent Weights, lb per sq. ft., Given To 3⁄8 excl. To 15.3, excl. Length To 120, excl. Width to 5⁄8 excl. 15.3 to 25.5, excl. 5⁄ 8 to 1, excl. 1 to 2, incl.a 25.5 to 40.8, excl. 40.8 to 81.7, incl. Width Length Width Length Width Length Width Length To 60, excl. 60 to 84, excl. 84 to 108, excl 108 and over 120 to 240, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 240 to 360, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 3⁄ 8 7⁄ 16 1⁄ 2 5⁄ 8 1⁄ 2 5⁄ 8 3⁄ 4 7⁄ 8 7⁄ 16 1⁄ 2 5⁄ 8 3⁄ 4 3⁄ 3⁄ 1⁄ 1⁄ 16 5⁄ 8 1 9⁄ 3⁄ 1⁄ 8 2 9⁄ 16 11⁄ 16 480 to 600, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 7⁄ To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 4 3⁄ 7⁄ 600 to 720, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 8 2 360 to 480, excl. To 60, excl. 60 to 84, excl. 84 to 108, excl. 108 and over 720 and over, excl. 3⁄ 8 16 1⁄ 2 9⁄ 16 3⁄ 4 16 1⁄ 2 5⁄ 8 3⁄ 4 1⁄ 5⁄ 5⁄ 7⁄ 2 8 8 8 9⁄ 16 3⁄ 4 3⁄ 4 1 7⁄ 4 8 5⁄ 11⁄ 2 8 16 3⁄ 4 1 1 1 11 ⁄8 1⁄ 11 ⁄8 11 ⁄4 11 ⁄4 13 ⁄8 1⁄ 11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2 1⁄ 11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2 5⁄ 2 2 2 2 3⁄ 5⁄ 3⁄ 7⁄ 5⁄ 3⁄ 7⁄ 5⁄ 3⁄ 7⁄ 3⁄ 3⁄ 2 8 4 8 2 8 4 8 2 8 4 8 8 4 4 1 7⁄ 7⁄ 4 8 8 11 ⁄8 5⁄ 8 11⁄ 16 7⁄ 8 1 7⁄ 7⁄ 15 ⁄ 8 8 16 11 ⁄8 1⁄ 2 5⁄ 3⁄ 7⁄ 5⁄ 3⁄ 13 ⁄ 7⁄ 11 ⁄8 11 ⁄8 11 ⁄8 11 ⁄4 5⁄ 11 ⁄4 13 ⁄8 13 ⁄8 11 ⁄2 5⁄ 11 ⁄2 11 ⁄2 11 ⁄2 15 ⁄8 5⁄ 17 ⁄8 17 ⁄8 17 ⁄8 2 3⁄ 21 ⁄8 21 ⁄8 21 ⁄8 23 ⁄8 3⁄ 7⁄ 8 4 8 8 4 16 8 8 4 8 1 3⁄ 7⁄ 8 4 8 1 3⁄ 7⁄ 8 4 8 1 7⁄ 7⁄ 4 8 8 11 ⁄8 7⁄ 8 1 1 11 ⁄4 3⁄ 4 7⁄ 8 5⁄ 8 3⁄ 4 1 11 ⁄8 1 11 ⁄8 1 1 11 ⁄8 11 ⁄4 3⁄ 11 ⁄4 11 ⁄4 13 ⁄8 13 ⁄8 13 ⁄8 11 ⁄2 11 ⁄2 15 ⁄8 15 ⁄8 15 ⁄8 15 ⁄8 13 ⁄4 7⁄ 4 8 1 11 ⁄8 3⁄ 7⁄ 4 8 1 11 ⁄4 3⁄ 7⁄ 4 8 1 11 ⁄4 3⁄ 7⁄ 4 8 1 11 ⁄4 7⁄ 1 1 11 ⁄ 8 11 ⁄ 4 11 ⁄ 8 11 ⁄ 4 13 ⁄ 8 13 ⁄ 8 11 ⁄ 2 11 ⁄ 2 11 ⁄ 2 13 ⁄ 4 15 ⁄ 8 15 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄ 8 17 ⁄8 17 ⁄8 17 ⁄8 21 ⁄4 1 11 ⁄8 11 ⁄4 21 ⁄ 4 21 ⁄ 4 21 ⁄ 4 21 ⁄ 2 21 ⁄4 21 ⁄4 21 ⁄4 21 ⁄2 1 11 ⁄8 11 ⁄4 13 ⁄8 23 ⁄ 4 23 ⁄ 4 23 ⁄ 4 3 8 Notes: aPermissible variations in length apply also to Universal Mill plates up to 12 in. width for thicknesses over 2 to 21⁄2-in., incl. except for alloy steels up to 13⁄4-in. thick. Permissible variations under specified width and length, 1⁄4-in. Table applies to all steels listed in ASTM A6. AMERICAN INSTITUTE OF STEEL CONSTRUCTION STANDARD MILL PRACTICE 1 - 197 Table 1-19. Rectangular Sheared Plates and Universal Mill Plates Permissible Variations from Flatness (Carbon Steel Only) Variations from Flatness for Specified Widths, in. Specified Thickness, in. To 36 excl. To 1⁄4, excl. 1⁄ to 3⁄ , excl. 4 8 3⁄ to 1⁄ , excl. 8 2 1⁄ to 3⁄ , excl. 2 4 3⁄ to 1, excl. 4 1 to 2, excl. 2 to 4, excl. 4 to 6, excl. 6 to 8, excl. 9⁄ 16 1⁄ 2 1⁄ 2 7⁄ 16 7⁄ 16 3⁄ 8 5⁄ 16 3⁄ 8 7⁄ 16 36 to 48, 48 to 60, 60 to 72, 72 to 84, 84 to 96, 96 to 108, 108 to excl. excl. excl. excl. excl. excl. 120, excl. 3⁄ 4 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 1⁄ 2 3⁄ 8 7⁄ 16 1⁄ 2 15⁄ 3⁄ 5⁄ 16 4 8 9⁄ 16 9⁄ 16 1⁄ 2 7⁄ 16 1⁄ 2 1⁄ 2 11⁄4 15⁄ 16 5⁄ 8 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 1⁄ 2 5⁄ 8 13⁄8 11⁄8 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 9⁄ 16 11⁄ 16 11⁄2 11⁄4 7⁄ 8 3⁄ 4 5⁄ 8 5⁄ 8 1⁄ 2 9⁄ 16 3⁄ 4 15⁄8 13⁄8 1 1 3⁄ 4 5⁄ 8 1⁄ 2 5⁄ 8 7⁄ 8 13⁄4 11⁄2 11⁄8 1 7⁄ 8 5⁄ 8 9⁄ 16 3⁄ 4 7⁄ 8 Permissible Variations in Camber for Carbon Steel Sheared and Gas Cut Rectangular Plates Maximum permissible camber, in. (all thicknesses) = 1⁄8-in. × total length,ft 5 Permissible Variations in Camber for Carbon Steel Universal Mill Plates, High-Strength Low-Alloy Steel Sheared and Gas Cut Rectangular Plates, Universal Mill Plates, Special Cut Plates Dimension, in. Thickness To 2, incl. Over 2 to 15, incl. Over 2 to 15, incl. Width Camber for Thicknesses and Widths Given All To 30, incl. Over 30 to 60, incl. 1⁄ in. × (total length, ft / 5) 8 3⁄ in. × (total length, ft / 5) 16 1⁄ in. × (total length, ft / 5) 4 General Notes: 1. The longer dimension specified is considered the length, and permissible variations in flatness along the length should not exceed the tabular amount for the specified width in plates up to 12 feet in length. 2. The flatness variations across the width should not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 inches, the permissible variation should not exceed 1⁄4-in. When the longer dimension is from 36 to 72 inches, inclusive, the permissible variation should not exceed 75 percent of the tabular amount for the specified width, but in no case less than 1⁄4-in. 4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksi or compatible chemistry or hardness. The limits in the table are increased 50 percent for plates specified to a higher minimum tensile strength or compatible chemistry or hardness. See also next page. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1 - 198 DIMENSIONS AND PROPERTIES Table 1-20. Rectangular Sheared Plates and Universal Milled Plates Permissible Variations from Flatness (High-Strength Low-Alloy and Alloy Steel, Hot Rolled or Thermally Treated) Variations from Flatness for Specified Widths, in. Specified Thickness, in. To 36 excl. To 1⁄4, excl. 1⁄ to 3⁄ , excl. 4 8 3⁄ to 1⁄ , excl. 8 2 1⁄ to 3⁄ , excl. 2 4 3⁄ to 1, excl. 4 1 to 2, excl. 2 to 4, excl. 4 to 6, excl. 6 to 8, excl. 13⁄ 16 3⁄ 4 3⁄ 4 5⁄ 8 5⁄ 8 9⁄ 16 1⁄ 2 9⁄ 16 5⁄ 8 36 to 48, 48 to 60, 60 to 72, 72 to 84, 84 to 96, 96 to 108, 108 to excl. excl. excl. excl. excl. excl. 120, excl. 11⁄8 15⁄ 7⁄ 3⁄ 3⁄ 5⁄ 13⁄8 11⁄8 15⁄ 16 15⁄ 16 7⁄ 8 3⁄ 4 9⁄ 16 3⁄ 4 3⁄ 4 16 8 4 4 8 9⁄ 16 11⁄ 16 3⁄ 4 17⁄8 13⁄8 15⁄ 16 7⁄ 8 7⁄ 8 13⁄ 16 3⁄ 4 3⁄ 4 15⁄ 16 21⁄4 17⁄8 15⁄16 11⁄8 1 15⁄ 16 3⁄ 4 7⁄ 8 11⁄8 2 13⁄4 11⁄8 1 15⁄ 16 7⁄ 8 3⁄ 4 7⁄ 8 1 23⁄8 2 11⁄2 11⁄4 11⁄8 1 3⁄ 4 15⁄ 16 11⁄4 25⁄8 21⁄4 15⁄8 13⁄8 15⁄16 1 7⁄ 8 11⁄8 15⁄16 General Notes: 1. The longer dimension specified is considered the length, and variations from a flat surface along the length should not exceed the tabular amount for the specified width in plates up to 12 feet in length. 2. The flatness variation across the width should not exceed the tabular amount for the specified width. 3. When the longer dimension is under 36 inches, the variation should not exceed 3⁄8-in. When the longer dimension is from 36 to 72 inches, inclusive the variation should not exceed 75 percent of the tabular amount for the specified width. Permissible Variations in Width for Universal Mill Plates (15 inches and under in thickness) Variations Over Specified Width for Thickness, in., and Equivalent Weights, lb per sq. ft., Given To 3⁄8, excl. 3⁄ 8 to 5⁄8 excl. 5⁄ 8 to 1, excl. Specified Width, in. To 15.3, excl. 15.3 to 25.5, excl. 25.5 to 40.8, excl. Over 8 to 20, excl. 20 to 36, excl. 36 and over 1⁄ 8 3⁄ 16 5⁄ 16 1⁄ 1⁄ 3⁄ 16 5⁄ 16 7⁄ 16 3⁄ 8 4 8 1 to 2, excl. Over 2 to 10, incl. Over 10 to 15, incl. 40.8 to 81.7 to 409.0 to 81.7, incl. 409.0, incl. 613.0, incl. 1⁄ 3⁄ 1⁄ 4 8 2 Notes: Permissible variation under specified width, 1⁄8-in. Table applies to all steels listed in ASTM A6. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3⁄ 8 7⁄ 16 9⁄ 16 1⁄ 2 9⁄ 16 5⁄ 8 REFERENCES 1 - 199 REFERENCES American Institute of Steel Construction, 1973, “Commentary on Highly Restrained Welded Connections,” Engineering Journal, 3rd Qtr., AISC, Chicago, IL. American Iron and Steel Institute, 1979, Fire Safe Structural Steel: A Design Guide, AISI, Washington, DC. AISI, 1980, Designing Fire Protection for Steel Columns, 3rd Edition. AISI, 1981, Designing Fire Protection for Steel Trusses, 2nd Edition. AISI, 1984, Designing Fire Protection for Steel Beams. Brockenbrough, R. L. and B. G. Johnston, 1981, USS Steel Design Manual, R. L. Brockenbrough & Assoc. Inc., Pittsburgh, PA. Dill, F. H., 1960, “Structural Steel After a Fire,” Proceedings of the 1960 National Engineering Conference, AISC, New York, NY. Fisher, J. W. and A. W. Pense, 1987, “Experience with Use of Heavy W Shapes in Tension,” Engineering Journal, 2nd Qtr., AISC, Chicago. Lightner, M. W. and R. W. Vanderbeck, 1956, “Factors Involved in Brittle Fracture,” Regional Technical Meetings, AISI, Washington, DC. Rolfe, S. T. and J. M. Barsom, 1986, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, Prentice-Hall, Inc., Englewood Cliffs, NJ. Rolfe, S. T., 1977, “Fracture and Fatigue Control in Steel Structures,” Engineering Journal, 1st Qtr., AISC, Chicago. Welding Research Council, 1957, Control of Steel Construction to Avoid Brittle Failure, New York. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2-1 PART 2 ESSENTIALS OF LRFD OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 INTRODUCTION TO LRFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 C. FRAMES AND OTHER STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 D. TENSION MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 E. COLUMNS AND OTHER COMPRESSION MEMBERS . . . . . . . . . . . . . . . . 2-22 F. BEAMS AND OTHER FLEXURAL MEMBERS . . . . . . . . . . . . . . . . . . . . 2-27 H. MEMBERS UNDER COMBINED FORCES AND TORSION . . . . . . . . . . . . . 2-34 I. COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2-2 ESSENTIALS OF LRFD AMERICAN INSTITUTE OF STEEL CONSTRUCTION OVERVIEW 2-3 OVERVIEW The following LRFD topics are covered herein (with the letters A through I in the section headings referring to the corresponding chapters in the LRFD Specification): INTRODUCTION TO LRFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 LRFD Versus ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 LRFD Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Gross, Net, and Effective Net Areas for Tension Members . . . . . . . . . . . . . . . . 2-11 Gross, Net, and Effective Net Areas for Flexural Members . . . . . . . . . . . . . . . . 2-12 Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Limiting Slenderness Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 C. FRAMES AND OTHER STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Second Order Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 “Leaning” Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 D. TENSION MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Design Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Built-Up Members, Eyebars, and Pin-Connected Members . . . . . . . . . . . . . . . . 2-21 E. COLUMNS AND OTHER COMPRESSION MEMBERS . . . . . . . . . . . . . . . . 2-22 Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Design Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Flexural-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Built-Up and Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 F. BEAMS AND OTHER FLEXURAL MEMBERS . . . . . . . . . . . . . . . . . . . . 2-27 Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Design for Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 Design for Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 H. MEMBERS UNDER COMBINED FORCES AND TORSION . . . . . . . . . . . . . 2-34 Symmetric Members Subject to Bending and Axial Tension . . . . . . . . . . . . . . . 2-34 Symmetric Members Subject to Bending and Axial Compression . . . . . . . . . . . . 2-37 Bending and Axial Compression—Preliminary Design . . . . . . . . . . . . . . . . . . 2-37 Torsion and Combined Torsion, Flexure, and/or Axial Force . . . . . . . . . . . . . . . 2-40 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2-4 ESSENTIALS OF LRFD I. COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 Combined Compression and Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 COMPUTER SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 ELRFD (Electronic LRFD Specification) . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45 AMERICAN INSTITUTE OF STEEL CONSTRUCTION INTRODUCTION TO LRFD 2-5 INTRODUCTION TO LRFD The intent of this part of the LRFD Manual is to provide a general introduction to the subject. It was written primarily for: (1) engineers experienced in allowable stress design (ASD) who are unfamiliar with LRFD and (2) students and novice engineers. The emphasis is on understanding the most common cases, rather than on completeness and efficiency in design. Regular users of LRFD may also find it helpful to refer to the information provided herein. It should be noted, however, that the governing document is the LRFD Specification (in Part 6 of this volume of the Manual). For optimum design the use of the design aids elsewhere in this Manual is recommended. Among the topics not covered herein are: (1) connections, the subject of Volume II, and (2) noncompact beams and plate girders, for which the reader is referred to Appendices F and G of the LRFD Specification and Part 4 of this volume of the Manual. LRFD Versus ASD The primary objective of the LRFD Specification is to provide a uniform reliability for steel structures under various loading conditions. This uniformity cannot be obtained with the allowable stress design (ASD) format. The ASD method can be represented by the inequality ΣQi ≤ Rn / F.S. (2-1) The left side is the summation of the load effects, Qi (i.e., forces or moments). The right side is the nominal strength or resistance Rn divided by a factor of safety. When divided by the appropriate section property (e.g., area or section modulus), the two sides of the inequality become the calculated stress and allowable stress, respectively. The left side can be expanded as follows: ΣQi = the maximum (absolute value) of the combinations D + L′ (D + L′ + W) × 0.75* (D + L′ + E) × 0.75* D−W D−E where D, L′, W, and E are, respectively, the effects of the dead, live, wind, and earthquake loads; total live load L′ = L + (Lr or S or R) L = Live load due to occupancy Lr = Roof live load S = Snow load R = Nominal load due to initial rainwater or ice exclusive of the ponding contribution *0.75 is the reciprocal of 1.33, which represents the 1/3 increase in allowable stress permitted when wind or earthquake is taken simultaneously with live load. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2-6 ESSENTIALS OF LRFD ASD, then, is characterized by the use of unfactored service loads in conjunction with a single factor of safety applied to the resistance. Because of the greater variability and, hence, unpredictability of the live load and other loads in comparison with the dead load, a uniform reliability is not possible. LRFD, as its name implies, uses separate factors for each load and for the resistance. Considerable research and experience were needed to establish the appropriate factors. Because the different factors reflect the degree of uncertainty of different loads and combinations of loads and the accuracy of predicted strength, a more uniform reliability is possible. The LRFD method may be summarized by the formula ΣγiQi ≤ φRn (2-2) On the left side of the inequality, the required strength is the summation of the various load effects Qi multiplied by their respective load factors γi. The design strength, on the right side, is the nominal strength or resistance Rn multiplied by a resistance factor φ. Values of φ and Rn for columns, beams, etc. are provided throughout the LRFD Specification and will be covered here, as well. According to the LRFD Specification (Section A4.1), ΣγiQi = the maximum absolute value of the following combinations 1.4D 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.6(Lr or S or R) + (0.5L or 0.8W) 1.2D + 1.3W + 0.5L + 0.5(Lr or S or R) 1.2D ± 1.0E + 0.5L + 0.2S 0.9D ± (1.3W or 1.0E) (A4-1) (A4-2) (A4-3) (A4-4) (A4-5) (A4-6) (Exception: The load factor on L in combinations A4-3, A4-4, A4-5 shall equal 1.0 for garages, areas occupied as places of public assembly, and all areas where the live load is greater than 100 psf). The load effects D, L, Lr, S, R, W, and E are as defined above. The loads should be taken from the governing building code or from ASCE 7, Minimum Design Loads in Buildings and Other Structures (American Society of Civil Engineers, 1988). Where applicable, L should be determined from the reduced live load specified for the given member in the governing code. Earthquake loads should be from the AISC Seismic Provisions for Structural Steel Buildings, which appears in Part 6 of this Manual. LRFD Fundamentals The following is a brief discussion of the basic concepts of LRFD. A more complete treatment of the subject is available in the Commentary on the LRFD Specification (Section A4 and A5) and in the references cited therein. LRFD is a method for proportioning structures so that no applicable limit state is exceeded when the structure is subjected to all appropriate factored load combinations. Strength limit states are related to safety and load carrying capacity (e.g., the limit states of plastic moment and buckling). Serviceability limit states (e.g., deflections) relate to performance under normal service conditions. In general, a structural member will have several limit states. For a beam, for example, they are flexural strength, shear strength, vertical deflection, etc. Each limit state has associated with it a value of Rn, which defines the boundary of structural usefulness. AMERICAN INSTITUTE OF STEEL CONSTRUCTION INTRODUCTION TO LRFD 2-7 Because the AISC Specification is concerned primarily with safety, strength limit states are emphasized. The load combinations for determining the required strength were given in expressions A4-1 through A4-6. (Other load combinations, with different values of γi, are appropriate for serviceability; see Chapter L in the LRFD Specification and Commentary.) The AISC load factors (A4-1 through A4-6) are based on ASCE 7. They were originally developed by the A58 Load Factor Subcommittee of the American National Standards Institute, ANSI, (U.S. Department of Commerce, 1980) and are based strictly on load statistics. Being material-independent, they are applicable to all structural materials. Although others have written design codes similar in format to the LRFD Specification, the AISC was the first specification group to adopt the ANSI probability-based load factors. The AISC load factors recognize that when several loads act in combination, only one assumes its maximum lifetime value at a time, while the others are at their “arbitrarypoint-in-time” (APT) values. Each combination models the total design loading condition when a different load is at its maximum: Load Combination A4-1 A4-2 A4-3 A4-4 A4-5 A4-6 Load at its Lifetime (50-year) Maximum D (during construction; other loads not present) L Lr or S or R (a roof load) W (acting in direction of D) E (acting in direction of D) W or E (opposing D) The other loads, which are APT loads, have mean values considerably lower than the lifetime maximums. To achieve a uniform reliability, every factored load (lifetime maximum or APT) is larger than its mean value by an amount depending on its variability. The AISC resistance factors are based on research recommendations published by Washington University in St. Louis (Galambos et al., 1978) and reviewed by the AISC Specification Advisory Committee. Test data were analyzed to determine the variability of each resistance. In general, the resistance factors are less than one (φ < 1). For uniform reliability, the greater the scatter in the data for a given resistance, the lower its φ factor. Several representative LRFD φ factors for steel members (referenced to the corresponding chapters in the LRFD Specification) are: φt = 0.90 for tensile yielding (Chapter D) φt = 0.75 for tensile fracture (Chapter D) φc = 0.85 for compression (Chapter E) φb = 0.90 for flexure (Chapter F) φv = 0.90 for shear yielding (Chapter F) Resistance factors for other member and connection limit states are given in the LRFD Specification. The following sections (A through I) summarize and explain the corresponding chapters of the LRFD Specification. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2-8 ESSENTIALS OF LRFD A. GENERAL PROVISIONS In the LRFD Specification, Sections A4 and A5 define Load and Resistance Factor Design. The remainder of Chapter A contains general provisions which are essentially the same as in the earlier ASD editions of the Specification. Reference is made to the Code of Standard Practice for Steel Buildings and Bridges (adopted in 1992 by AISC), which appears with a Commentary in Part 6 of this LRFD Manual. The Code defines the practices and commonly accepted standards in the structural steel fabricating industry. In the absence of other instructions in the contract documents, these trade practices govern the fabrication and erection of structural steel. The types of construction recognized by the AISC Specification have not changed, except that both “simple framing” (formerly Type 2) and “semi-rigid framing” (formerly Type 3) have been combined into one category, Type PR (partially restrained). “Rigid framing” (formerly Type 1) is now Type FR (fully restrained). Type FR construction is permitted unconditionally. Type PR is allowed only upon evidence that the connections to be used are capable of furnishing, as a minimum, a predictable portion of full end restraint. Type PR construction may necessitate some inelastic, but self-limiting, deformation of a structural steel part. When specifying Type PR construction, the designer should take into account the effects of reduced connection stiffness on the stability of the structure, lateral deflections, and second order bending moments. Semi-rigid connections, once common, are again becoming popular. They offer economies in connection fabrication (compared with FR connections) and reduced member size (compared with simple framing). For information on connections, please refer to Volume II of this LRFD Manual. The yield stresses of the grades of structural steel approved for use range from 36 ksi for the common A36 steel to 100 ksi for A514 steel. Not all rolled shapes and plate thicknesses are available for every yield stress. Availability tables for structural shapes, plates and bars are at the beginning of Part 1 of this LRFD Manual. A36, for many years the dominant structural steel for buildings, is being replaced by the more economical 50 ksi steels. ASTM designations for structural steels with 50 ksi yield stress are: A572 for most applications, A529 for thin-plate members only, and A242 and A588 weathering steels for atmospheric corrosion resistance. A more complete explanation is provided by Table 1-1 in Part 1 of this Manual. However, A36 is still normally specified for connection material, where no appreciable savings can be realized from higher strength steels. Complete and accurate drawings and specifications are necessary for all stages of steel construction. The requirements for design documents are set forth in Section A7 of the LRFD Specification and Section 3 of the AISC Code of Standard Practice. When beam end reactions are not shown on the drawings, the structural steel detailer will refer to the appropriate tables in Part 4 of the LRFD Manual. These tables, which are for uniform loads, may significantly underestimate the effects of the concentrated loads. The recording of beam end reactions on design drawings, which is recommended in all cases, is, therefore, absolutely essential when there are concentrated loads. Beam reactions, column loads, etc., shown on design drawings should be the required strengths calculated from the factored load combinations and should be so noted. Loads and Load Combinations LRFD Specification Sections A4 (Loads and Load Combinations) and A5 (Design Basis) describe the basic criteria of LRFD. This information was discussed above under AMERICAN INSTITUTE OF STEEL CONSTRUCTION A. GENERAL PROVISIONS 2-9 Introduction to LRFD. To illustrate the application of load factors, the AISC load combinations will be repeated here with design examples. The required strength is the maximum absolute value of the combinations 1.4D 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.6(Lr or S or R) + (0.5L or 0.8W) 1.2D + 1.3W + 0.5L + 0.5(Lr or S or R) 1.2D ± 1.0E + 0.5L + 0.2S 0.9D ± (1.3W or 1.0E) (A4-1) (A4-2) (A4-3) (A4-4) (A4-5) (A4-6) (The load factor on L in combinations A4-3, A4-4 and A4-5 shall equal 1.0 for garages, areas occupied as placed of public assembly, and all areas where the live load is greater than 100 psf). In the combinations the loads or load effects (i.e., forces or moments) are: D = dead load due to the weight of the structural elements and the permanent features on the structure L = live load due to occupancy and moveable equipment (reduced as permitted by the governing code) Lr = roof live load W= wind load S = snow load E = earthquake load R = nominal load due to initial rainwater or ice exclusive of the ponding contribution The loads are to be taken from the governing building code. In the absence of a code, one may use ASCE 7 Minimum Design Loads for Buildings and Other Structures (American Society of Civil Engineers, 1988). Earthquake loads should be determined from the AISC Seismic Provisions for Structural Steel Buildings, in Part 6 of this Manual. Whether the loads themselves or the load effects are combined, the results are the same, provided the principle of superposition is valid. This is usually true because deflections are small and the stress-strain behavior is linear elastic; consequently, second order effects can usually be neglected. (The analysis of second order effects is covered in Chapter C of the LRFD Specification.) The linear elastic assumption, although not correct at the strength limit states, is valid under normal in-service loads and is permissible as a design assumption under the LRFD Specification. In fact, the Specification (in Section A.5.1) allows the designer the option of elastic or plastic analysis using the factored loads. However, to simplify this presentation, it is assumed that the more prevalent elastic analysis option has been selected. EXAMPLE A-1 Given: Solution: Roof beams W16×31, spaced 7′′-0 center-to-center, support a superimposed dead load of 40 psf. Code specified roof loads are 30 psf downward (due to roof live load, snow, or rain) and 20 psf upward or downward (due to wind). Determine the critical loading for LRFD. D = 31 plf + 40 psf × 7.0 ft = 311 plf AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 10 ESSENTIALS OF LRFD L =0 (Lr or S or R) = 30 psf × 7.0 ft = 210 plf W = 20 psf × 7.0 ft = 140 plf E =0 Load Combinations A4-1 A4-2 A4-3 A4-4 A4-5 A4-6a A4-6b Factored Loads 1.4(311 plf) 1.2(311 plf) + 0 + 0.5(210 plf) 1.2(311 plf) + 1.6 (210 plf) + 0.8(140 plf) 1.2(311 plf) + 1.3(140 plf) + 0 + 0.5(210 plf) 1.2(311 plf) + 0 + 0 + 0.2(210 plf) 0.9 (311 plf) + 1.3 (140 plf) 0.9(311 plf) − 1.3(140 plf) = 435 plf = 478 plf = 821 plf = 660 plf = 415 plf = 462 plf = 98 plf The critical factored load combination for design is the third, with a total factored load of 821 plf. EXAMPLE A-2 Given: Solution: The axial loads on a building column resulting from the code-specified service loads have been calculated as: 100 kips from dead load, 150 kips from (reduced) floor live load, 30 kips from the roof (Lr or S or R), 60 kips due to wind, and 50 kips due to earthquake. Determine the required strength of this column. Load Combination A4-1 A4-2 A4-3a A4-3b A4-4 A4-5a A4-5b A4-6a A4-6b A4-6c A4-6d Factored Axial Load 1.4(100 kips) 1.2(100 kips) + 1.6(150 kips) + 0.5(30 kips) 1.2(100 kips) + 1.6(30 kips) + 0.5(150 kips) 1.2(100 kips) + 1.6(30 kips) + 0.8(60 kips) 1.2(100 kips) + 1.3(60 kips) + 0.5(150 kips) + 0.5(30 kips) 1.2(100 kips) + 1.0(50 kips) + 0.5(150 kips) + 0.2(30 kips) 1.2(100 kips) − 1.0(50 kips) + 0.5(150 kips) + 0.2(30 kips) 0.9(100 kips) + 1.3(60 kips) 0.9(100 kips) − 1.3(60 kips) 0.9(100 kips) + 1.0(50 kips) 0.9(100 kips) − 1.0(50 kips) AMERICAN INSTITUTE OF STEEL CONSTRUCTION = 140 kips = 375 kips = 243 kips = 216 kips = 288 kips = 251 kips = 151 kips = 168 kips = 12 kips = 140 kips = 40 kips B. DESIGN REQUIREMENTS 2 - 11 The required strength of the column is 375 kips based on the second combination of factored axial loads. As none of the results above are negative, net tension need not be considered in the design of this column. B. DESIGN REQUIREMENTS Gross, Net, and Effective Net Areas for Tension Members The concept of effective net area, which in earlier editions of the Specification was applied only to bolted members, has been extended to cover members connected by welding as well. As in the past, when tensile forces are transmitted directly to all elements of the member, the net area is used to determine stresses. However, when the tensile forces are transmitted through some, but not all, of the cross-sectional elements of the member, a reduced effective net area Ae is used instead. According to Section B3 of the LRFD Specification Ae = AU (B3-1) where A = area as defined below U = reduction coefficient _ = 1 − (x / L) ≤ 0.9, or as defined in (c) or (d) (B3-2) _ x = connection eccentricity. (See Commentary on the LRFD Specification, Section B3 and Figure C-B3.1.) L = length of connection in the direction of loading a. When the forces are transmitted only by bolts A = An = net area of member, in.2 b. When the forces are transmitted by longitudinal welds only or in combination with transverse welds A = Ag = gross area of member, in.2 c. When the forces are transmitted only by transverse welds A = area of directly connected elements, in.2 U = 1.0 d. When the forces are transmitted to a plate by longitudinal welds along both edges at the end of the plate A = area of plate, in.2 l ≥w For l ≥ 2w For 2w > l ≥ 1.5w For 1.5w > l ≥ w U = 1.00 U = 0.87 U = 0.75 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 12 ESSENTIALS OF LRFD where l = weld length w = plate width (distance between welds), in. In computing the net area for tension and shear, the width of a bolt hole is taken as 1⁄16-in. greater than the nominal dimension of the hole, which, for standard holes, is 1⁄16-in. larger than the diameter of the bolt. Chains of holes, treated as in the past, are covered in Section B2 of the LRFD Specification. Gross, Net, and Effective Net Areas for Flexural Members Gross areas are used for elements in compression, in beams and columns. According to Section B10 of the LRFD Specification, the properties of beams and other flexural members are based on the gross section (with no deduction for holes in the tension flange) if 0.75Fu Afn ≥ 0.9Fy Afg (B10-1) where Afg = gross flange area, in.2 Afn = net flange area (deducting bolt holes), in.2 Fy = specified minimum yield stress, ksi Fu = minimum tensile strength, ksi Otherwise, an effective tension flange area Afe is used to calculate flexural properties Afe = 5 Fu A 6 Fy fn (B10-3) Local Buckling Steel sections are classified as either compact, noncompact, or slender element sections: • If the flanges are continuously connected to the web and the width-thickness ratios of all the compression elements do not exceed λp, then the section is compact. • If the width-thickness ratio of at least one of its compression elements exceeds λp, but does not exceed λr, the section is noncompact. • If the width-thickness ratio of any compression element exceeds λr, that element is called a slender compression element. Columns with compact and noncompact cross sections are covered by Chapter E of the LRFD Specification. Column cross sections with slender elements require the special design procedure in Appendix B5.3 of the Specification. Beams with compact sections are covered by Chapter F of the LRFD Specification. All other cross sections in bending must be designed in accordance with Appendices B5.3, F1 and/or G. In general, reference to the appendices of the Specification is required for the design of members controlled by local buckling. In slender element sections, local buckling, occurring prior to initial yielding, will limit the strength of the member. Noncompact sections will yield first, but local buckling will precede the development of a fully plastic stress distribution. In actual practice, such cases are not common and can be easily avoided by designing so that: AMERICAN INSTITUTE OF STEEL CONSTRUCTION B. DESIGN REQUIREMENTS 2 - 13 Table B-1. Limiting Width-Thickness Ratios for Compression Elements* WidthThickness Ratio Beam Element Limiting Width-Thickness Ratio, λp General For Fy = 50 ksi Flanges of I shapes and channels b/t 65 / √ F y 9.2 Flanges of square and rectangular box beams b/t 190 / √ Fy 26.9 Webs in flexural compression h / tw 640 / √ Fy 90.5 Webs in combined flexural and axial compression h / tw 253 / √ Fy ** 35.8 Column Element WidthThickness Ratio Limiting Width-Thickness Ratio, λr General For Fy = 50 ksi Flanges of I shapes and channels and plates projecting from compression elements b/t 95 / √ F y 13.4 Webs in axial compression h / tw 253 / √ Fy 35.8 *For the complete table, see LRFD Specification, Section B5, Table B5.1. **This is a simplified, conservative version of the corresponding entry in Table B5.1 of the LRFD Specification. • for beams, the width-thickness ratios of all compression elements ≤ λp; • for columns, the width-thickness ratios of all elements ≤ λr. Table B-1, which is an abridged version of Table B5.1 in the LRFD Specification, should be useful for this purpose. The formulas for λp for beam elements and λr for column elements are tabulated, together with the corresponding numerical values for 50 ksi steel. The definitions of “width” for use in determining the width-thickness ratios of the elements of various structural shapes are stated in Section B5 of the LRFD Specification. They are shown graphically in Figure B-1. Compact section criteria for W shapes and other I-shaped cross sections are listed in the Properties Tables in Part 1 of LRFD Manual. Limiting Slenderness Ratios For members whose design is based on compressive force, the slenderness ratio Kl / r preferably should not exceed 200. For members whose design is based on tensile force, the slenderness ratio l / r preferably should not exceed 300. The above limitation does not apply to rods in tension. K = effective length factor, defined in Section C below l = distance between points of lateral support (lx or ly), in. r = radius of gyration (rx or ry), in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 14 ESSENTIALS OF LRFD C. FRAMES AND OTHER STRUCTURES Second Order Effects As stated in Section C1 of the LRFD Specification, an analysis of second order effects is required; i.e., the additional moments due to the axial loads acting on the deformed structure must be considered. In lieu of a second order analysis for Mu, the required flexural strength, the LRFD Specification (in Section C1) presents the following simplified method: Mu = B1Mnt + B2Mlt (C1-1) The components of the total factored moment, determined from a first order elastic analysis (neglecting second order effects) are divided into two groups, Mnt and Mlt. Each group is in turn multiplied by a magnification factor B1 or B2 and the results are added to approximate the actual second order factored moment Mu. (The method, as explained here, is valid where the moment connections are Type FR, fully restrained. The analysis for Type PR, or partially restrained, moment connections is beyond the scope of this section.) Beam-columns are generally columns in frames, which are either braced (Mlt = 0) or unbraced (Mlt ≠ 0). Mnt is the moment in the member assuming there is no lateral translation of the frame; Mlt is the moment due to lateral translation. Mnt includes the moments resulting from the gravity loads, as determined manually or by computer, using one of the customary (elastic, first order) methods. The moments from the lateral loads are classified as Mlt; i.e., due to lateral translation. If both the frame and its vertical loads are symmetric, Mlt from the vertical loads is zero. However, if either the vertical loads or the frame is asymmetric and the frame is not braced, lateral translation occurs and Mlt ≠ 0. The procedure for obtaining Mlt in this case involves: b= bf b= 2 bf bf b = bf 2 bf bf h h h bf b t hw t h b = b f – 3t h = h w – 3t Fig. B-1. Definitions of widths (b and h) for use in Table B-1. AMERICAN INSTITUTE OF STEEL CONSTRUCTION C. FRAMES AND OTHER STRUCTURES 2 - 15 a. applying fictitious horizontal reactions at each floor level to prevent lateral translation, and b. using the reverse of these reactions as the “sway forces” for determining Mlt. In general, Mlt for an unbraced frame is the sum of the moments due to the lateral loads and these “sway forces,” as illustrated in Figure C-1. The magnification factors applied to Mnt and Mlt are, respectively, B1 and B2. As shown in Figure C-2, B1 accounts for the secondary Pδ member effect in all frames (including sway-inhibited) and B2 covers the P∆ story effect in unbraced frames. The expressions for B1 and B2 follow: B1 = Cm ≥ 1.0 (1 − Pu / Pe1 ) (C1-2) where Pu = the factored axial compressive force on the member, kips Pe1 = Pe as listed in Table C-1 as a function of the slenderness ratio Kl / r, with effective length factor K = 1.0 and considering l / r in the plane of bending only l = unbraced length of the member, in. r = radius of gyration of its cross section, in. Cm = a coefficient to be taken as follows: V1 V2 V3 P1 P1 R1 V1 +R1 P2 P2 R 2 V2 +R2 P3 P3 Original Frame = R3 Nonsway Frame for M nt V3 +R3 Sway Frame for M t + Fig. C-1. Frame models for Mnt and Mlt. ∆P P H δ M1=Mnt+Pδ =B1Mnt (a) Column in Braced Frame L M t =HL M2=M t +P∆ =B2M t (b) Column in Unbraced Frame Fig. C-2. Illustrations of secondary effects. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 16 ESSENTIALS OF LRFD Table C-1. Values of Pe / Ag for Use in Equation C1-2 and C1-5 for Steel of Any Yield Stress Note: Multiply tabulated values by Ag (the gross cross-sectional area of the member) to obtain Pe Kl / r 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Pe / Ag Pe / Ag Pe / Ag Pe / Ag Pe / Ag Pe / Ag (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) Kl / r (ksi) 649.02 591.36 541.06 496.91 457.95 423.40 392.62 365.07 340.33 318.02 297.83 279.51 262.83 247.59 233.65 220.85 209.07 198.21 188.18 178.89 170.27 162.26 154.80 147.84 141.34 135.26 129.57 124.23 119.21 114.49 Note: Pe / Ag = 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 110.04 105.85 101.89 98.15 94.62 91.27 88.08 85.08 82.22 79.51 76.92 74.46 72.11 69.88 67.74 65.71 63.76 61.90 60.12 58.41 56.78 55.21 53.71 52.57 50.88 49.55 48.27 47.04 45.86 44.72 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 43.62 42.57 41.55 40.56 39.62 38.70 37.81 36.96 36.13 35.34 34.56 33.82 33.09 32.39 31.71 31.06 30.42 29.80 29.20 28.62 28.06 27.51 26.98 26.46 25.96 25.47 25.00 24.54 24.09 23.65 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 23.23 22.82 22.42 22.02 21.64 21.27 20.91 20.56 20.21 19.88 19.55 19.23 18.92 18.61 18.32 18.03 17.75 17.47 17.20 16.94 16.68 16.43 16.18 15.94 15.70 15.47 15.25 15.03 14.81 14.60 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 14.40 14.19 14.00 13.80 13.61 13.43 13.25 13.07 12.89 12.72 12.55 12.39 12.23 12.07 11.91 11.76 11.61 11.47 11.32 11.18 11.04 10.91 10.77 10.64 10.51 10.39 10.26 10.14 10.02 9.90 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 9.79 9.67 9.56 9.45 9.35 9.24 9.14 9.03 8.93 8.83 8.74 8.64 8.55 8.45 8.36 8.27 8.18 8.10 8.01 7.93 7.85 7.76 7.68 7.60 7.53 7.45 7.38 7.30 7.23 7.16 π2E (K l /r)2 a. For compression members not subject to transverse loading between their supports in the plane of bending, Cm = 0.6 − 0.4(M1 / M2) (C1-3) where M1 / M2 is the ratio of the smaller to larger moment at the ends of that portion of the member unbraced in the plane of bending under consideration. M1 / M2 is positive when the member is bending in reverse curvature, negative when bending in single curvature. b. For compression members subjected to transverse loading between their supports, the value of Cm can be determined by rational analysis, or the following values may be used: AMERICAN INSTITUTE OF STEEL CONSTRUCTION C. FRAMES AND OTHER STRUCTURES 2 - 17 for members with ends restrained against rotation . . . . . . . . . . Cm = 0.85 for members with ends unrestrained against rotation . . . . . . . . . Cm = 1.0 Two alternative equations are given for B2 in the LRFD Specification B2 = 1 ΣPu ∆oh 1− ΣH L B2 = 1 ΣPu 1− ΣPe2 (C1-4) (C1-5) where ΣPu = required axial strength of all columns in a story, i.e., the total factored gravity load above that level, kips ∆oh = translational deflection of the story under consideration, in. ΣH = sum of all story horizontal forces producing ∆oh, kips L = story height, in. ΣPe2 = the summation of Pe2 for all rigid-frame columns in a story; Pe2 is determined from Table C-1, considering the actual slenderness ratio Kl / r of each column in its plane of bending K = effective length factor (see below) Of the two expressions for B2, the first (Equation C1-4) is better suited for design office practice. The quantity (∆oh / L) is the story drift index. For many structures, particularly tall buildings, a maximum drift index is one of the design criteria. Using this value in Equation C1-4 will facilitate the evaluation of B2. In general, two values of B2 are obtained for each story of a building, one for each of the major directions. B1 is evaluated separately for every column; two values of B1 are needed for biaxial bending. Using Equations C1-1 through C1-5, the appropriate Mux and Muy are determined for each column. Effective Length As in previous editions of the AISC Specification, the effective length of Kl is used (instead of the actual unbraced length l) to account for the influence of end-conditions in the design of compression members. A number of acceptable methods have been utilized to evaluate K, the effective length factor. They are discussed in Section C2 of the Commentary on the LRFD Specification. One method will be shown here. Table C-2, which is also Table C-C2.1 in the Commentary, is taken from the Structural Stability Research Council (SSRC) Guide to Stability Design Criteria for Metal Structures. It relates K to the rotational and translational restraints at the ends of the column. Theoretical values for K are given, as well as the recommendations of the SSRC. The basic case is d, the classical pin-ended column, for which K = 1.0. Theoretical K values for the other cases are determined by the distances between points of inflection. The more conservative SSRC recommendations reflect the fact that perfect fixity can never be attained in actual structures. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 18 ESSENTIALS OF LRFD Table C-2. Effective Length Factors (K) for Columns Buckled shape of column is shown by dashed line (a) (b) (c) Theoretical K value 0.5 0.7 1.0 Recommended design value when ideal conditions are approximated 0.65 0.80 1.2 End condition code (d) (e) (f) 1.0 2.0 2.0 1.0 2.10 2.0 Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free Like its predecessors, the LRFD Specification (in Section C2) distinguishes between columns in braced and unbraced frames. In braced frames, sidesway is inhibited by attachment to diagonal bracing or shear walls. Cases a, b, and d in Table C-2 represent columns in braced frames; K ≤ 1.0. The LRFD Specification requires that for compression members in braced frames, K “shall be taken as unity, unless structural analysis shows that a smaller value may be used.” Common practice is to assume conservatively K = 1.0 for columns in braced frames and compression members in trusses. The other cases in Table C-2, c, e, and f, are in unbraced frames (sidesway uninhibited); K ≥ 1.0. The SSRC recommendations given in Table C-2 are appropriate for design. “Leaning” Columns The concept of the “leaning” column, although not related exclusively to LRFD, is new to the 1993 LRFD Specification. A leaning column is one which is pin ended and does not participate in providing lateral stability to the structure. As a result it relies on the columns in other parts of the structure for stability. In analyzing and designing unbraced frames, the effects of the leaning columns must be considered (as required by Section C2.2 of the LRFD Specification). For further information the reader is referred to: (1) Part 3 of this Manual. (2) the Commentary on the LRFD Specification, Section C2, and (3) a paper on this subject (Geschwindner, 1993). AMERICAN INSTITUTE OF STEEL CONSTRUCTION D. TENSION MEMBERS 2 - 19 D. TENSION MEMBERS Design Tensile Strength The design philosophy for tension members is the same in the LRFD and ASD Specifications: a. The limit state of yielding in the gross section is intended to prevent excessive elongation of the member. Usually, the portion of the total member length occupied by fastener holes is small. The effect of early yielding at the reduced cross sections on the total member elongation is negligible. Use of the area of the gross section is appropriate. b. The second limit state involves fracture at the section with the minimum effective net area. The design strength of tension members, φtPn, as given in Section D1 of the LRFD Specification, is the lesser of the following: a. For yielding in the gross section, φt = 0.90 Pn = Fy Ag (D1-1) b. For fracture in the net section, φt = 0.75 Pn = Fu Ae (D1-2) where Ae Ag Fy Fu Pn = effective net area, in.2 (see Section B, above) = gross area of member, in.2 = specified minimum yield stress, ksi = specified minimum tensile strength, ksi = nominal axial strength, kips For 50 ksi steels, Fy = 50 ksi and minimum Fu = 65 ksi. Accordingly a. For yielding in the gross section, φtPn = 0.9 × 50 ksi × Ag = 45.0 ksi × Ag (2-3) b. For fracture in the net section, φtPn = 0.75 × 65 ksi × Ae = 48.8 ksi × Ae (2-4) The limit state of block shear rupture may govern the design tensile strength. For information on block shear, see Section J4.3 of the LRFD Specification and Part 8 (in Volume II) of this LRFD Manual. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 20 ESSENTIALS OF LRFD EXAMPLE D-1 Given: Determine the design strength of a W8×24 as a tension member in 50 ksi steel. How much dead load can it support? Solution: If there are no holes in the member, Ae = Ag and Equation 2-3 governs φtPn = 45.0 ksi × Ag = 45.0 ksi × 7.08 in.2 = 319 kips Assuming that dead load is the only load, the governing load combination from Section A is 1.4D. Then, the required tensile strength Pu = 1.4PD ≤φtPn = 319 kips PD≤ 319 kips/1.4 = 228 kips maximum dead load that can be supported by the member. EXAMPLE D-2 Given: Repeat Example D-1 for a W8×24 in 50 ksi steel with four 1-in. diameter holes, two per flange, along the member (i.e., not at its ends) for miscellaneous attachments. See Figure D-1(a). Solution: a. For yielding in the gross section φtPn = 319 kips, as in Example D-1. b. For fracture in the net section Ae = An = Ag − 4 × (dhole + 1⁄16-in.) × tf = 7.08 in.2 − 4 × (1 + 1⁄16-in.) × 0.400 in. = 5.38 in.2 φtPn = 48.8 ksi × Ae = 48.8 ksi × 5.38 in.2 = 263 kips < 319 kips Fracture in the net section governs. Pu = 1.4 PD ≤ φtPn = 263 kips PD ≤ 263 kips / 1.4 = 188 kips W8x24 x=y=0.695 in. tf WT4x12 WT4x12 (a) (b) Fig. D-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION D. TENSION MEMBERS 2 - 21 Note: If the holes had been at the end connection of the tension member, the U reduction coefficient would apply in the calculation of an effective net area. EXAMPLE D-3 Given: Repeat Example D-2 for holes at a bolted end-connection. There are a total of eight 1-in. diameter holes, as shown in Figure D-1(a), on two planes, 4 in. center-to-center. Solution: a. For yielding in the gross section φtPn = 319 kips, as in Example D-1. b. For fracture in the net section, according to Equation B3-1 in Section B above, the effective net area Ae = AU = AnU where An = 5.38 in.2 as in Example D-2 _ x U = 1 − , L = 4 in.* L _ According to Commentary Figure C-B3.1(a), x for a W8×24 in this case is taken as that for a WT4×12. _ From the properties of a WT4×12 given in Part 1 of this Manual, x = y = 0.695 in. See Figure D-1(b). U=1− 0.695 in. = 0.826 4 in. Thus Ae = 5.38 in.2 × 0.826 = 4.45 in.2 φtPn = 48.8 ksi × Ae = 48.8 ksi × 4.45 in.2 = 217 kips < 319 kips Fracture in the net section governs. Again, assuming that dead load is the only load, Pu = 1.4PD ≤ φtPn = 217 kips PD ≤ 217 kips / 1.4 = 155 kips maximum dead load that can be supported by the member. Built-Up Members, Eyebars, and Pin-Connected Members See Section D2 and D3 in the LRFD Specification. *In lieu of calculating U, the Commentary on the LRFD Specification (Section B3) permits the use of more conservative values of U listed therein. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 22 ESSENTIALS OF LRFD E. COLUMNS AND OTHER COMPRESSION MEMBERS Effective Length For a discussion of the effective length Kl for columns, refer to Section C above. Design Compressive Strength Although the column strength equations have been revised for compatibility with LRFD and recent research on column behavior, the philosophy and procedures of column design in LRFD are similar with those in ASD. The direct design of columns with W and other rolled shapes is facilitated by the column strength tables in Part 3 of this LRFD Manual, which show the design compressive strength φcPn as a function of KL (the effective unbraced length in feet). Columns with cross sections not tabulated (e.g., built-up columns) can be designed iteratively, as in the past, with the aid of tables listing design stresses versus Kl / r, the slenderness ratio. Such tables are given in the Appendix of the LRFD Specification for 36 and 50 ksi structural steels, and below (Table E-1) for 50 ksi steel. There are two equations governing column strength, based on the limit state of flexural buckling, one for inelastic buckling (Equation E2-2) and the other (Equation E2-3) for elastic, or Euler, buckling. Equation E2-2 is an empirical relationship for the inelastic range, while Equation E2-3 is the familiar Euler formula multiplied by 0.877. Both equations include the effects of residual stresses and initial out-of-straightness. The boundary between inelastic and elastic instability is λc = 1.5, where the parameter λc = Kl rπ √ Fy E (E2-4) For axially loaded columns with all elements having width-thickness ratios < λr (in Section B5.1 of the LRFD Specification), the design compressive strength = φcPn where φc = 0.85 Pn = AgFcr (E2-1) Ag = gross area of member, in.2 a. For λc ≤ 1.5 2 Fcr = (0.658λc)Fy (E2-2) As is done in the Commentary on Section E2, this equation can be expressed in exponential form Fcr = [exp (−0.419λ2c )]Fy where exp(x) = ex AMERICAN INSTITUTE OF STEEL CONSTRUCTION (C-E2-1) E. COLUMNS AND OTHER COMPRESSION MEMBERS 2 - 23 Table E-1. Design Stress for Compression Members of 50 ksi Specified Minimum Yield Stress Steel, φc = 0.85* Kl r F cr (ksi) Kl r F cr (ksi) 1 2 3 4 5 42.50 42.49 42.47 42.45 42.42 41 42 43 44 45 37.59 37.36 37.13 36.89 36.65 6 7 8 9 10 42.39 42.35 42.30 42.25 42.19 46 47 48 49 50 11 12 13 14 15 42.13 42.05 41.98 41.90 41.81 16 17 18 19 20 Kl r F cr (ksi) Kl r F cr (ksi) Kl r F cr (ksi) 81 82 83 84 85 26.31 26.00 25.68 25.37 25.06 121 122 123 124 125 14.57 14.33 14.10 13.88 13.66 161 162 163 164 165 8.23 8.13 8.03 7.93 7.84 36.41 36.16 35.91 35.66 35.40 86 87 88 89 90 24.75 24.44 24.13 23.82 23.51 126 127 128 129 130 13.44 13.23 13.02 12.82 12.62 166 167 168 169 170 7.74 7.65 7.56 7.47 7.38 51 52 53 54 55 35.14 34.88 34.61 34.34 34.07 91 92 93 94 95 23.20 22.89 22.58 22.28 21.97 131 132 133 134 135 12.43 12.25 12.06 11.88 11.71 171 172 173 174 175 7.30 7.21 7.13 7.05 6.97 41.71 41.61 41.51 41.39 41.28 56 57 58 59 60 33.79 33.51 33.23 32.95 32.67 96 97 98 99 100 21.67 21.36 21.06 20.76 20.46 136 137 138 139 140 11.54 11.37 11.20 11.04 10.89 176 177 178 179 180 6.89 6.81 6.73 6.66 6.59 21 22 23 24 25 41.15 41.02 40.89 40.75 40.60 61 62 63 64 65 32.38 32.09 31.80 31.50 31.21 101 102 103 104 105 20.16 19.86 19.57 19.28 18.98 141 142 143 144 145 10.73 10.58 10.43 10.29 10.15 181 182 183 184 185 6.51 6.44 6.37 6.30 6.23 26 27 28 29 30 40.45 40.29 40.13 39.97 39.79 66 67 68 69 70 30.91 30.61 30.31 30.01 29.70 106 107 108 109 110 18.69 18.40 18.12 17.83 17.55 146 147 148 149 150 10.01 9.87 9.74 9.61 9.48 186 187 188 189 190 6.17 6.10 6.04 5.97 5.91 31 32 33 34 35 39.62 39.43 39.25 39.06 38.86 71 72 73 74 75 29.40 20.09 28.79 28.48 28.17 111 112 113 114 115 17.27 16.99 16.71 16.42 16.13 151 152 153 154 155 9.36 9.23 9.11 9.00 8.88 191 192 193 194 195 5.85 5.79 5.73 5.67 5.61 36 37 38 39 40 38.66 38.45 38.24 38.03 37.81 76 77 78 79 80 27.86 27.55 27.24 26.93 26.62 116 117 118 119 120 15.86 15.59 15.32 15.07 14.82 156 157 158 159 160 8.77 8.66 8.55 8.44 8.33 196 197 198 199 200 5.55 5.50 5.44 5.39 5.33 * When element width-to-thickness ratio exceeds λr, see Appendix B5.3 of LRFD Specification AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 24 ESSENTIALS OF LRFD b. For λc > 1.5 0.877 Fcr = 2 Fy λc (E2-3) where Fy = specified minimum yield stress, ksi E = modulus of elasticity, ksi K = effective length factor l = unbraced length of member, in. r = governing radius of gyration about plane of buckling, in. For 50 ksi steel λc = Kl 1 r π √ Kl Kl 50 ksi = 0.0132 or = 75.7λc r r 29,000 ksi (2-5) The boundary between inelastic and elastic buckling (λc = 1.5) for 50 ksi steel is Kl = 75.7 × 1.5 = 113.5 r The column strength equations in terms of Kl / r for 50 ksi steel become φcPn = (φcFcr )Ag (2-6) Fcr = {exp[−7.3 × 10−5(Kl / r)2]} × 50 ksi (2-7) where φc = 0.85 a. For Kl / r ≤ 113.5 b. For Kl / r ≤ 113.5 Fcr = 2.51 × 105 ksi (Kl / r)2 (2-8) Based on Equations 2-7 and 2-8, Table E-1 gives the design stresses for 50 ksi steel columns for the full range of slenderness ratios. Determining the design strength of a given 50 ksi steel column merely involves using Equation 2-6 in connection with Table E-1. The appropriate design stress (φcFcr) from Table E-1 is multiplied by the cross-sectional area to obtain the design strength φcPn. EXAMPLE E-1 Given: Design a 25-ft high, free standing A618 (Fy = 50 ksi) steel pipe column to support a water tank with a weight of 75 kips at full capacity. See Figure E-1. Solution: For a live load of 75 kips, the required column strength (from Section A) is Pu = 1.6PL = 1.6 × 75 kips = 120 kips. AMERICAN INSTITUTE OF STEEL CONSTRUCTION E. COLUMNS AND OTHER COMPRESSION MEMBERS 2 - 25 From Table C-2, case e, recommended K = 2.1. KL = 2.1 × 25.0 ft = 52.5 ft. Try a standard 12-in. diameter pipe (A = 14.6 in.2, I = 279 in.4): r =√ I/A =√ 279 in. / 14.6 in.2 = 4.37 in. Kl 52.5 ft × 12 in./ft = = 144.2 4.37 in r From Table E-1, φcFcr = 10.3 ksi The design compressive strength φcPn = (φcFcr )Ag = 10.3 ksi × 14.6 in.2 = 150 kips > 120 kips required o.k. To complete the design, bending due to lateral loads (i.e., wind and earthquake) should also be considered. See Sections F and H. EXAMPLE E-2 Determine the adequacy of a W14×120 building column. Given: 50 ksi steel; K = 1.0; story height = 12.0 ft; required strength based on the maximum total factored load is 1,300 kips. KxLx = Ky Ly = 1.0 × 12.0 ft = 12.0 ft Because ry < rx, Kl Ky Ly 12.0 ft × 12 in./ft = = 38.5 maximum = ry 3.74 in. r From Table E-1, φcFcr = 38.14 ksi Design compressive strength φcPn = (φcFcr)Ag = 38.14 ksi × 35.3 in.2 = 1,346 kips > 1,300 kips required o.k. L = 25.0 ft. Solution: Fig. E-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 26 Select the most economical W14 column for the case shown in Figures E-2 and E-3. Lower Level Intermediate Level Upper Level Fig. E-2. Plan views. 12 -0 Upper Level Intermediate Level 12 -0 EXAMPLE E-3 ESSENTIALS OF LRFD Lower Level Fig. E-3. Elevation. AMERICAN INSTITUTE OF STEEL CONSTRUCTION F. BEAMS AND OTHER FLEXURAL MEMBERS 2 - 27 Given: 50 ksi steel; K = 1.0; required strength based on the maximum total factored load is 1,300 kips. The column is braced in both directions at the upper and lower levels, and in the weak direction at the intermediate level. Solution: Try a W14×120 (as in Example E-2): Kx lx rx = 1.0 × 24.0 ft × 12 in./ft = 46.2 6.24 in. Ky ly ry = 1.0 × 12.0 ft × 12 in./ft = 38.5 3.74 in. Kx lx Kl max = = 46.2 rx r From Table E-1, φcFcr = 36.35 ksi Required Ag = 1,300 kips = 35.8 in.2 > 35.3 in.2 provided 36.35 ksi W14×120 n.g. By inspection W14×132 is o.k. Use W14×132 Flexural-Torsional Buckling As stated in Section E3 of the LRFD Specification and Commentary, torsional and flexural-torsional buckling generally do not govern the design of doubly symmetric rolled shapes in compression. For other cross sections, see Section E3 and Appendix E3 of the LRFD Specification. Built-Up and Pin-Connected Members These members are covered, respectively, in Section E4 and E5 of the LRFD Specification. F. BEAMS AND OTHER FLEXURAL MEMBERS Chapter F of the LRFD Specification covers compact beams. Compactness criteria are given in Table B5.1 of the LRFD Specification and are summarized in Table B-1 above. To prevent torsion, wide-flange shapes must be loaded in either plane of symmetry, channels must be loaded through the shear center parallel to the web, or restraint against twisting must be provided at load points and points of support. Torsion combined with flexure and axial force combined with flexure are covered in Chapter H of the LRFD Specification. This section explains the provisions of the LRFD Specification for compact rolled beams. For other compact and noncompact flexural members, refer to Appendix F of the Specification; plate girders are in Appendix G. Flexure To understand the provisions of the LRFD Specification regarding flexural design, it is helpful to review briefly some aspects of elementary beam theory. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 28 ESSENTIALS OF LRFD Under working loads (and until initial yielding) the distributions of flexural strains and stresses over the cross-section of a beam are linear. As shown in Figure F-1, they vary from maximum compression at the extreme fibers on one side (the top) to zero at the neutral, or centroidal, axis to maximum tension at the extreme fibers on the other side (the bottom). The relationship between moment and maximum bending stress (tension or compression) at a given cross section is M = Sfb (2-9) where M= bending moment due to the applied loads, kip-in. S = elastic section modulus, in the direction of bending, in.3 I = c fb = maximum bending stress, ksi I = moment of inertia of the cross section about its centroidal axis, in.4 c = distance from the elastic neutral axis to the extreme fiber, in. Similarly, at initial yielding Mr = SFy (2-10) where Mr = bending moment coinciding with first yielding, kip-in. If additional load is applied, the strains continue to increase; the stresses, however, are, limited to Fy. Yielding proceeds from the outer fibers inward until a plastic hinge is developed, as shown in Figure F-1. At full plastification of the cross section Mp = ZFy (2-11) where Mp = plastic moment, kip-in Z = plastic section modulus, in the direction of bending, in.3 Due to the presence of residual stresses (prior to loading, as a consequence of the rolling operation), yielding begins at an applied stress of (Fy − Fr). Equation 2-10 should be modified to STRAINS BEAM Cross Section Compression STRESSES Fy Fy Working Load Fy Initial Yielding Tension Fig. F-1. Flexural strains and stresses. AMERICAN INSTITUTE OF STEEL CONSTRUCTION Fy Plastic Hinge F. BEAMS AND OTHER FLEXURAL MEMBERS Mr = S(Fy − Fr ) 2 - 29 (2-12) where Fr = the maximum compressive residual stress in either flange, ksi = 10 ksi for rolled shapes, 16.5 ksi for welded shapes The definition of plastic moment in Equation 2-11 is still valid, because it is not affected by residual stresses. Design for Flexure a. Assuming Cb = 1.0 Compact sections will not experience local buckling before the formation of a plastic hinge. The occurrence of lateral-torsional buckling of the member depends on the unbraced length Lb. As implied by the term lateral-torsional buckling, overall instability of a beam requires that twisting of the member occur simultaneously with lateral buckling of the compression flange. Lb is the distance between points braced to prevent twist of the cross section. Many beams can be considered continuously braced; e.g., beams supporting a metal deck, if the deck is intermittently welded to the compression flange. Compact wide flange and channel members bending about their major (or x) axes can develop their full plastic moment Mp without buckling if Lb ≤ Lp. If Lb = Lr, the nominal flexural strength is Mr, the moment at first yielding adjusted for residual stresses. The nominal moment capacity (Mn) for Lp < Lb < Lr is Mr < Mn < Mp. Compact shapes bent about their minor (or y) axes will not buckle before developing Mp, regardless of Lb. Flexural design strength, governed by the limit state of lateral-torsional buckling, is φbMn, where φb = 0.90 and Mn the nominal flexural strength is as follows: Mn = Mp = ZxFy for bending about the major axis if Lb ≤ Lp Mn = Mp = ZyFy for bending about the minor axis regardless of Lb Lp = 300ry = 42.4ry for 50 ksi steel Fy √ Mn = Mr = Sx(Fy − Fr ) = Sx(Fy − 10 ksi) for rolled shapes bending about the major axis if Lb = Lr (2-13) (2-14) (2-15) (2-16) Mn for bending about the major axis, if Lp < Lb < Lr, is determined by linear interpolation between Equations 2-13 and 2-16; i.e., Lb − Lp Mn = Mp − (Mp − Mr) Lr − Lp (2-17) The definition for the limiting laterally unbraced length Lr is given in the LRFD Specification (in Equations F1-6, 8, and 9) and will not be repeated here. For bending about the major axis if Lb > Lr, Mn = Mcr ≤ Mr (2-18) The case of Lb > Lr is beyond the scope of this section. The reader is referred to Section F1.2b of LRFD Specification (specifically Equation F1-13, where the critical moment AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 30 ESSENTIALS OF LRFD Table F-1. Values of Cb for Simply Supported Beams Braced at Ends of Span Load Lateral Bracing Along Span Cb Concentrated at center None 1.32 At centerline only 1.67 None 1.14 At centerline only 1.30 Uniform Mcr is controlled by lateral-torsional buckling). This case is also covered in the beam graphs in Part 4 of this LRFD Manual. b. All values of Cb Cb is the bending coefficient. A new expression for Cb is given in the LRFD Specification. (It is more accurate than the one previously shown.) Cb = 12.5Mmax 2.5Mmax + 3MA + 4MB + 3Mc (F1-3) where M is the absolute value of a moment in the unbraced beam segment as follows: Mmax, the maximum MA, at the quarter point MB, at the centerline Mc, at the three-quarter point The purpose of Cb is to account for the influence of moment gradient on lateral-torsional buckling. The flexural strength equations with Cb = 1.0 are based on a uniform moment along a laterally unsupported beam segment causing single curvature buckling of the member. Other loadings are less severe, resulting in higher flexural strengths; Cb ≥ 1.0. Typical values of Cb are given in Table F-1. For unbraced cantilevers, Cb = 1.0. Cb can conservatively be taken as 1.0 for all cases. For all values of Cb, the flexural design strength φbMn, where φb = 0.90, is given in the LRFD Specification in terms of a nominal flexural strength Mn varying as follows: Mn = Mp = ZxFy (2-13) for bending about the major axis if Lb ≤ Lm Mn = CbMr = CbSx(Fy − 10 ksi) ≤ Mp (2-19) for bending about the major axis if Lb = Lr. For bending about the major axis if Lm < Lb < Lr, linear interpolation is used Lb − Lp Mn = Cb Mp − (Mp − Mr) ≤ Mp Lr − Lp (F1-2) Mn = Mcr ≤ CbMr and Mp (2-20) If Lb > Lr, AMERICAN INSTITUTE OF STEEL CONSTRUCTION F. BEAMS AND OTHER FLEXURAL MEMBERS 2 - 31 The determination of Mn for a given Lb can best be done graphically, as illustrated in Figure F-2. The required parameters for each W shape are given in the beam design table in Part 4 of the LRFD Manual, an excerpt of which is shown herein as Table F-2. If Cb = 1.0, the coordinates for constructing the graph are (Lp, Mp), and (Lr, Mr). For Cb > 1.0, the key coordinates are (Lp, Cb Mp) and (Lr, Cb Mr). Note that Mn cannot exceed the plastic moment Mp. Lm, then, can be derived graphically as the upper limit of Lb for which Mn = Mp. If Lb > Lr, the beam graphs in Part 4 of the LRFD Manual can be used to determine Mcr. EXAMPLE F-1 Select the required W shape for a 30-foot simple floor beam with full lateral support carrying a dead load (including its own weight) of 1.5 kips per linear foot and a live load of 3.0 kips per linear foot. Assume 50 ksi steel and: Given: a. There is no member depth limitation b. The deepest member is a W18 The governing load combination in Section A is A4-2: Solution: 1.2D + 1.6L + 0.5(Lr or S or R) = 1.2 × 1.5 klf + 1.6 × 3.0 klf + 0 = 6.6 klf Required Mu = wL2 6.6 klf × (30.0 ft)2 = = 743 kip-ft 8 8 Flexural design strength φbMn ≥ 743 kip-ft CbMp Mn for Cb=1.0 Mn for Cb>1.0 Mp Mn Mcr for Cb=1.0 CbMr Mcr for Cb >1.0 Mr Lm Lp Lr Lb Fig. F-2. Determination of nominal flexural strength M n. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 32 ESSENTIALS OF LRFD Table F-2. Excerpt from Load Factor Design Selection Table (LRFD Manual, Part 4) For Fy = 50 ksi Zx (in.3) Shape φbMp (kip-ft) φbMr (kip-ft) Lp (ft) Lr (ft) 224 221 212 211 W24× ×84 W21×93 W14×120 W18×97 840 829 795 791 588 576 570 564 6.9 6.5 13.2 9.4 18.6 19.4 46.2 27.4 200 198 196 192 186 186 W24× ×76 W16×100 W21×83 W14×109 W18×86 W12×120 750 743 735 720 698 698 528 525 513 519 498 489 6.8 8.9 6.5 13.2 9.3 11.1 18.0 29.3 18.5 43.2 26.1 50.0 177 175 W24× ×68 W16×89 664 656 462 465 6.6 8.8 17.4 27.3 Note: Flexural design strength φbMn = φbMp, as tabulated is valid for Lb ≤ Lm. If Cb = 1.0, Lm = Lp; otherwise, Lm > Lp. φb = 0.90. a. In Table F-2, the most economical beams are in boldface print. Of the boldfaced beams, the lightest one with φbMn = φbMp ≥ 743 kip-ft is a W24×76 b. By inspection of Table F-2, the lightest W18 with φbMn = φbMp ≥ 743 kip-ft is a W18×97. EXAMPLE F-2 Given: Determine the flexural design strength of a 30-ft long simply supported W24×76 girder (of 50 ksi steel) with a concentrated load and lateral support, both at midspan. Solution: From Table F-1, Cb = 1.67 Lb = 30.0 ft/2 = 15.0 ft From Equation F1-2: Lb − Lp φbMn = Cb φbMp − (φbMp − φbMr) ≤ φbMp Lr − Lp From Table F-2 for a W24×76: φbMp = 750 kip-ft φbMr = 528 kip-ft Lp = 6.8 ft AMERICAN INSTITUTE OF STEEL CONSTRUCTION F. BEAMS AND OTHER FLEXURAL MEMBERS Lr 2 - 33 = 18.0 ft 15.0 ft − 6.8 ft φbMn = 1.67 750 kip−ft − (750 − 528) kip−ft × 18.0 ft − 6.8 ft = 981 kip-ft > 750 kip-ft Use φb Mn = φb Mp = 750 kip-ft In this case, even though the unbraced length Lb > Lp, the design flexural strength is φbMp because Cb > 1.0. Design for Shear The design shear strength is defined by the equations in Section F2 of the LRFD Specification. Shear in wide-flange and channel sections is resisted by the area of the web (Aw), which is taken as the overall depth d times the web thickness tw. For webs of 50 ksi steel without transverse stiffeners, the design shear strength φvVn, where φv = 0.90, and the nominal shear strength Vn are as follows: For h ≤ 59 (including all rolled W and channel shapes), tw Vn = 30.0 ksi × dtw φvVn= 27.0 ksi × dtw For 59 < (2-21) h ≤ 74, tw = 30.0 ksi × dtw × 59 h / tw φvVn = 27.0 ksi × dtw × 59 h / tw Vn For (2-22) h > 74, tw = 132,000 dtw ksi (h / tw)2 φvVn = 118,000 dtw ksi (h / tw)2 Vn h (2-23) tw d tw h Fig. F-3. Definitions of d, h, and tw for W and channel shapes. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 34 ESSENTIALS OF LRFD Shear strength is governed by the following limit states; Equation 2-21 by yielding of the web; Equation 2-22, by inelastic buckling of the web; and Equation 2-23 by elastic buckling. EXAMPLE F-3 Given: Solution: Check the adequacy of a W30×99 beam of 50 ksi steel to carry a load resulting in maximum shears of 100 kips due to dead load and 150 kips due to live load. Required shear strength = Vu = 1.2D + 1.6L = 1.2 × 100 kips + 1.6 × 150 kips = 360 kips Design shear strength = φvVn = 27.0 ksi × dtw = 27.0 ksi × 29.65 in. × 0.520 in. = 416 kips > 360 kips required o.k. Web Openings See Section F4 of the LRFD Specification and Commentary, and the references given in the Commentary. H. MEMBERS UNDER COMBINED FORCES AND TORSION Symmetric Members Subject to Bending and Axial Tension The interaction of flexure and tension in singly and doubly symmetric shapes is governed by Equations H1-1a and H1-1b, as follows: For For Pu ≥ 0.2, φPn Pu < 0.2, φPn Muy Pu 8 Mux + + ≤ 1.0 9 φPn φb Mnx φb Mny (H1-1a) Mux Muy Pu + + ≤ 1.0 2φPn φb Mnx φb Mny (H1-1b) where = required tensile strength; i.e., the total factored tensile force, kips = design tensile strength, φtPn, kips = resistance factor for tension, φt = 0.90 = nominal tensile strength as defined in Chapter D of the LRFD Specification, kips Mu = required flexural strength; i.e., the moment due to the total factored load, kipin. or kip-ft. (Subscript x or y denotes the axis about which bending occurs.) φb Mn = design flexural strength, kip-in. or kip-ft = resistance factor for flexure = 0.90 φb Pu φPn φ Pn AMERICAN INSTITUTE OF STEEL CONSTRUCTION H. MEMBERS UNDER COMBINED FORCES AND TORSION Mn 2 - 35 = nominal flexural strength determined in accordance with the appropriate equations in Chapter F of the LRFD Specification, kip-in. or kip-ft Interaction Equations H1-1a and H1-1b cover the general case of biaxial bending combined with axial force. They are also valid for uniaxial bending (i.e., when Mux = 0 or Muy = 0). In this case, they reduce to the form plotted in Figure H-1. Pure biaxial bending (with Pu = 0) is covered by Equation H1-1b. EXAMPLE H-1 Given: Check the adequacy of a W10×22 tension member of 50 ksi steel to carry loads resulting in the following factored load combination: Pu = 55 kips Muy = 20 kip-ft Mux = 0 Solution: From Section D above for 50 ksi steel, φPn = φtPn = 45.0 ksi × Ag = 45.0 ksi × 6.49 in.2 = 292 kips Pu 55 kips = = 0.188 < 0.20; therefore, Equation H1-1b governs. φPn 292 kips For bending about the y axis only, Equation H1-1b becomes: Pu Muy + ≤ 1.0 2φPn φb Mny φ Pn Pu Pu φ Pn + 8 Mu = 9 φb M n 0.2 φPn ( ) 1 Pu 2 φPn Mu + Mu =1 φb M n 0.9 φb M n φb M n Fig. H-1. Interaction Equations H1-1a and H1-1b modified for axial load combined with bending about one axis only. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 36 ESSENTIALS OF LRFD From Section F above for 50 ksi steel, Mn = Mp = ZyFy = 50 ksi × Zy for minor-axis bending (regardless of the unbraced length). φbMny = 0.90 × 50 ksi × Zy = 45.0 ksi × Zy = 45.0 ksi × 6.10 in.3 12 in./ft = 22.9 kip-ft for a W10×22 member 20 kip−ft Pu Muy 0.188 + = + = 0.094 + 0.873 2 22.9 kip−ft 2φPn φb Mny = 0.967 < 1.0 o.k. EXAMPLE H-2 Given: Check the same tension member, a W10×22 in 50 ksi steel, 4.0 ft long, subjected to the following combination of factored loads: Pu = 140 kips Mux = 55 kip-ft Muy = 0 Cb = 1.0 Solution: Again, φPn = 292 kips Pu φPn = 140 kips = 0.479 > 0.20; Equation H1-1a governs. 292 kips For bending about the x axis only, Equation H1-1a becomes Pu 8 Mux + ≤ 1.0 φPn 9 φb Mnx From Section F above for 50 ksi steel, Mn = Mp = ZxFy = 50 ksi × Zx for major-axis bending if Lb ≤ Lp for (Cb = 1.0). Assume unbraced length, Lb = 4.0 ft. By Equation 2-15 in Section F, Lp = 42.4ry for 50 ksi steel. For a W10×22, ry = 1.33 in., Zx = 26.0 in.3 Lp = 42.4 × 1.33 in. = 4.7 ft 12 in./ft Lb = 4.0 ft < Lp = 4.7 ft Then Mnx = 50 ksi × Zx φb Mnx 0.90 × 50 ksi × 26.0 in.3 12 in./ft = 97.5 kip-ft for a W10×22 member = AMERICAN INSTITUTE OF STEEL CONSTRUCTION H. MEMBERS UNDER COMBINED FORCES AND TORSION 2 - 37 55 kip−ft Pu 8Mux 8 + = 0.479 + × 9 97.5 kip−ft φPn 9φb Mnx = 0.479 + 0.501 = 0.980 < 1.0 o.k. Symmetric Members Subject to Bending and Axial Compression The interaction of compression and flexure in beam-columns with singly and doubly symmetric cross sections is governed by Equations H1-1a and H1-1b, repeated here for convenience: For For Pu ≥ 0.2, φPn Pu < 0.2, φPn Muy Pu 8 Mux + + ≤ 1.0 φPn 9 φb Mnx φb Mny (H1-1a) Mux Muy Pu + + ≤ 1.0 2φPn φb Mnx φb Mny (H1-1b) The definitions of the ter ms in the for mulas, which differ in some cases from those given above, are as follows: = required compressive strength; i.e., the total factored compressive force, kips = design compressive strength, φc Pn, kips = resistance factor for compression, φc = 0.85 = nominal compressive strength as defined in Chapter E of the LRFD Specification, kips Mu = required flexural strength including second-order effects, kip-in. or kip-ft φb Mn = design flexural strength, kip-in. or kip-ft = resistance factor for flexure = 0.90 φb Mn = nominal flexural strength from Chapter F of the LRFD Specification, kip-in. or kip-ft Pu φPn φ Pn The second-order analysis required for Mu involves the determination of the additional moment due to the action of the axial compressive forces on a deformed structure. In lieu of a second-order analysis, the simplified method given in Chapter C of the LRFD Specification (and in Section C above) may be used. However, in applying the simplified method, the additional moments obtained for beam-columns must also be distributed to connected members and connections (to satisfy equilibrium). Bending and Axial Compression—Preliminary Design The design of a beam-column is a trial and error process which can become tedious, particularly with the repeated solution of Interaction Equation H1-1a or H1-1b. A rapid method for the selection of a trial section is given in this LRFD Manual, Part 3, under the heading Combined Axial and Bending Loading (Interaction). As in earlier editions of the AISC Manual, the Interaction Equations are approximated by an equation which converts bending moments to equivalent axial loads: Pu eq = Pu + Muxm + Muymu AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 38 ESSENTIALS OF LRFD where = equivalent axial load to be checked against the column load table, kips Pu eq Pu, Mux, Muy are defined in the Interaction Equations for compression and bending m, u are factors tabulated in this LRFD Manual, Part 3 As soon as a satisfactory trial section has been found (i.e., one for which Pu eq ≤ tabulated φc Pn), a final verification should be made with the appropriate Interaction Equation, H1-1a or H1-1b EXAMPLE H-3 Given: Check the adequacy of a W14×176 beam-column, 14.0 ft in height floor-to-floor, in a braced symmetrical frame in 50 ksi steel. The member is subjected to the following factored forces due to symmetrical gravity loads: Pu = 1,400 kips; Mx = 200 kip-ft, My = 70 kip-ft (reverse curvature bending with equal end moments about both axes); and no loads along the member. Solution: For a braced frame, K = 1.0 KxLx = KyLy = 14.0 ft For a W14×176: A Zx Zy rx ry Kl / rx Kl / ry = 51.8 in.2 = 320 in.3 = 163 in.3 = 6.43 in. = 4.02 in. = (14.0 ft × 12 in./ft) / 6.43 in. = 26.1 = (14.0 ft × 12 in./ft) / 4.02 in. = 41.8 From Table E-1, above, φcFcr = 37.4 ksi for Kl / r = 41.8 in 50 ksi steel. φcPn = (φc Fcr) A = 37.4 ksi × 51.8 in.2 = 1,940 kips Pu 1,400 kips = = 0.72 > 0.2, Interaction Equation H1-1a φc Pn 1,940 kips governs. Since For a braced frame, Mlt = 0. From Equation C1-1: Mux = B1x Mntx , where Mntx = 200 kip-ft; and Muy = B1y Mnty , where Mnty = 70 kip-ft From Equations C1-2 and C1-3: B1 = Cm > 1.0 (1 − Pu / Pe1 ) where in this case (a braced frame with no transverse loading), Cm = 0.6 − 0.4(M1 / M2) AMERICAN INSTITUTE OF STEEL CONSTRUCTION H. MEMBERS UNDER COMBINED FORCES AND TORSION 2 - 39 For reverse curvature bending and equal end moments: M1 / M2 = +1.0 = 0.6 − 0.4(1.0) = 0.2 Cm From Table C-1: Pe1x = 420 ksi × Ag = 420 ksi × 51.8 in.2 = 21,756 kips From Table C-1: Pe1y = 164 ksi × Ag = 164 ksi × 51.8 in.2 = 8,495 kips B1x = Cmx 0.2 = = 0.2 (1 − Pu / Pe1x ) (1 − 1,400 kips / 21,756 kips) Use B1x = 1.0, per Equation C1-2. B1y = Cmy 0.2 = = 0.2 (1 − Pu / Pe1y ) 1 − 1,400 kips / 8,495 kips) Use B1y = 1.0, per Equation C1-2. Mux = 1.0 × 200 kip-ft Muy = 1.0 × 70 kip-ft From Equation 2-15 for 50 ksi steel, Lp = 42.4ry = 42.4 × 4.02 in. = 14.2 ft 12 in./ft Since Lb = 14.0 ft < Lp = 14.2 ft, Mnx = Mpx = ZxFy Mny = Mpy = Zy Fy φbFy = 0.90 × 50 ksi = 45.0 ksi φb Mnx = φbFy Zx = 45.0 ksi × 320 in.3 = 1,200 kip-ft 12 in./ft φb Mny = φbFy Zy = 45.0 ksi × 163 in.3 = 611 kip-ft 12 in./ft By Interaction Equation H1-1a 70 kip−ft 8 1,400 kips 8 200 kip−ft + + = 0.72 + (0.17+0.11) 1,940 kips 9 1,200 kip−ft 611 kip−ft 9 = 0.72 + 0.25 = 0.97 < 1.0 W14×176 is o.k. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 40 ESSENTIALS OF LRFD EXAMPLE H-4 Given: Check the adequacy of a W14×176 beam-column (Fy = 50 ksi) in an unbraced symmetrical frame subjected to the following factored forces: Pu Mux My KxLx = 1,400 kips (due to gravity plus wind) = 300 kip-ft (due to wind only) =0 = Ky Ly = 14.0 ft Drift index, ∆oh / L ≤ 0.0025 (or 1⁄400) ΣPu = 24,000 kips ΣH = 800 kips Solution: As in Example H-3, for a W14×176 with KL = 14.0 ft, φcPn = 1,940 kips. Pu 1,400 kips = = 0.72 > 0.2, Interaction Equation H1-1a φcPn 1,940 kips governs. Since Because Mntx = Mnty = Mlty = 0 and only Mltx ≠ 0, Mux = B2Mltx and Muy = 0. Mltx = 300 kip-ft According to Equation C1-4, B2 = 1 1 = = 1.08 ΣPu ∆oh 1 − 24,000 kips (0.0025) 1− 800 kips ΣH L Mux = 1.08 × 300 kip-ft = 324 kip-ft Because Lb < Lp = 14.2 ft, Mnx = Mpx = ZxFy; φb Mnx = 1,200 kip-ft as in Example H-3. By Interaction Equation H1-1a: 8 1,400 kips 8 324 kip−ft + = 0.72 + 0.27 = 0.96 < 1.0 9 1,940 kips 9 1,200 kip−ft W14×176 is o.k. Torsion and Combined Torsion, Flexure, and/or Axial Force Criteria for members subjected to torsion and torsion combined with other forces are given in Section H2 of the LRFD Specification. They require the calculation of normal and shear stresses by elastic analysis of the member under the factored loads. The AISC book Torsional Analysis of Steel Members (American Institute of Steel Construction, 1983) provides design aids and examples for the determination of torsional stresses. Extensive coverage is given there to wide-flange shapes (W, S, and HP), channels (C and MC) and Z shapes. For these members, the charts and formulas simplify considerably AMERICAN INSTITUTE OF STEEL CONSTRUCTION H. MEMBERS UNDER COMBINED FORCES AND TORSION 2 - 41 the calculation of torsional rotations, torsional normal and shear stresses, and the combination of torsional with flexural stresses. In the LRFD Specification, fun = the total normal stress under factored load (ksi) from torsion and all other causes fuv = the total shear stress under factored load (ksi) from torsion and all other causes The criteria are as follows: a. For the limit state of yielding under normal stress fun ≤ φFy, where φ = 0.90 (H2-1) fun ≤ 0.90 × 50 ksi = 45.0 ksi (2-24) For 50 ksi steel, b. For the limit state of yielding under shear stress, fuv ≤ 0.60φFy, where φ = 0.90 (H2-2) fuv ≤ 0.60 × 0.90 × 50 ksi = 27.0 ksi (2-25) For 50 ksi steel, c. For the limit state of buckling, fun ≤ φcFcr or fuv ≤ φcFcr, as applicable, where φc = 0.85 (H2-3) For 50 ksi steel, values of φcFcr are given in Table E-1, in Section E above. Torsion will accompany flexure when the line of action of a lateral load does not pass through the shear center. For wide flange and other doubly symmetric shapes, the shear center is located at the centroid. Singly symmetric shapes have their shear centers on the axis of symmetry, but not at the centroid. (The location of the shear center of channel sections is given in the Properties tables in Part 1 of this LRFD Manual.) Open sections, such as wide-flange and channel, are very inefficient in resisting torsion; i.e., torsional rotations can be large and torsional stresses relatively high. It is best to avoid torsion by detailing the loads and reactions to act through the shear center of the member. In the case of spandrel members supporting building facade elements, this may not be possible. Heavy exterior masonry walls and stone panels can impose severe torsional loads on spandrel beams. The following are suggestions for eliminating or reducing this kind of torsion: 1. Wall elements may span between floors. The moment due to the eccentricity of the wall with respect to the edge beams can be resisted by lateral forces acting through the floor diaphragms. Torsion would not be imposed on the spandrel beams. 2. If facade panels extend only a partial story height below the floor line, the use of diagonal steel “kickers” may be possible. These light members would provide lateral support to the wall panels. Torsion from the panels would be resisted by forces originating from structural elements other than the spandrel beams. 3. Even if torsion must be resisted by the edge members, providing intermediate torsional supports can be helpful. Reducing the span over which the torsion acts will reduce torsional stresses. If there are secondary beams framing into a spandrel girder, AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 - 42 ESSENTIALS OF LRFD the beams can act as intermediate torsional supports for the girder. By adding top and bottom moment plates to the connections of the beams with the girder, the bending resistances of the beams can be mobilized to provide the required torsional reactions along the girder. 4. Closed sections provide considerably better resistance to torsion than open sections; torsional rotations and stresses are much lower for box beams than for wide-flange members. For members subjected to torsion, it may be advisable to use box sections or to simulate a box shape by welding one or two side plates to a W shape. I. COMPOSITE MEMBERS Chapter I of the LRFD Specification covers composite members. Included are concreteencased and concrete-filled steel columns and beam columns, as well as steel beams interactive with the concrete slabs they support and steel beams encased in concrete. Unlike traditional structural steel design, which considers only the strength of the steel, composite design assumes that the steel and concrete work together in resisting loads. This results in more economical designs, as the quantity of steel can be reduced. Compression Members Composite columns (concrete-encased and concrete-filled) must satisfy the limitations in Section I2 of the LRFD Specification. The design strength of axially loaded composite columns is φcPn, where φc = 0.85 and the nominal axial compressive strength is determined from Equations E2-1 through E2-4 above with the following modifications: As replaces Ag, rm replaces r, Fmy replaces Fy, and Em replaces E. Fmy = Fy + c1Fyr Ar Ac + c2 fc′ As As (I2-1) Ac As (I2-2) Em = E + c3Ec rm = radius of gyraton of the steel shape, pipe, or tubing, in. (For steel shapes it shall not be less than 0.3 times the overall thickness of the composite cross section in the plane of buckling.) where Ec = w1.5√ fc′ and Fmy Fy Fyr fc′ Em E Ec w Ac Ar = modified yield stress for the design of composite columns, ksi = specified minimum yield stress of the structural steel shape, ksi = specified minimum yield stress of the longitudinal reinforcing bars, ksi = specified compressive strength of the concrete, ksi = modified modulus of elasticity for the design of composite columns, ksi = modulus of elasticity of steel = 29,000 ksi = modulus of elasticity of concrete, ksi = unit weight of concrete, lb/ft3 = cross-sectional area of concrete, in.2 = cross-sectional area of longitudinal reinforcing bars, in.2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION I. COMPOSITE MEMBERS 2 - 43 As = cross-sectional area of structural steel, in.2 c1, c2, c3 = numerical coefficients. For concrete-filled pipe and tubing: c1 = 1.0, c2 = 0.85, and c3 = 0.4; for concrete-encased shapes c1 = 0.7, c2 = 0.6, and c3 = 0.2 Composite columns can be designed by using the Composite Columns Tables in Part 5 of this LRFD Manual (or the numerous tables in AISC Steel Design Guide No. 6: Load and Resistance Factor Design of W-Shapes Encased in Concrete) for the cross sections tabulated therein, or the above equations for all cross sections. Flexural Members The most common case of a composite flexural member is a steel beam interacting with a concrete slab by means of stud or channel shear connectors. The slab can be a solid reinforced concrete slab, but is usually concrete on a corrugated metal deck. The effective width of concrete slab acting compositely with a steel beam is determined by three criteria. On either side of the beam centerline, the effective width of concrete slab cannot exceed: a. one-eighth of the beam span, b. one-half the distance to the centerline of the adjacent beam, or c. the distance to the edge of the slab. The following pertains to rolled W shapes in regions of positive moment, the predominant use of composite beam design. Other cases (e.g., plate girders and negative moments) are covered in Chapter I of the LRFD Specification. The horizontal shear force between the steel beam and concrete slab, to be transferred by the shear connectors between the points of zero and maximum positive moments, is the minimum of: a. 0.85fc′Ac (the maximum possible compressive force in the concrete), b. AsFy (the maximum possible tensile force in the steel), and c. ΣQn (the strength of the shear connectors). For W shapes, the design flexural strength φb Mn, with φb = 0.85, is based on: a. a uniform compressive stress of 0.85fc′ and zero tensile strength in the concrete b. a uniform steel stress of Fy in the tension area and compression area (if any) of the steel section, and c. equilibrium; i.e., the sum of the tensile forces equals the sum of the compressive forces. The above is valid for shored and unshored construction. However, in the latter case, it is also necessary to check the bare steel beam for adequacy to support the wet concrete and other construction loads (properly factored). The number of shear connectors required between a point of maximum moment and the nearest location of zero moment is n= Vh Qn AMERICAN INSTITUTE OF STEEL CONSTRUCTION (2-26) 2 - 44 ESSENTIALS OF LRFD where Vh = the total horizontal shear force to be transferred, kips = the minimum of 0.85fc′Ac, AsFy, and ΣQn Qn = the shear strength of one connector The nominal strength of a single stud shear connector in a solid concrete slab is fc′Ec ≤ AscFu Qn = 0.5Asc√ (I5-1) where Asc = cross-sectional area of a stud shear connector, in.2 fc′ = specified compressive strength of concrete, ksi Fu = minimum specified tensile strength of a stud shear connector, ksi Ec = modulus of elasticity of concrete, ksi Special provisions for shear connectors embedded in concrete on formed steel deck are given in Section I3.5 of the LRFD Specification. Among them are reduction factors (given by Equation I3-1 and I3-2) to be applied to the middle term of Equation I5-1 above. The design of composite beams and the selection of shear connectors can be accomplished with the tables in Part 5 of this LRFD Manual. The design shear strength for composite beams is determined by the shear strength of the steel web, as for noncomposite beams; see Section F above. Combined Compression and Flexure Composite beam-columns are covered in Section I4 of the LRFD Specification. COMPUTER SOFTWARE ELRFD* (Electronic LRFD Specification) ELRFD is a sophisticated computer program for interactively checking structural steel building components for compliance with the AISC Specification. All provisions of Chapters A through H and K of the LRFD Specification are included in the knowledge base of ELRFD. The ELRFD program checks whether the member satisfies all limit states and limitation requirements set by the LRFD Specification and reports which sections of the specification are satisfied or violated. One can review in detail the formulas and rules used in the evaluation and interactively assess any mathematical expression appearing on the screen. Design data produced by the software can be viewed and/or printed in report form for permanent record. ELRFD has a fully interactive Windows-based user interface. *ELRFD is copyright AISC and Visual Edge Software, Ltd. AMERICAN INSTITUTE OF STEEL CONSTRUCTION REFERENCES 2 - 45 REFERENCES American Institute of Steel Construction, Inc., 1983, Torsional Analysis of Steel Members, AISC, Chicago, IL. American Society of Civil Engineers, 1988, Minimum Design Loads for Buildings and Other Structures, ASCE 7-88, New York, NY. Galambos, T. V., et al., 1978, Eight LRFD Papers, Journal of the Structural Division, ASCE, Vol. 104, No. ST9 (September 1978), New York. Geschwindner, L., 1993, “The ‘Leaning’ Column in ASD and LRFD,” Proceedings of the 1993 National Steel Construction Conference, AISC, Chicago. U.S. Department of Commerce, 1980, Development of a Probability Based Criterion for American National Standard A58, NBS (National Bureau of Standards) Special Publication 577, Washington, DC. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3-1 PART 3 COLUMN DESIGN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 DESIGN STRENGTH OF COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 W and HP Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Steel Pipe and Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35 Double Angles and WT Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53 Single-Angle Struts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-104 COLUMN BASE PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-117 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3-2 COLUMN DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION OVERVIEW 3-3 OVERVIEW Column tables with design compressive strengths, in kips, are located as follows: W shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 HP shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Steel pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36 Structural tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39 Double angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57 WT shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 Single angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-104 Additional information related to column design is provided as follows: Effective length factor (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Alignment charts, Figure 3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Stiffness reduction factors (SRF), Table 3-1 . . . . . . . . . . . . . . . . . . . . . . . . 3-7 “Leaning” columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Combined axial and bending loading (Interaction) . . . . . . . . . . . . . . . . . . . . 3-11 Preliminary design of beam-columns, Table 3-2 . . . . . . . . . . . . . . . . . . . . 3-12 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3-4 COLUMN DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3-5 DESIGN STRENGTH OF COLUMNS General Notes Column Load Tables Column Load Tables are presented for W, WT, and HP shapes, pipe, structural tubing, double angles, and single angles. Tabular loads are computed in accordance with the AISC LRFD Specification, Sections E2 and E3 and Appendix E3, for axially loaded members having effective unsupported lengths indicated to the left of each table. The effective length KL is the actual unbraced length, in feet, multiplied by the factor K, which depends on the rotational restraint at the ends of the unbraced length and the means available to resist lateral movements. Table C-C2.1 in the Commentary on the LRFD Specification is a guide in selecting the K-factor. Interpolation between the idealized cases is a matter of engineering judgment. Once sections have been selected for the several framing members, the alignment charts in Figure 3-1 [reproduced from the Structural Stability Research Council Guide (Galambos, 1988) here and in Figure C-C2.2 of the Commentary on the LRFD Specification] afford a means to obtain more precise values for K, if desired. For column behavior in the inelastic range, the values of G as defined in Figure 3-1 may be reduced by the values given in Table 3-1, as illustrated in Example 3-3. Tables for W, WT, and HP shapes and for double and single angles are provided for 36 ksi and 50 ksi yield stress steels. Tables for steel pipe are provided for 36 ksi, and for structural tubing for 46 ksi yield stress steel. All design strengths are tabulated in kips. Values are not shown when Kl / r exceeds 200. In all tables, except double angle and WT tables, design strengths are given for effective lengths with respect to the minor axis calculated by LRFD Specification Section E2. When the minor axis is braced at closer intervals than the major axis, the strength of the column must be investigated with reference to both major (X-X) and minor (Y-Y) axes. The ratio rx / ry included in these tables provides a convenient method for investigating the strength of a column with respect to its major axis. To obtain an effective length with respect to the minor axis equivalent in load carrying capacity to the actual effective length about the major axis, divide the major axis effective length by rx / ry ratio. Compare this length with the actual effective length about the minor axis. The longer of the two lengths will control the design, and the design strength may be taken from the table opposite the longer of the two effective lengths with respect to the minor axis. The double angle and WT tables show values for effective lengths about both axes. Properties useful to the designer are listed at the bottom of the column design strength tables. Additional notes relating specifically to the W and HP shape tables, the steel pipe and structural tubing tables, and the double and single angle tables precede each of these groups of tables. EXAMPLE 3-1 Given: Design the lightest W shape of Fy = 50 ksi steel to support a factored concentric load of 1,400 kips. The effective length with respect to its minor axis is 16 feet. The effective length with respect to its major axis is 31 feet. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3-6 COLUMN DESIGN Solution: Enter the appropriate Column Load Table for W shapes at effective length of KL = 16 ft. Since W14 columns are generally most efficient, begin with the W14 table and work downward, weightwise. Select W14×145, good for 1,530 kips > 1,400 kips rx / ry = 1.59. Equivalent L = 31 ft / 1.59 = 19.5 ft > 16 ft Equivalent effective length for X-X axis controls. GA ∞ 50.0 K GB ∞ 1.0 50.0 10.0 10.0 5.0 3.0 5.0 0.9 5.0 100.0 50.0 30.0 20.0 4.0 20.0 10.0 9.0 8.0 7.0 3.0 2.0 0.5 0.5 0.4 0.4 0.3 0.3 pl am 2 0.6 0.7 6.0 5.0 10.0 9.0 8.0 7.0 -3 e3 Ex 3- 0.8 0.7 ple 1.0 0.8 0.7 am 1.0 Ex 0.8 0.2 GB ∞ 20.0 10.0 100.0 50.0 30.0 3.0 2.0 0.6 K GA ∞ 6.0 5.0 2.2 4.0 4.0 2.0 3.0 3.0 1.75 2.0 2.36 2.0 1.5 0.6 0.2 1.0 0.1 1.0 0.1 0.26 0 0.5 0 SIDESWAY INHIBITED 1.0 0 0 SIDESWAY UNINHIBITED Fig. 3-1. Alignment charts for effective length of columns in continuous frames. The subscripts A and B refer to the joints at the two ends of the column section being considered. G is defined as Σ(Ic / Lc) G= Σ(Ig / Lg) in which Σ indicates a summation of all members rigidly connected to that joint and lying on the plane in which buckling of the column is being considered. Ic is the moment of inertia and Lc the unsupported length of a column section, and Ig is the moment of inertia and Lg is the unsupported length of a girder or other restraining member. Ic and Ig are taken about axes perpendicular to the plane of buckling being considered. For column ends supported but not rigidly connected to a footing or foundation, G is theoretically infinity, but, unless actually designed a true friction free pin, may be taken as 10 for practical designs. If the column end is rigidly attached to a properly designed footing, G may be taken as 1.0. Smaller values may be used if justified by analysis. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3-7 Table 3-1. Stiffness Reduction Factors (SRF) for Columns Pu / A Fy Pu / A ksi 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 Fy ksi 36 ksi 50 ksi — — — — — — — — — — — — 0.05 0.14 0.22 0.30 0.03 0.09 0.16 0.21 0.27 0.33 0.38 0.44 0.49 0.53 0.58 0.63 0.67 0.71 0.75 0.79 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 36 ksi 50 ksi 0.38 0.45 0.52 0.58 0.65 0.70 0.76 0.81 0.85 0.89 0.92 0.95 0.97 0.99 1.00 ↓ 0.82 0.85 0.88 0.90 0.93 0.95 0.97 0.98 0.99 1.00 ↓ — indicates not applicable. Re-enter table for effective length of 19.5 ft to satisfy axial load of 1,400 kips, select W14×145. By interpolation, the column is good for 1,410 kips. Use W14×145 column EXAMPLE 3-2 Given: Design an 11-ft long W12 interior bay column to support a factored concentric axial roof load of 1,100 kips. The column is rigidly framed at the top by 30-ft long W30×116 girders connected to each flange. Column moment is zero due to the assumption of equal and offsetting moments in the girders. The column is braced normal to its web at top and base so that sidesway is inhibited in this plane. Use Fy = 50 ksi steel. Solution: a. Check Y-Y axis: Assume the column is pin-connected at the top and bottom with sidesway inhibited. From Table C-C2.1 in the Commentary for condition (d), K = 1.0: Effective length = 11 ft Enter Column Load Table: W12×106 good for 1,160 kips > 1,100 kips o.k. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3-8 COLUMN DESIGN b. Check X-X axis: 1. Preliminary selection: Assume sidesway uninhibited and pin-connected at base. From Table C-C2.1 for condition (f): K = 2.0 Approximate effective length relative to X-X axis: 2.0 × 11 = 22.0 ft From Properties section in tables, for W12 column: rx / ry ≈ 1.76 Equivalent effective length relative to the Y-Y axis: 22.0 1.76 ≈ 12.5 ft > 11.0 ft Therefore, effective length for X-X axis is critical. Enter Column Load Table with an effective length of 12.5 ft: W12×106 column, by interpolation, good for 1,115 kips > 1,100 kips o.k. 1. Final selection Try W12×106 Using Figure 3-1 (sidesway uninhibited): Ix for W12×106 column = 933 in.4 Ix for W30×116 girder = 4,930 in.4 G (base) = 10 (assume supported but not rigidly connected) G (top) = 933 / 11 = 0.258, say 0.26 (4,930 × 2) / 30 Connect points GA = 10 and GB = 0.26, read K = 1.75 For W12×106, rx / ry = 1.76 Actual effective length relative to Y-Y axis: 1.75 × 11.0 = 10.9 ft < 11.0 ft 1.76 Since the effective length for Y-Y axis is not critical, Use W12×106 column AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3-9 EXAMPLE 3-3 Given: Using the alignment chart, Figure 3-1 (sidesway uninhibited) and Table 3-1 (Stiffness Reduction Factors), design columns for the bent shown, by the inelastic K-factor procedure. Let Fy = 50 ksi. Assume continuous support in the transverse direction. Solution: The alignment charts in Figure 3-1 are applicable to elastic columns. By multiplying G-values times the stiffness reduction factor Et / E, the charts may be used for inelastic columns. Since Et / E ≈ Fcr, inelastic / Fcr, elastic, the relationship may be written as Ginelastic = (Fcr, inelastic / Fcr, elastic)Gelastic. By utilizing the calculated stress Pu / A a direct solution is possible, using the following steps: 1. For a known value of factored axial load, Pu = 1,100 kips, select a trial column size. Assume W12×120 A = 35.3 in.2, Ix = 1,070 in.4, rx = 5.51 in. 2. Calculate Pu / A: Pu / A = 1,100 kips / 35.3 in.2 = 31.2 ksi 3. From Table 3-1, determine the Stiffness Reduction Factor (SRF); SRF = 0.62. For values of Pu / A smaller than those with entries in Table 3-1, the column is elastic, and the reduction factor is 1.0. 4. Determine Gelastic: Gelastic (bottom) = 10 1,100 k 1,100 k W16x31 IX = 375 15′ 20′ Fig. 3-2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 10 COLUMN DESIGN Gelastic (top) = 1,070 / 15 = 3.80 375 / 20 5. Calculate Ginelastic = SRF × Gelastic: Ginelastic(top) = 0.62 × 3.80 = 2.36 6. Determine K from Figure 3-1 using Ginelastic For G (top) = 2.36 and G (bottom) = 10, Read from Figure 3-1, K = 2.2 7. KLx = 2.2 × 15 ft = 33.0 ft 8. Calculate equivalent of KLy: KLx 33.0 ft = = 18.75 ft 1.76 rx / ry 9. From the column tables (for 50 ksi steel): φc Pn = 1,030 kips < 1,100 kips req’d. n.g. Try a stronger column. 1. Try a W12×136 A = 39.9 in.2, Ix = 1,240 in.4, rx = 5.58 in. 2. Pu / A = 1,100 kips / 39.9 in.2 = 27.6 ksi 3. From Table 3-1: SRF = 0.77 4. Gelastic (top) = 1,240 / 15 = 4.41 375 / 20 5. Ginelastic(top) = 0.77 × 4.41 = 3.39 6. K = 2.3 7. KLx = 2.3 × 15 ft = 34.5 ft 8. Equivalent KLy: KLx 34.5 ft = = 19.5 ft 1.77 rx / ry 9. φc Pn = 1,135 kips > 1,100 kips req’d o.k. Use W12×136 “Leaning” Columns A “leaning” column is one which is considered pin-ended and does not participate in providing lateral stability to the structure. As a result, it relies on other parts of the structure for stability. The LRFD Specification in Section C2.2 requires that for unbraced frames, “the destabilizing effects of gravity-loaded columns whose simple connections AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 11 to the frame do not provide resistance to lateral loads shall be included in the design of the moment-frame columns.” Normal practice is to design leaning columns for their required strength with an effective length factor K = 1. To account for the effects of leaning columns on unbraced frames, one of the methods given in the Commentary on the LRFD Specification (Section C2) or in Geschwindner (1993) may be utilized. The simplest methods are: 1. The slightly conservative approach of adjusting the effective lengths of the rigidframe columns, Ki′ = √NKi where Ki′ = the modified effective length factor of a column Ki = the actual effective length factor of a column N = ratio of the factored gravity load supported by all columns in the given story to that supported by the columns in the rigid frame 2. The more conservative approach of providing sufficient design compressive strength in the rigid-frame columns of a story to enable them to support the total factored gravity load of the story at their actual effective lengths. Combined Axial and Bending Loading (Interaction) Loads given in the Column Tables are for concentrically loaded columns. For columns subjected to both axial and bending stress, see Chapters C and H of the LRFD Specification. The design of a beam-column is a trial and error process in which a trial section is checked for compliance with Equations H1-1a and H1-1b. A fast method for selecting an economical trial W section, using an equivalent axial load, is illustrated in the example problem, using Table 3-2 and the u values listed in the column properties at the bottom of the column load tables. The procedure is as follows: 1. With the known value of KL (effective length), select a first approximate value of m from Table 3-2. Let u equal 2. 2. Solve for Pu eq = Pu + Mux m + Muy mu where Pu Mux Muy m u = actual factored axial load, kips = factored bending moment about the strong axis, kip-ft = factored bending moment about the weak axis, kip-ft = factor taken from Table 3-2 = factor taken from column load table 3. From the appropriate Column Load Table, select a tentative section to support Pu eq. 4. Based on the section selected in Step 3, select a “subsequent approximate” value of m from Table 3-2 and a u value from the column load table. 5. With the values selected in Step 4, solve for Pu eq. 6. Repeat Steps 3 and 4 until the values of m and u stabilize. 7. Check section obtained in Step 6 per Equation H1-1a or H1-1b, as applicable. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 12 COLUMN DESIGN Table 3-2. Preliminary Beam-Column Design Fy = 36 ksi, Fy = 50 ksi Values of m Fy KL (ft) 36 ksi 10 12 14 16 18 50 ksi 20 22 and over 10 12 14 16 18 20 22 and over 1.8 1.7 1.6 1.4 1.3 1.2 1.4 1.7 1.8 2.0 1.8 1.5 1.4 1.1 1.4 1.5 1.7 1.7 1.5 1.3 1.0 1.1 1.3 1.5 1.5 1.4 1.3 0.9 1.0 1.2 1.3 1.4 1.3 1.2 0.8 0.9 1.1 1.2 1.3 1.2 1.2 1st Approximation All Shapes 2.0 1.9 1.8 1.7 1.6 1.5 1.3 1.9 Subsequent Approximation W4 W6 W8 W8 W10 W12 W14 3.1 3.2 2.8 2.5 2.1 1.7 1.5 2.3 2.7 2.5 2.3 2.0 1.7 1.5 1.7 2.1 2.1 2.2 1.9 1.6 1.4 1.4 1.7 1.8 2.0 1.8 1.5 1.4 1.1 1.4 1.5 1.8 1.7 1.5 1.3 1.0 1.2 1.3 1.6 1.6 1.4 1.3 0.8 1.0 1.1 1.4 1.4 1.3 1.2 2.4 2.8 2.5 2.4 2.0 1.7 1.5 1.8 2.2 2.2 2.2 1.9 1.6 1.4 This table is from a paper in AISC Engineering Journal by Uang, Wattar, and Leet (1990). EXAMPLE 3-4 Given: Design the following column: Pu = 400 kips Mntx = 250 kip-ft Mltx = 0 (braced frame) Mnty = 80 kip-ft Mlty = 0 (braced frame) KLx = KLy = 14 ft Lb = 14 ft Cm = 0.85 Fy = 50 ksi Solution: 1. For KL = 14 ft, from Table 3-2 select a first trial value of m = 1.7. Let u = 2 2. Pu eq = Pu + Mux m + Muy mu = 400 + 250 × 1.7 + 80 × 1.7 × 2 = 1,097 kips 3. From Column Load Tables select W14×109 (φc Pn = 1,170 kips) or W12×120 (φc Pn = 1,220 kips). 4. Select the W14 column, so the second trial value of m is 1.4. (Note: If a W14 column were required for architectural or other reasons, AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 13 the selection process could have started with m = 1.4). With m = 1.4 and u = 1.97 (for a W14×109) from Column Load Table, Pu eq = 400 + 250 × 1.4 + 80 × 1.4 × 1.97 = 971 kips 5. From Column Load Tables select W14×90 (φc Pn = 969 kips). 6. For W14×90, m = 1.4, u = 1.94. Repeat of Steps 3 and 4 not required. 7. Check W14×90 with the appropriate interaction formula. A = 26.5 in.2 ry = 3.70 in., Kl 14 × 12 = 45.4 = 3.70 ry rx = 6.14 in., Kl 14 × 12 = 27.4 = 6.14 rx Thesecond-or der moments,Mux and Muy, will be evaluated using the approximate method given in Section C1 of the LRFD Specification. Because Mltx = Mlty = 0 (braced frames in both directions), Specification Equation C1-1 reduces to Mu = B1Mnt, where B1 is a function of Pe1 (Equation C1-2). The values of Pe1 with respect to the x and y axes can be determined from LRFD Specification Table 8 as follows: Pex Pey = 382 × 26.5 = 10,123 kips = 139 × 26.5 = 3,684 kips B1x = 0.85 < 1.0. Use B1x = 1.0 1 − 400 / 10,123 B1y = 0.85 < 1.0. Use B1y = 1.0 1 − 400 / 3,684 = 1.0 × 250 = 250 kip-ft = 1.0 × 80 = 80 kip-ft 0.9 × 50 × 75.6 = 284 kip-ft φb Mny = φb Mpy = 12 Mux Muy From the beam selection table in Part 4 of this Manual: φb Mnx = 577 kip-ft for Lb < Lp = 15.0 ft Pu φcPn = 400 = 0.412 > 0.2. Therefore, Equation H1-1a applies. 969 400 8 250 80 + + = 0.412 + 0.636 = 1.05 < 1.0 n.g. 969 9 577 284 Use W14×99 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 14 COLUMN DESIGN Column Stiffening Values of Pwo, Pwi, Pwb, and Pfb, listed in the Properties Section of the Column Load Tables for W and HP shapes, are useful in determining if a column requires stiffening because of forces transmitted into it from the flanges or connecting flange plates of a rigid beam connection to the column flange. The parameters are defined as follows: Pwo Pwi Pwb Pfb = φ5Fyw tw k (kips), φ = 1.0 = φFyw tw (kips/in.), φ = 1.0 = φ4,100tw3 √ Fyw / h (kips), φ = 0.9 = φ6.25tf2Fyf (kips), φ = 0.9 Column stiffening or a heavier column* is required if Pbf, the factored force transmitted into the column web, exceeds any one of the following three resisting forces: Pwb Pfb Pwi tb + Pwo, where tb is the thickness of the beam flange delivering the concentrated force. For a complete explanation of these design parameters, see the section Column Stiffening in Part 10 (Volume II) of this LRFD Manual. *The designer should consider selecting a heavier column section to eliminate the need for stiffening. Although this will increase the material cost of the column, this heavier section may provide a more economical solution due to the reduction in labor cost associated with the elimination of stiffening. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 15 W and HP Shapes The design strengths in the tables that follow are tabulated for the effective lengths in feet KL (with respect to the minor axis), indicated at the left of each table. They are applicable to axially loaded members in accordance with Section E2 of the LRFD Specification. Two yield stresses are covered, 36 and 50 ksi. The heavy horizontal lines appearing within the tables indicate Kl / r = 200. No values are listed beyond Kl / r = 200. For discussion of effective length, range of l / r, strength about the major axis, combined axial and bending stress, and sample problems, see General Notes, above. Properties and factors are listed at the bottom of the tables for checking strength about the strong axis, combined loading conditions, and column stiffener requirements. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 16 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W14 Wt./ft 808 Effective length KL (ft) with respect to least radius of gyration ry Fy 730 665 605 550 36 50 36 50 36 50 36 50 36 50 0 7250 10100 6580 9140 6000 8330 5450 7570 4960 6890 11 12 13 14 15 5610 5480 5350 5230 5110 7440 7240 7040 6850 6660 6310 6260 6210 6150 6090 8620 8530 8430 8320 8200 5750 5700 5650 5590 5540 7850 7760 7660 7560 7450 5210 5170 5120 5070 5020 7110 7030 6940 6850 6750 4740 4700 4650 4600 4560 6460 6390 6300 6220 6120 16 17 18 19 20 4990 4870 4760 4650 4540 6480 6310 6130 5970 5810 6020 5960 5880 5810 5730 8080 7960 7820 7690 7550 5480 5410 5350 5280 5200 7340 7220 7100 6970 6840 4960 4900 4840 4770 4700 6640 6530 6420 6300 6170 4500 4450 4390 4330 4260 6020 5920 5810 5700 5590 22 24 26 28 30 4340 4140 3950 3770 3600 5490 5200 4920 4660 4410 5570 5390 5210 5020 4820 7250 6940 6610 6280 5940 5050 4890 4720 4540 4360 6560 6270 5970 5660 5340 4560 4410 4250 4090 3920 5910 5640 5360 5080 4790 4130 3990 3840 3690 3530 5350 5100 4840 4570 4300 32 34 36 38 40 3430 3280 3130 2980 2850 4170 3950 3740 3540 3350 4620 4420 4210 4000 3790 5600 5250 4910 4580 4250 4170 3980 3790 3590 3400 5030 4710 4400 4090 3780 3740 3570 3390 3210 3030 4490 4200 3910 3630 3350 3370 3210 3050 2880 2720 4030 3760 3500 3240 2990 42 44 46 48 50 2720 2590 2470 2360 2250 3170 3000 3860 3540 3260 3580 3380 3170 2970 2780 3930 3620 3310 3040 2800 3210 3020 2830 2650 2470 3490 3200 2930 2690 2480 2860 2680 2510 2340 2180 3080 2820 2580 2370 2180 2550 2390 2240 2080 1940 2740 2500 2290 2100 1940 2.03 2.03 2.03 3910 5430 3070 135 187 111 103000 122000 56400 5310 7370 4880 20.1 17.0 19.5 415 270 372 2.03 4270 154 66500 6780 16.6 241 2.02 3670 142 52200 5750 16.3 222 2.02 2250 93.4 33900 3500 19.0 313 2.01 3120 130 39900 4870 16.1 203 2.02 1930 85.7 26100 2950 18.7 288 2.01 2680 119 30800 4100 15.9 188 Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 237 16000 5510 4.82 1.70 457000 158000 215 14300 4720 4.69 1.74 411000 135000 2.02 2640 102 44300 4140 19.3 342 196 12400 4170 4.62 1.73 357000 120000 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 178 10800 3680 4.55 1.71 310000 105000 162 9430 3250 4.49 1.70 270000 93500 DESIGN STRENGTH OF COLUMNS 3 - 17 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W14 Wt./ft 500 Fy 455 426 398 370 50 36 50 36 50 36 50 36 50 4500 6250 4100 5700 3830 5310 3580 4970 3340 4630 11 12 13 14 15 4290 4250 4210 4170 4120 5850 5780 5710 5620 5540 3910 3870 3840 3790 3750 5330 5260 5190 5110 5030 3640 3610 3570 3530 3490 4970 4900 4830 4760 4680 3410 3380 3340 3300 3270 4640 4580 4520 4450 4380 3170 3140 3110 3070 3040 4320 4260 4200 4140 4070 16 17 18 19 20 4070 4020 3970 3910 3850 5450 5350 5250 5150 5040 3710 3660 3610 3560 3500 4950 4860 4770 4670 4570 3450 3400 3360 3310 3260 4600 4520 4430 4340 4250 3230 3180 3140 3090 3040 4300 4220 4140 4050 3960 3000 2960 2920 2870 2820 4000 3920 3840 3760 3680 22 24 26 28 30 3730 3600 3460 3320 3180 4820 4590 4350 4100 3850 3390 3270 3140 3010 2870 4370 4150 3930 3700 3480 3150 3030 2910 2790 2660 4050 3850 3640 3430 3210 2940 2830 2720 2600 2480 3780 3590 3390 3190 2990 2730 2630 2520 2410 2290 3500 3320 3140 2950 2750 32 34 36 38 40 3030 2880 2730 2580 2420 3610 3360 3120 2880 2650 2740 2600 2460 2320 2180 3250 3020 2800 2580 2370 2530 2400 2270 2140 2010 3000 2780 2570 2370 2170 2360 2230 2110 1990 1860 2780 2580 2390 2190 2010 2180 2060 1950 1830 1710 2560 2380 2190 2010 1840 42 44 46 48 50 2280 2130 1990 1850 1710 2420 2210 2020 1860 1710 2040 1910 1780 1650 1520 2160 1970 1800 1650 1520 1880 1750 1630 1510 1400 1980 1800 1650 1510 1400 1740 1620 1510 1400 1290 1830 1660 1520 1400 1290 1600 1490 1380 1280 1180 1670 1520 1390 1280 1180 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.01 1650 78.8 20400 2480 18.5 264 2.00 2290 110 24100 3450 15.7 172 1.99 1410 72.5 15800 2090 18.3 242 1.99 1950 101 18600 2900 15.5 157 1.99 1730 93.8 15000 2590 15.3 148 1.99 1120 63.7 10800 1640 18.0 213 1.98 1550 88.5 12800 2280 15.2 139 1.98 987 59.6 8790 1430 17.8 199 1.97 1370 82.8 10400 1990 15.1 129 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 147 8210 2880 4.43 1.69 235000 82600 134 7190 2560 4.38 1.67 206000 73600 2.00 1240 67.5 12800 1870 18.1 227 125 6600 2360 4.34 1.67 189000 67400 117 6000 2170 4.31 1.66 172000 62200 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 109 5440 1990 4.27 1.66 156000 56900 3 - 18 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W14 Wt./ft 342 Fy 311 283 257 233 50 36 50 36 50 36 50 36 50 3090 4290 2800 3880 2550 3540 2310 3210 2100 2910 6 7 8 9 10 3040 3030 3010 2990 2960 4200 4170 4130 4090 4050 2750 2740 2720 2700 2680 3800 3770 3740 3700 3660 2510 2500 2480 2460 2440 3460 3440 3410 3370 3330 2280 2260 2250 2230 2210 3140 3120 3090 3060 3020 2060 2050 2040 2020 2000 2850 2820 2800 2770 2730 11 12 13 14 15 2940 2910 2880 2850 2810 4000 3950 3890 3830 3760 2660 2630 2600 2570 2540 3610 3560 3510 3460 3400 2420 2390 2370 2340 2310 3290 3240 3200 3140 3090 2190 2170 2150 2120 2090 2980 2940 2890 2850 2800 1980 1960 1940 1920 1890 2700 2660 2620 2570 2530 16 17 18 19 20 2770 2740 2700 2650 2610 3690 3620 3550 3470 3400 2510 2470 2430 2390 2360 3330 3270 3200 3130 3060 2280 2250 2210 2180 2140 3030 2970 2910 2850 2780 2060 2030 2000 1970 1940 2740 2690 2630 2570 2510 1870 1840 1810 1780 1750 2480 2430 2380 2320 2270 22 24 26 28 30 2520 2420 2320 2220 2110 3230 3060 2890 2710 2530 2270 2180 2090 2000 1900 2910 2750 2590 2430 2270 2060 1980 1900 1810 1720 2640 2500 2350 2200 2050 1870 1790 1710 1630 1550 2380 2250 2120 1980 1840 1690 1620 1550 1470 1400 2150 2030 1910 1780 1660 32 34 36 38 40 2010 1900 1790 1680 1570 2360 2180 2010 1840 1680 1800 1700 1600 1500 1410 2110 1950 1790 1640 1490 1630 1540 1450 1360 1270 1900 1760 1620 1480 1340 1470 1380 1300 1220 1140 1710 1570 1440 1320 1190 1320 1240 1170 1090 1020 1530 1410 1290 1180 1070 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 1.98 866 55.4 7100 1240 17.7 185 1.97 1200 77.0 8360 1720 15.0 120 1.97 746 50.8 5430 1030 17.5 168 1.96 1040 70.5 6400 1440 14.8 110 1.95 887 64.5 4930 1210 14.7 100 1.96 542 42.3 3150 723 17.2 140 1.94 753 58.8 3710 1000 14.6 91.6 1.95 457 38.5 2370 599 17.1 127 1.93 635 53.5 2790 832 14.5 83.4 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 101 4900 1810 4.24 1.65 141000 52000 91.4 4330 1610 4.2 1.64 124000 46100 1.97 639 46.4 4190 868 17.4 154 83.3 3840 1440 4.17 1.63 110000 41500 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 75.6 3400 1290 4.13 1.62 97400 36900 68.5 3010 1150 4.1 1.62 86200 33000 DESIGN STRENGTH OF COLUMNS 3 - 19 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W14 Wt./ft 211 Fy 193 176 159 145 50 36 50 36 50 36 50 36 50 1900 2640 1740 2410 1590 2200 1430 1980 1310 1810 6 7 8 9 10 1870 1860 1840 1830 1810 2580 2550 2530 2500 2470 1710 1700 1690 1670 1660 2360 2340 2320 2290 2260 1560 1550 1540 1530 1510 2150 2130 2110 2090 2060 1400 1400 1390 1380 1360 1940 1920 1900 1880 1860 1280 1280 1270 1260 1250 1770 1760 1740 1720 1700 11 12 13 14 15 1790 1780 1760 1730 1710 2440 2400 2370 2330 2280 1640 1630 1610 1590 1570 2230 2200 2170 2130 2090 1500 1480 1460 1450 1430 2030 2000 1970 1940 1900 1350 1330 1320 1300 1280 1830 1810 1780 1740 1710 1230 1220 1210 1190 1170 1670 1650 1620 1590 1560 16 17 18 19 20 1690 1660 1640 1610 1580 2240 2190 2140 2090 2040 1540 1520 1500 1470 1440 2050 2010 1960 1910 1870 1410 1380 1360 1340 1310 1860 1820 1780 1740 1700 1270 1250 1230 1200 1180 1680 1640 1600 1570 1530 1160 1140 1120 1100 1080 1530 1500 1460 1430 1390 22 24 26 28 30 1520 1460 1390 1330 1260 1940 1830 1710 1600 1490 1390 1330 1270 1210 1150 1770 1670 1560 1460 1350 1260 1210 1150 1100 1040 1610 1510 1420 1320 1220 1140 1090 1040 990 930 1440 1360 1270 1180 1100 1040 992 946 898 849 1320 1240 1160 1080 998 32 34 36 38 40 1190 1120 1050 980 912 1370 1260 1160 1050 951 1080 1020 955 892 830 1250 1150 1050 956 863 980 920 863 805 748 1130 1040 946 859 775 880 830 773 721 670 1010 928 846 767 692 800 752 703 655 608 919 842 767 694 626 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 1.95 397 35.3 1830 493 17.0 116 1.93 551 49.0 2160 684 14.4 76.0 1.96 340 32.0 1370 420 16.9 106 1.93 473 44.5 1610 583 14.3 70.1 1.92 415 41.5 1310 483 14.2 64.5 1.94 251 26.8 803 287 16.7 88.6 1.92 349 37.3 947 398 14.1 59.0 1.93 214 24.5 609 241 16.6 81.5 1.90 298 34.0 718 334 14.1 54.7 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 62.0 2660 1030 4.07 1.61 76100 29400 56.8 2400 931 4.05 1.60 68700 26700 1.94 299 29.9 1110 348 16.8 97.5 51.8 2140 838 4.02 1.60 61300 24000 46.7 1900 748 4 1.60 54400 21400 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 42.7 1710 677 3.98 1.59 49000 19400 3 - 20 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W14 Wt./ft 132 Fy 120 109 50 90 36 50 36 50 36 50† 36 50† 0 1190 1650 1080 1500 979 1360 890 1240 811 1130 6 7 8 9 10 1160 1160 1150 1140 1130 1610 1590 1570 1550 1530 1060 1050 1040 1030 1020 1460 1450 1430 1410 1390 960 953 946 937 927 1320 1310 1300 1280 1260 873 867 860 852 843 1200 1190 1180 1160 1150 795 789 783 775 767 1100 1080 1070 1060 1040 11 12 13 14 15 1110 1100 1080 1070 1050 1510 1480 1450 1430 1390 1010 999 986 971 956 1370 1350 1320 1290 1270 917 905 893 880 866 1240 1220 1200 1170 1150 833 823 811 799 787 1130 1110 1090 1060 1040 758 749 738 727 716 1030 1010 989 969 947 16 17 18 19 20 1030 1020 997 978 958 1360 1330 1300 1260 1220 940 924 906 888 870 1240 1210 1180 1140 1110 852 837 821 804 787 1120 1090 1060 1030 1000 773 759 745 730 714 1020 991 965 938 911 704 691 678 664 650 925 902 878 853 828 22 24 26 28 30 916 872 826 780 733 1150 1070 997 920 844 831 791 749 706 663 1040 972 902 832 762 752 715 677 639 600 943 879 815 751 688 682 648 614 578 542 854 796 737 679 621 620 589 558 525 493 776 723 670 616 564 32 34 36 38 686 639 593 547 769 697 627 563 620 577 535 494 694 628 565 507 560 522 483 446 627 567 509 457 507 471 436 402 565 511 458 411 460 428 396 365 512 463 415 372 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.03 196 23.2 520 215 15.7 73.7 1.99 272 32.3 613 298 13.3 49.7 2.04 173 21.2 399 179 15.6 67.9 1.99 240 29.5 471 249 13.2 46.3 1.97 205 26.3 331 208 13.2 43.2 2.02 125 17.5 222 123 15.5 58.1 1.95 174 24.3 261 171 13.4 40.6 2.02 109 15.8 165 102 15.4 54.2 1.94 151 22.0 195 142 15.0 38.4 Effective length KL (ft) with respect to least radius of gyration ry 36 99 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 38.8 1530 548 3.76 1.67 43800 15700 35.3 1380 495 3.74 1.67 39300 14100 2.02 148 18.9 281 150 15.5 62.7 32 1240 447 3.73 1.67 35400 12700 †Flange is noncompact; see discussion preceding column load tables. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 29.1 1110 402 3.71 1.66 31700 11500 26.5 999 362 3.70 1.66 28600 10400 DESIGN STRENGTH OF COLUMNS 3 - 21 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W14 Wt./ft 82 Fy 36 50 68 61 53 48 43 36 50 36 50 36 50 36 50 36 50 36 50† 737 1020 667 927 612 850 548 761 477 663 431 599 386 536 6 7 8 9 10 705 694 682 667 652 963 942 918 892 863 638 628 616 604 590 871 852 830 807 781 585 576 565 553 540 798 781 760 738 714 523 515 505 494 483 714 698 680 660 638 443 432 418 404 389 598 576 552 526 498 400 390 378 365 351 540 520 498 474 449 357 347 337 325 312 482 463 443 422 399 11 12 14 16 18 635 618 579 538 495 833 800 732 661 588 575 559 524 487 447 753 724 662 598 532 526 511 479 444 408 689 662 604 544 484 470 457 428 396 364 615 591 539 486 431 372 355 319 282 245 469 439 379 319 263 336 320 287 253 220 423 395 340 286 235 298 284 254 224 194 375 350 301 252 206 20 22 24 26 28 450 406 363 321 280 516 447 381 325 280 407 367 328 290 253 467 405 345 294 253 371 334 297 262 229 424 366 311 265 229 331 297 265 233 203 377 325 276 236 203 210 176 148 126 109 213 176 148 126 109 188 157 132 113 97 191 157 132 113 97 165 138 116 99 85 167 138 116 99 85 30 31 32 34 36 244 229 214 190 169 244 229 214 190 169 221 207 194 172 153 221 207 194 172 153 199 187 175 155 138 199 187 175 155 138 177 166 155 138 123 177 166 155 138 123 95 89 83 95 89 83 85 79 85 79 74 69 74 69 38 152 152 138 138 124 124 110 110 3.2 2.7 3.12 2.56 2.97 95.7 133 84.2 117 72.1 13.3 18.5 12.2 17.0 11.0 98.4 116 76.4 90.0 55.1 88.2 123 71.7 100 56.9 8.00 6.79 7.96 6.75 7.88 28.0 20.1 26.4 19.2 24.7 2.37 100 15.3 64.9 79.0 6.68 18.2 0 Effective length KL (ft) with respect to least radius of gyration ry 74 Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 2.85 149 18.4 257 148 10.3 43.0 2.68 207 25.5 303 206 8.77 29.6 24.1 882 148 2.48 2.44 25200 4240 2.82 127 16.2 177 125 10.3 40.0 2.62 176 22.5 209 173 8.77 27.9 21.8 796 134 2.48 2.44 22800 3840 2.80 112 14.9 139 105 10.3 37.3 2.56 156 20.8 163 146 8.70 26.4 20 723 121 2.46 2.44 20700 3460 2.74 97.0 13.5 102 84.2 10.2 34.7 2.44 135 18.8 121 117 8.66 25.0 17.9 640 107 2.45 2.44 18300 3080 15.6 541 57.7 1.92 3.07 15500 1650 14.1 485 51.4 1.91 3.06 13800 1470 12.6 428 45.2 1.89 3.08 12200 1290 †Web may be noncompact for combined axial and bending stress; see AISC LRFD Specification Section B5. Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 22 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W12 Wt./ft 336 Fy 305 279 252 230 50 36 50 36 50 36 50 36 50 3020 4200 2740 3810 2510 3480 2270 3150 2070 2880 6 7 8 9 10 2960 2930 2900 2870 2840 4070 4020 3970 3910 3850 2680 2660 2630 2600 2570 3690 3640 3590 3540 3480 2450 2430 2400 2370 2350 3370 3330 3280 3230 3170 2210 2190 2170 2150 2120 3040 3010 2960 2920 2870 2020 2000 1980 1960 1930 2780 2740 2710 2660 2610 11 12 13 14 15 2800 2760 2720 2670 2620 3780 3700 3620 3540 3450 2530 2500 2460 2410 2370 3420 3350 3270 3190 3110 2310 2280 2240 2200 2160 3110 3050 2980 2910 2830 2090 2060 2020 1980 1950 2810 2750 2680 2620 2550 1910 1880 1840 1810 1770 2560 2500 2450 2380 2320 16 17 18 19 20 2570 2520 2470 2410 2350 3360 3260 3160 3060 2960 2320 2270 2220 2170 2120 3020 2940 2840 2750 2660 2110 2070 2020 1970 1920 2750 2670 2580 2500 2410 1910 1860 1820 1770 1730 2470 2400 2320 2240 2160 1740 1700 1660 1610 1570 2250 2180 2110 2030 1960 22 24 26 28 30 2230 2100 1980 1850 1720 2750 2540 2330 2120 1910 2000 1890 1770 1650 1530 2460 2270 2070 1880 1690 1820 1710 1600 1490 1380 2230 2050 1870 1690 1520 1630 1530 1430 1330 1230 1990 1830 1660 1500 1350 1480 1390 1300 1200 1110 1810 1650 1500 1350 1210 32 34 36 38 40 1590 1460 1340 1220 1100 1720 1520 1360 1220 1100 1410 1300 1180 1080 971 1510 1340 1200 1080 971 1270 1160 1060 960 866 1350 1200 1070 960 866 1130 1030 940 848 766 1200 1060 945 848 766 1020 931 845 761 687 1070 951 848 761 687 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.18 1180 64 12700 1770 14.5 202 2.17 1640 89 15000 2460 12.3 131 2.18 1010 59 9740 1480 14.3 184 2.16 1400 81 11500 2060 12.1 120 2.15 1220 77 9700 1720 12.0 110 2.16 738 50 6150 1030 13.9 154 2.14 1020 70 7250 1420 11.8 100 2.15 636 46 4810 868 13.8 141 2.13 883 64 5670 1210 11.7 92.0 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 98.8 4060 1190 3.47 1.85 116000 34000 89.6 3550 1050 3.42 1.84 101000 30000 2.16 878 55 8230 1240 14.1 169 81.9 3110 937 3.38 1.82 88900 26800 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 74.1 2720 828 3.34 1.81 77900 23700 67.7 2420 742 3.31 1.80 69100 21200 DESIGN STRENGTH OF COLUMNS 3 - 23 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W12 Wt./ft 210 Fy 190 170 152 136 120 50 36 50 36 50 36 50 36 50 36 50 1890 2630 1710 2370 1530 2120 1370 1900 1220 1700 1080 1500 6 7 8 9 10 1840 1830 1810 1790 1760 2540 2500 2470 2430 2380 1660 1650 1630 1610 1590 2290 2260 2220 2190 2150 1490 1480 1460 1440 1420 2050 2020 1990 1960 1920 1330 1320 1300 1290 1270 1830 1810 1780 1750 1710 1190 1180 1160 1150 1130 1630 1610 1590 1560 1530 1050 1040 1030 1010 1000 1440 1420 1400 1380 1350 11 12 13 14 15 1740 1710 1680 1650 1610 2330 2280 2230 2170 2110 1570 1540 1510 1480 1450 2100 2050 2000 1950 1900 1400 1380 1350 1330 1300 1880 1840 1790 1740 1690 1250 1230 1210 1180 1160 1680 1640 1590 1550 1510 1110 1090 1070 1050 1030 1490 1460 1420 1380 1340 984 966 948 928 908 1320 1290 1250 1220 1180 16 17 18 19 20 1580 1540 1510 1470 1430 2040 1980 1910 1840 1780 1420 1390 1350 1320 1280 1840 1780 1720 1650 1590 1270 1240 1210 1180 1140 1640 1580 1530 1470 1420 1130 1100 1070 1050 1020 1460 1410 1360 1310 1260 1010 980 955 928 901 1290 1250 1210 1160 1110 886 864 841 817 793 1140 1100 1060 1020 976 22 24 26 28 30 1340 1260 1170 1090 1000 1640 1490 1360 1220 1090 1210 1130 1050 973 895 1460 1340 1210 1090 967 1070 1000 933 862 792 1300 1180 1070 959 852 954 891 827 763 700 1150 1050 944 844 749 846 788 731 673 617 1020 924 831 742 656 743 692 640 589 538 892 808 726 646 569 32 34 36 38 40 919 837 759 682 616 962 852 760 682 616 819 745 674 605 546 853 755 674 605 546 724 657 593 532 480 750 664 593 532 480 638 578 520 467 421 658 583 520 467 421 561 508 456 409 369 577 511 456 409 369 489 442 395 355 320 500 443 395 355 320 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.16 558 42 3760 731 13.7 129 2.13 774 59 4430 1020 11.6 84.2 2.14 465 38 2700 610 13.5 117 2.11 646 53 3190 847 11.5 76.6 2.15 333 31 1500 397 13.3 94.7 2.11 462 44 1760 551 11.3 62.1 2.13 276 28 1120 316 13.2 84.6 2.09 383 40 1320 439 11.2 55.7 2.12 232 26 815 247 13.0 75.5 2.07 322 36 960 343 11.1 50.0 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 61.8 2140 664 3.28 1.80 61400 19000 55.8 1890 589 3.25 1.79 54100 16900 2.14 389 35 2020 493 13.4 105 2.11 540 48 2380 684 11.4 68.9 50.0 1650 517 3.22 1.78 47100 14800 44.7 1430 454 3.19 1.77 41000 13000 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 39.9 1240 398 3.16 1.77 35600 11400 35.3 1070 345 3.13 1.76 30700 9900 3 - 24 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W12 Wt./ft 106 Fy 96 87 79 72 65 50 36 50 36 50 36 50 36 50 36 50† 955 1330 863 1200 783 1090 710 986 646 897 584 812 6 7 8 9 10 928 919 908 896 883 1280 1260 1240 1210 1190 839 830 820 809 797 1150 1140 1120 1100 1070 761 753 744 734 723 1050 1030 1010 994 973 689 682 674 665 654 947 933 917 900 880 627 620 613 604 595 861 848 834 818 800 567 561 554 546 538 779 767 754 739 723 11 12 13 14 15 868 853 836 819 800 1160 1130 1100 1070 1040 784 770 755 739 722 1050 1020 995 966 935 711 698 684 669 654 950 926 901 874 846 643 631 619 605 591 860 838 814 790 764 585 574 562 550 537 781 761 740 717 694 529 519 508 497 485 706 687 668 647 626 16 17 18 19 20 781 761 741 719 698 1000 968 932 895 858 704 686 667 648 628 904 871 838 805 771 638 621 604 586 568 817 788 758 727 696 576 561 545 529 512 738 711 683 655 627 523 509 495 480 465 670 645 620 594 569 472 460 446 433 419 604 581 558 535 512 22 24 26 28 30 653 608 562 516 472 783 708 635 565 497 588 546 505 463 422 703 635 569 505 443 531 493 455 417 380 634 572 511 453 397 479 444 409 375 341 570 514 459 406 355 434 403 371 339 309 517 465 415 367 321 391 362 333 305 277 464 417 372 328 287 32 34 36 38 40 428 386 345 310 279 437 387 345 310 279 383 345 308 276 249 390 345 308 276 249 344 309 276 248 223 349 309 276 248 223 308 277 247 221 200 312 277 247 221 200 279 250 223 200 181 282 250 223 200 181 250 223 199 179 161 252 223 199 179 161 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.12 185 22 518 198 13.0 67.2 2.06 257 31 611 276 11.0 44.9 2.10 161 20 378 164 12.9 61.4 2.04 223 28 446 228 10.9 41.4 2.09 122 17 236 109 12.7 51.8 2.01 169 24 278 152 10.8 35.7 2.08 106 15 181 91 12.7 48.2 1.98 148 22 213 126 10.7 33.6 2.06 92.1 14 135 74 12.6 44.7 1.95 128 20 159 103 11.8 31.7 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 31.2 933 301 3.11 1.76 26700 8640 28.2 833 270 3.09 1.76 23900 7710 2.10 139 19 311 133 12.8 56.3 2.02 193 26 366 185 10.9 38.3 25.6 740 241 3.07 1.75 21200 6910 23.2 662 216 3.05 1.75 18900 6180 †Flange is noncompact; see discussion preceding column load tables. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 21.1 597 195 3.04 1.75 17000 5580 19.1 533 174 3.02 1.75 15200 4990 DESIGN STRENGTH OF COLUMNS 3 - 25 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W12 Wt./ft 58 Fy 53 50 45 40 50 36 50 36 50 36 50 36 50 520 723 477 663 450 625 404 561 361 502 6 7 8 9 10 498 490 482 472 461 680 666 649 631 611 457 449 441 432 422 623 610 594 577 559 419 408 396 383 369 566 546 524 500 475 376 366 355 343 330 507 489 469 447 424 336 327 317 306 295 453 437 419 399 378 11 12 13 14 15 450 437 424 411 397 590 568 545 521 496 411 400 388 375 362 539 518 496 474 451 354 339 322 306 289 448 421 393 365 337 317 302 287 272 257 400 375 350 324 299 282 269 256 242 228 356 334 311 288 266 16 18 20 22 24 382 352 321 291 260 471 420 370 322 276 348 320 292 263 235 428 381 334 290 247 271 237 204 173 145 310 257 209 173 145 241 210 180 152 128 274 227 184 152 128 214 187 160 135 113 243 201 163 135 113 26 28 30 32 34 231 202 176 155 137 235 202 176 155 137 207 181 158 139 123 210 181 158 139 123 124 107 93 82 124 107 93 82 109 94 82 72 109 94 82 72 96 83 72 64 96 83 72 64 38 41 110 94 110 94 98 85 98 85 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.41 89 13 106 83 10.5 38.3 2.22 124 18 125 115 8.9 27.0 2.39 78 12 94 67 10.3 35.8 2.16 108 17 111 93 8.8 25.6 2.51 127 19 136 115 6.9 21.6 2.79 75 12 86 67 8.1 28.4 2.37 105 17 101 93 6.9 20.3 2.69 66 11 59 54 8.0 26.5 2.22 92 15 69 75 6.8 19.3 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 17.0 475 107 2.51 2.10 13600 3070 15.6 425 95.8 2.48 2.11 12200 2750 2.85 92 13 116 83 8.2 30.8 14.7 394 56.3 1.96 2.64 11300 1620 13.2 350 50 1.94 2.65 10000 1420 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11.8 310 44.1 1.93 2.66 8890 1260 3 - 26 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W10 Wt./ft 112 Fy 100 88 77 68 50 36 50 36 50 36 50 36 50 1010 1400 900 1250 793 1100 692 961 612 850 6 7 8 9 10 969 956 941 924 906 1330 1300 1270 1240 1210 865 853 840 824 808 1180 1160 1140 1110 1080 762 751 739 725 710 1040 1020 999 973 945 664 655 644 632 618 908 890 869 847 822 588 579 569 558 547 803 787 769 749 727 11 12 13 14 15 886 865 842 819 794 1170 1130 1090 1050 1010 789 770 750 728 706 1040 1010 970 931 892 694 677 659 639 619 916 884 851 817 782 604 588 572 555 537 796 768 738 708 677 534 520 506 490 475 703 678 652 625 597 16 17 18 19 20 768 742 715 688 660 961 915 870 824 778 682 659 634 609 584 851 810 769 727 686 599 577 556 534 511 746 709 672 635 599 519 500 481 461 442 645 612 580 547 515 458 441 424 407 389 569 540 511 482 454 22 24 26 28 30 604 548 493 440 389 688 601 518 447 389 534 483 434 386 340 605 527 453 390 340 466 422 378 336 295 527 458 393 339 295 402 362 324 287 252 452 392 335 289 252 354 319 285 252 221 398 344 294 254 221 32 34 36 38 40 342 303 270 242 219 342 303 270 242 219 299 265 236 212 191 299 265 236 212 191 259 230 205 184 166 259 230 205 184 166 221 196 175 157 141 221 196 175 157 141 194 172 153 138 124 194 172 153 138 124 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.06 255 27 1210 316 11.2 86.4 2.02 354 38 1430 439 9.5 56.5 2.06 214 24 883 254 11.0 77.4 2.01 298 34 1040 353 9.4 50.8 1.99 246 30 735 276 9.3 45.1 2.03 143 19 420 153 10.8 60.0 1.96 199 27 495 213 9.2 39.8 2.01 116 17 293 120 10.8 53.8 1.93 162 24 345 167 9.2 36.0 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 32.9 716 236 2.68 1.74 20400 6760 29.4 623 207 2.65 1.74 17800 5910 2.04 177 22 623 198 11.0 68.4 25.9 534 179 2.63 1.73 15300 5130 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 22.6 455 154 2.60 1.73 13000 4370 20.0 394 134 2.59 1.71 11300 3840 DESIGN STRENGTH OF COLUMNS 3 - 27 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W10 Wt./ft 60 Fy 54 49 45 39 33 50 36 50 36 50 36 50 36 50 36 50 539 748 483 672 441 612 407 565 352 489 297 413 6 7 8 9 10 517 509 500 491 480 706 692 675 657 638 464 457 449 440 431 634 621 606 590 572 422 416 409 401 392 577 565 551 536 520 380 371 361 350 337 515 497 478 458 436 328 320 311 301 290 444 428 412 393 374 276 269 261 252 243 373 360 345 329 312 11 12 13 14 15 469 457 444 430 416 617 595 571 547 523 420 409 398 385 373 553 533 512 490 468 382 372 361 350 338 502 484 464 444 424 324 311 296 282 267 412 388 364 339 314 278 266 254 241 228 353 332 310 289 267 233 222 211 200 189 294 276 257 238 220 16 17 18 19 20 401 387 371 356 340 497 472 446 421 395 360 346 332 318 304 445 422 399 376 353 326 314 301 288 275 403 382 361 340 319 252 237 222 207 192 290 266 243 221 199 215 201 188 175 162 246 225 205 185 167 177 166 155 144 133 202 184 167 150 135 22 24 26 28 30 309 278 248 219 191 346 299 255 220 191 276 248 221 195 170 309 266 227 196 170 250 224 199 175 153 278 239 204 176 153 164 138 118 102 88 164 138 118 102 88 138 116 99 85 74 138 116 99 85 74 112 94 80 69 60 112 94 80 69 60 32 33 34 36 168 158 149 133 168 158 149 133 150 141 133 118 150 141 133 118 134 126 119 106 134 126 119 106 78 73 78 73 65 61 65 61 53 53 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.00 99 15 209 94 10.7 48.1 1.90 138 21 246 130 9.1 32.6 1.97 83 13 143 77 10.7 43.9 1.87 116 19 168 106 9.1 30.2 2.37 79 13 121 78 8.4 35.2 2.17 109 18 142 108 7.1 24.1 2.31 64 11 88 57 8.3 31.2 2.04 89 16 104 79 7.0 21.9 2.23 55 10 69 38 8.1 27.4 1.87 77 14 81 53 6.9 19.7 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 17.6 341 116 2.57 1.71 9710 3330 15.8 303 103 2.56 1.71 8640 2960 1.96 73 12 111 64 10.6 40.7 1.83 101 17 131 88 9.0 28.3 14.4 272 93.4 2.54 1.71 7800 2660 13.3 248 53.4 2.01 2.15 7100 1540 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11.5 209 45.0 1.98 2.16 6000 1290 9.71 170 36.6 1.94 2.16 4880 1050 3 - 28 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS W shapes Design axial strength in kips (φ = 0.85) X Y Designation W8 Wt./ft 67 Fy 58 48 40 35 31 50 36 50 36 50 36 50 36 50 36 50 603 837 523 727 431 599 358 497 315 438 279 388 6 7 8 9 10 567 555 541 526 509 770 746 721 693 662 492 481 469 455 441 667 647 624 599 572 405 396 386 374 362 549 532 513 492 470 335 327 319 309 298 454 439 423 405 386 295 288 280 272 262 399 386 372 356 339 261 255 248 240 232 354 342 329 315 300 11 12 13 14 15 492 473 453 433 412 631 598 564 529 494 425 409 391 374 355 544 515 485 455 425 349 335 321 306 291 446 422 397 372 347 287 275 263 251 238 366 345 324 303 281 252 242 231 220 208 321 303 284 265 246 223 214 204 194 184 284 268 251 234 217 16 17 18 19 20 391 370 349 328 307 460 425 392 359 328 337 318 300 281 263 394 365 335 307 279 276 260 245 229 214 321 297 272 249 226 225 211 198 185 173 260 239 219 199 180 197 185 174 162 151 228 209 191 174 157 174 163 153 143 133 200 184 168 153 138 22 24 26 28 30 266 228 194 167 146 271 228 194 167 146 228 194 165 143 124 231 194 165 143 124 185 157 134 115 100 187 157 134 115 100 148 125 107 92 80 149 125 107 92 80 129 109 93 80 70 130 109 93 80 70 114 96 82 70 61 114 96 82 70 61 32 33 34 35 128 120 113 107 128 120 113 107 109 103 97 91 109 103 97 91 88 83 78 88 83 78 70 66 62 70 66 62 61 58 61 58 54 51 54 51 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.03 147 21 648 177 8.8 64.0 1.96 205 28 764 246 7.5 41.9 2 120 18 464 133 8.8 55.9 1.93 167 26 547 185 7.4 36.8 1.93 69 13 163 64 8.5 39.1 1.8 96 18 192 88 7.2 26.5 1.89 56 11 104 50 8.5 35.1 1.74 78 16 123 69 7.2 24.1 1.85 48 10 81 38 8.4 32.0 1.65 67 14 95 53 7.1 22.4 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 19.7 272 88.6 2.12 1.75 7800 2530 17.1 228 75.1 2.10 1.74 6520 2160 1.97 86 14 224 95 8.7 46.7 1.87 119 20 264 132 7.4 31.1 14.1 184 60.9 2.08 1.74 5260 1750 11.7 146 49.1 2.04 1.73 4170 1390 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 10.3 127 42.6 2.03 1.73 3630 1210 9.13 110 37.1 2.02 1.72 3150 1070 DESIGN STRENGTH OF COLUMNS 3 - 29 Y Fy = 36 ksi Fy = 50 ksi COLUMNS W shapes Design axial strength in kips (φ = 0.85) X X Y Designation W8 Wt./ft W6 28 Fy 24 25 20 15 † 50 36 50 36 50 36 50 36 50† 252 351 217 301 225 312 180 249 136 188 6 7 8 9 10 228 219 210 200 189 303 288 271 253 235 195 188 180 171 162 260 247 232 217 200 200 191 182 172 162 265 250 233 216 198 159 152 145 137 128 211 198 185 171 156 119 114 108 102 95 158 148 137 126 115 11 12 13 14 15 178 167 155 143 132 216 197 178 160 142 152 142 132 122 112 184 168 151 136 121 151 140 129 118 107 180 162 144 128 112 119 111 102 93 84 142 127 113 100 87 88 81 74 68 61 104 92 82 71 62 16 17 18 19 20 121 110 99 89 80 125 111 99 89 80 102 93 84 75 68 106 94 84 75 68 97 87 78 70 63 98 87 78 70 63 76 68 60 54 49 76 68 60 54 49 55 48 43 39 35 55 48 43 39 35 22 24 25 26 27 66 56 51 47 44 66 56 51 47 44 56 47 44 40 56 47 44 40 52 44 40 52 44 40 40 34 31 40 34 31 29 24 29 24 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 2.17 48 10 81 44 6.8 27.2 1.87 67 14 95 61 5.7 18.8 2.07 39 9 52 32 6.7 24.3 1.71 54 12 61 45 5.7 17.2 1.98 65 16 172 58 5.4 21.0 2.03 35 9 78 27 6.3 25.6 1.91 49 13 92 37 5.3 17.6 1.98 26 8 54 14 6.7 20.8 1.75 36 12 64 19 6.8 15.0 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties u A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 8.25 98.0 21.7 1.62 2.13 2810 620 7.08 82.8 18.3 1.61 2.12 2370 525 2.07 47 12 146 42 6.3 31.2 7.34 53.4 17.1 1.52 1.78 1530 485 5.87 41.4 13.3 1.50 1.77 1190 378 †Flange is noncompact; see discussion preceding column load tables. Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.43 29.1 9.32 1.46 1.75 831 270 3 - 30 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X X COLUMNS W shapes Design axial strength in kips (φ = 0.85) Y Designation W6 Wt./ft 16 Effective length KL (ft) with respect to least radius of gyration ry Fy W5 12 9 W4 19 16 13 36 50 36 50 36 50 36 50 36 50 36 50 0 145 201 109 151 82 114 170 235 143 199 117 163 2 3 4 5 6 140 135 127 118 108 193 182 168 152 134 105 100 94 87 79 144 135 124 110 96 79 75 71 65 59 108 101 93 83 72 166 163 157 151 144 229 222 212 201 187 141 137 133 127 121 194 188 179 169 157 114 109 104 97 89 156 148 138 125 111 7 8 9 10 11 97 86 75 64 54 116 98 81 66 54 70 61 52 44 37 82 68 55 44 37 52 45 39 32 27 61 50 40 33 27 135 126 117 107 97 172 156 140 124 108 114 106 98 90 81 144 131 117 104 90 81 72 63 55 47 97 83 69 57 47 12 13 14 15 16 46 39 33 29 26 46 39 33 29 26 31 26 23 20 31 26 23 20 23 19 17 14 23 19 17 14 87 78 68 60 53 93 80 69 60 53 73 65 57 50 44 78 66 57 50 44 39 34 29 25 22 39 34 29 25 22 47 42 37 34 30 47 42 37 34 30 39 35 31 28 25 39 35 31 28 25 1.84 39 10 115 37 5.3 30.3 1.72 55 14 136 52 4.5 20.1 1.79 32 9 81 26 5.3 26.2 1.63 45 12 95 36 4.5 17.6 1.89 35 10 164 24 4.2 25.5 1.77 48 14 193 33 3.5 16.8 17 18 19 20 21 Properties u P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 2.84 35 9 78 33 4.0 18.3 2.5 49 13 92 46 3.4 12.5 4.74 32.1 4.43 0.966 2.69 917 127 2.62 26 8 54 16 3.8 14.3 2.13 36 12 64 22 3.2 10.2 3.55 22.1 2.99 0.918 2.71 630 85.6 2.24 17 6 22 9 3.8 12.0 1.72 24 9 26 13 3.2 8.9 2.68 16.4 2.19 0.905 2.73 468 62.8 5.54 26.2 9.13 1.28 1.70 747 260 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.68 21.3 7.51 1.27 1.68 608 216 3.83 11.3 3.86 1.00 1.72 324 110 DESIGN STRENGTH OF COLUMNS 3 - 31 Y Fy = 36 ksi Fy = 50 ksi COLUMNS HP shapes Design axial strength in kips (φ = 0.85) X X Y Designation HP14 Wt./ft 117 Fy HP13 102 89 73 100 50 36 50 36 50 36 50 36 50 1050 1460 918 1280 799 1110 655 909 900 1250 6 7 8 9 10 1030 1020 1010 1000 993 1420 1400 1390 1370 1350 898 891 884 875 865 1240 1220 1210 1190 1170 781 775 768 760 752 1080 1060 1050 1040 1020 640 635 629 623 615 882 872 861 848 834 875 867 857 846 834 1200 1190 1170 1150 1120 11 12 13 14 15 980 967 953 938 922 1320 1300 1270 1250 1220 854 842 830 816 802 1150 1130 1110 1080 1060 742 732 721 709 696 1000 982 962 940 917 607 599 589 580 569 819 803 786 768 749 821 806 791 775 758 1100 1070 1050 1020 986 16 17 18 19 20 905 888 870 851 832 1190 1150 1120 1090 1050 788 772 756 740 723 1030 1000 974 945 915 683 670 656 641 626 893 869 844 818 791 558 547 535 523 511 729 708 687 666 644 741 722 703 684 664 954 921 888 854 820 22 24 26 28 30 792 750 707 664 620 985 913 842 771 701 687 650 613 574 536 853 790 727 665 604 595 563 529 496 462 737 682 627 572 519 485 458 430 402 374 599 553 507 462 418 623 581 539 496 454 750 681 613 547 483 32 34 36 38 40 576 533 491 450 411 633 568 507 455 411 498 460 423 387 352 545 487 435 390 352 428 395 363 332 301 467 417 372 334 301 346 319 292 267 241 375 334 298 267 241 413 374 336 301 272 425 376 336 301 272 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 217 29 1010 131 15.0 66.0 302 40 1191 182 12.7 45.1 174 25 679 101 14.8 59.0 242 35 801 140 12.6 41.1 202 31 533 106 12.5 37.6 108 18 250 52 14.5 46.8 150 25 294 72 12.3 34.2 198 28 953 119 13.2 60.1 275 38 1123 165 11.2 40.9 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 34.4 1220 443 3.59 1.66 35000 12700 30.0 1050 380 3.56 1.66 30100 10900 145 22 453 77 14.7 53.0 26.1 904 326 3.53 1.67 25800 9310 21.4 729 261 3.49 1.67 20900 7460 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 29.4 886 294 3.16 1.74 25400 8400 3 - 32 COLUMN DESIGN Y Fy = 36 ksi Fy = 50 ksi X COLUMNS HP shapes Design axial strength in kips (φ = 0.85) X Y Designation HP13 Wt./ft 87 Fy HP12 73 60 84 74 50 36 50 36 50 36 50 36 50 780 1080 661 918 536 744 753 1050 667 927 6 7 8 9 10 759 751 743 733 722 1040 1030 1010 993 973 642 636 628 620 611 882 870 856 840 823 520 515 509 502 494 714 704 692 679 665 729 721 712 701 690 1000 985 967 947 926 646 639 630 621 610 886 872 856 838 819 11 12 13 14 15 711 698 685 670 656 952 928 904 878 851 601 590 578 566 553 804 784 763 741 717 486 477 467 457 447 650 633 616 597 578 677 663 649 634 618 902 877 851 823 795 599 587 574 560 546 798 776 752 727 702 16 17 18 19 20 640 624 607 590 573 823 794 765 735 705 540 526 512 497 482 693 669 644 618 592 436 424 413 401 388 559 539 518 497 476 601 584 567 548 530 765 735 705 674 642 531 516 500 484 467 675 648 621 593 565 22 24 26 28 30 537 500 462 425 389 644 584 524 467 411 451 420 388 356 325 540 488 438 389 342 363 337 311 285 260 433 391 350 310 272 492 454 416 378 342 580 518 459 402 350 434 400 366 332 300 510 455 402 351 306 32 34 36 38 40 353 319 286 256 231 361 320 286 256 231 295 266 237 213 192 300 266 237 213 192 235 211 189 169 153 239 211 189 169 153 307 273 243 218 197 308 273 243 218 197 268 238 213 191 172 269 238 213 191 172 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 165 24 624 90 13.0 53.2 229 33 735 124 11.1 36.9 127 20 384 65 12.9 47.0 177 28 453 90 11.0 33.4 129 23 243 60 10.9 30.2 170 25 732 95 12.3 54.0 235 34 862 132 10.4 36.9 143 22 506 75 12.2 48.9 199 30 597 105 10.3 34.0 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 25.5 755 250 3.13 1.74 21700 7150 21.6 630 207 3.10 1.74 18000 5940 93 17 206 43 12.8 41.2 17.5 503 165 3.07 1.75 14400 4720 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 24.6 650 213 2.94 1.75 18600 6090 21.8 569 186 2.92 1.75 16300 5320 DESIGN STRENGTH OF COLUMNS 3 - 33 Y Fy = 36 ksi Fy = 50 ksi COLUMNS HP shapes Design axial strength in kips (φ = 0.85) X X Y Designation HP12 Wt./ft HP10 63 Fy 53 HP8 57 42 36 50 36 50 36 50 36 50 36 50 563 782 474 659 514 714 379 527 324 451 6 7 8 9 10 545 538 531 523 514 747 735 721 706 689 459 453 447 440 432 629 618 607 594 579 491 483 474 464 453 670 655 638 619 599 362 356 349 341 333 494 482 469 455 440 302 294 286 276 266 408 393 377 360 342 11 12 13 14 15 504 494 482 471 458 671 651 631 610 588 424 415 406 396 385 564 547 530 512 493 441 429 415 401 387 577 555 531 506 481 324 314 304 294 283 423 406 388 369 350 255 243 232 219 207 322 302 282 262 242 16 17 18 19 20 446 432 419 405 391 565 542 518 495 471 374 363 351 339 327 474 454 434 414 394 372 357 341 326 310 456 430 404 379 354 272 260 249 237 225 331 312 293 274 255 195 182 170 158 146 222 202 184 165 149 22 24 26 28 30 362 333 304 275 247 423 376 332 288 251 303 278 253 229 206 353 314 276 240 209 279 248 219 191 166 305 259 221 191 166 202 179 157 136 119 219 185 158 136 119 123 104 88 76 66 123 104 88 76 66 32 34 36 38 40 221 196 174 157 141 221 196 174 157 141 183 163 145 130 117 183 163 145 130 117 146 129 115 103 93 146 129 115 103 93 104 92 82 74 67 104 92 82 74 67 58 52 46 41 37 58 52 46 41 37 P wo (kips) P wi (kips/in.) P wb (kips) P fb (kips) L p (ft) L r (ft) 116 19 311 54 12.0 43.0 161 26 366 75 10.2 30.7 88 16 188 38 11.9 38.7 122 22 221 53 10.1 28.3 168 28 599 90 8.7 31.1 79 15 202 36 10.0 35.9 110 21 238 50 8.5 25.6 75 16 309 40 8.1 35.7 104 22 364 56 6.9 24.4 Effective length KL (ft) with respect to least radius of gyration ry 36 0 Properties A (in.2) Ix (in.4) Iy (in.4) ry (in.) Ratio rx / ry Pex (KL )2 / 10 4 Pey (KL )2 / 10 4 18.4 472 153 2.88 1.76 13500 4370 15.5 393 127 2.86 1.76 11200 3630 121 20 508 65 10.2 45.6 16.8 294 101 2.45 1.71 8400 2890 12.4 210 71.7 2.41 1.71 6050 2060 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 10.6 119 40.3 1.95 1.72 3420 1150 3 - 34 COLUMN DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 35 Steel Pipe and Structural Tubing The design strengths in the tables that follow are tabulated for the effective lengths in feet KL (with respect to the least radius of gyration, r or ry), indicated at the left of each table. They are applicable to axially loaded members in accordance with Section E2 of the LRFD Specification. For discussion of effective length, range of l / r, strength about major axis, combined axial and bending stress, and sample problems, see General Notes. Properties and factors are listed at the bottom of the tables for checking strength about the strong axis. Steel Pipe Columns Design strengths for unfilled pipe columns are tabulated for Fy = 36 ksi. Steel pipe manufactured to ASTM A501 furnishes Fy = 36 ksi, and ASTM A53, Type E or S, Gr. B furnishes Fy = 35 ksi and may be designed for the strengths permitted for Fy = 36 ksi steel. The heavy horizontal lines within the table indicate Kl / r = 200. No values are listed beyond Kl / r = 200. Structural Tube Columns Design strengths for square and rectangular structural tube columns are tabulated for Fy = 46 ksi. Structural tubing is manufactured to Fy = 46 ksi under ASTM A500, Gr. B. All tubes listed in the column load tables satisfy Section B5 of the LRFD Specification. The heavy horizontal lines appearing within the tables indicate Kl / r = 200. No values are listed beyond Kl / r = 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 36 COLUMN DESIGN Fy = 36 ksi COLUMNS Standard steel pipe Design axial strength in kips (φ = 0.85) Nominal Dia. 12 10 8 6 5 4 31⁄2 3 Wall Thickness 0.375 0.365 0.322 0.280 0.258 0.237 0.226 0.216 Weight per ft 49.56 40.48 28.55 18.97 14.62 10.79 9.11 7.58 Fy Effective length KL (ft) 36 ksi 0 447 364 257 171 132 97 82 68 6 7 8 9 10 440 438 436 433 429 357 354 351 348 344 249 246 243 239 235 162 159 155 151 147 122 118 115 111 106 86 82 78 74 70 70 67 63 58 54 56 52 48 43 39 11 12 13 14 15 426 422 418 413 409 340 336 331 326 321 231 227 222 216 211 142 138 133 127 122 102 97 92 86 81 65 60 55 51 46 49 45 40 36 32 35 30 26 23 20 16 17 18 19 20 404 399 393 387 381 315 309 303 297 291 205 199 193 187 181 116 111 105 99 94 76 71 66 61 56 41 37 33 30 27 28 25 22 20 18 17 15 14 12 22 24 25 26 28 369 356 349 342 328 277 263 256 249 234 168 155 149 142 129 83 72 67 62 53 47 39 36 33 29 22 19 17 15 30 31 32 34 36 313 306 298 283 268 219 212 205 190 176 117 111 105 93 83 47 44 41 36 32 25 23 37 38 40 260 253 237 169 162 148 79 75 67 31 3.17 7.23 1.51 2.68 4.79 1.34 Properties 2 Area A (in. ) I (in.4) r (in.) 14.6 279 4.38 11.9 161 3.67 8.40 72.5 2.94 5.58 28.1 2.25 4.30 15.2 1.88 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.23 3.02 1.16 DESIGN STRENGTH OF COLUMNS 3 - 37 Fy = 36 ksi COLUMNS Extra strong steel pipe Design axial strength in kips (φ = 0.85) Nominal Dia. 12 10 8 6 5 4 31⁄2 3 Wall Thickness 0.500 0.500 0.500 0.432 0.375 0.337 0.318 0.300 Weight per ft 65.42 54.74 43.39 28.57 20.78 14.98 12.50 10.25 Effective length KL (ft) Fy 36 ksi 0 588 493 392 257 187 135 113 92 6 7 8 9 10 579 576 573 569 564 483 479 475 470 465 379 375 369 364 357 243 238 232 226 219 172 168 162 156 149 119 114 108 102 95 96 91 85 79 72 75 69 64 58 52 11 12 13 14 15 559 554 549 543 536 460 453 447 440 433 351 343 336 327 319 212 205 197 189 180 143 135 128 121 113 89 82 75 68 62 66 60 53 47 42 46 40 34 30 26 16 18 19 20 21 530 515 508 500 492 425 409 400 391 382 310 291 282 272 262 172 154 145 137 128 105 91 83 76 70 56 44 40 36 32 37 29 26 23 21 23 18 16 22 24 26 28 30 483 465 447 428 408 373 354 334 314 294 252 231 211 191 172 120 103 88 76 66 63 53 45 39 34 30 25 32 34 36 38 40 388 368 348 328 308 273 253 234 215 196 154 136 121 109 98 58 52 46 19.2 362 4.33 16.1 212 3.63 12.8 106 2.88 6.11 20.7 1.84 4.41 9.61 1.48 3.68 6.28 1.31 3.02 3.89 1.14 Properties Area A (in.2) I (in.4) r (in.) 8.40 40.5 2.19 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 38 COLUMN DESIGN Fy = 36 ksi COLUMNS Double-extra strong steel pipe Design axial strength in kips (φ = 0.85) Nominal Dia. 8 6 5 4 3 Wall Thickness 0.875 0.864 0.750 0.674 0.600 Weight per ft 72.42 53.16 38.55 27.54 18.58 Effective length KL (ft) Fy 36 ksi 0 652 477 346 248 167 6 7 8 9 10 629 621 612 601 590 448 437 426 413 399 315 305 293 281 268 214 203 191 179 165 131 120 108 96 84 11 12 13 14 15 578 565 551 536 521 385 369 353 336 319 254 239 224 209 194 152 139 125 112 100 73 62 53 46 40 16 17 18 19 20 505 489 472 455 438 302 285 268 250 234 179 165 151 137 124 88 78 70 62 56 35 31 22 24 26 28 30 403 367 333 299 266 201 170 145 125 109 102 86 73 63 47 32 34 36 38 40 235 208 186 166 150 96 85 21.3 162 2.76 15.6 66.3 2.06 11.3 33.6 1.72 8.10 15.3 1.37 Properties Area A (in.2) I (in.4) r (in.) Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5.47 5.99 1.05 DESIGN STRENGTH OF COLUMNS 3 - 39 Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) Nominal Size 16× ×16 Thickness 1⁄ Wt./ft 103.30 89.68 68.31 0 1190 1030 786 6 7 8 9 10 1180 1170 1170 1170 1160 1020 1020 1010 1010 1000 11 12 13 14 15 1150 1150 1140 1130 1120 16 17 18 19 20 2 14× ×14 1⁄ 2 12× ×12 3⁄ 8 8 93.34 1⁄ 2 3⁄ 8 5⁄ 16 76.07 58.10 48.86 1070 876 669 563 777 774 770 766 761 1050 1050 1040 1030 1020 862 857 851 845 838 658 655 650 645 640 554 551 548 544 539 993 985 977 969 960 756 751 745 739 732 1010 1000 992 979 966 830 821 812 803 792 634 628 621 614 606 535 529 524 518 511 1120 1110 1100 1090 1080 950 940 930 919 907 725 717 710 701 693 953 939 924 908 892 781 770 758 746 733 598 590 581 571 562 504 497 490 482 474 21 22 23 24 25 1070 1060 1040 1030 1020 895 883 870 857 844 684 675 665 655 645 875 858 841 823 805 719 706 692 677 663 552 542 531 520 510 466 457 449 440 431 26 27 28 29 30 1010 994 981 967 954 830 816 802 787 772 635 624 614 603 592 786 767 748 729 710 648 633 617 602 586 498 487 475 464 452 421 412 402 392 383 32 34 36 38 40 925 896 865 835 803 742 711 680 648 616 569 546 522 498 474 670 631 592 553 515 555 523 491 460 429 428 404 381 357 333 363 343 323 303 283 30.4 1200 6.29 26.4 791 5.48 27.4 580 4.60 22.4 485 4.66 17.1 380 4.72 14.4 324 4.75 Fy Effective length KL (ft) 5⁄ 46 ksi Properties A (in2) I (in.4) r (in.) 20.1 615 5.54 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 40 COLUMN DESIGN Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 10× ×10 Nominal Size Thickness Wt./ft 76.33 62.46 47.90 40.35 32.63 0 876 719 551 465 375 6 7 8 9 10 855 847 839 829 818 703 697 690 682 674 539 534 529 524 517 455 451 447 442 437 11 12 13 14 15 807 794 781 767 752 664 655 644 633 621 510 503 495 487 478 16 17 18 19 20 736 720 703 686 668 608 595 582 568 553 21 22 23 24 25 650 631 612 593 573 26 27 28 29 30 32 34 36 38 40 8 1⁄ 2 3⁄ 8× ×8 5⁄ 8 5⁄ 16 4 5⁄ 8 59.32 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 48.85 37.69 31.84 25.82 680 563 434 366 297 367 364 360 357 353 654 644 634 622 609 542 535 526 517 507 418 413 407 400 392 353 349 343 338 331 287 283 279 274 269 431 425 418 411 404 348 343 338 332 326 595 580 564 548 531 496 484 471 458 444 384 375 366 356 345 324 317 309 301 293 264 258 252 245 238 468 459 449 438 427 396 388 380 371 362 320 314 307 300 293 513 494 476 456 437 430 415 400 385 369 335 324 312 301 289 284 275 265 256 246 231 224 216 209 201 538 523 508 493 477 416 405 394 382 370 353 343 334 324 314 286 278 270 263 255 418 398 379 360 341 354 338 322 307 291 277 266 254 242 230 236 226 216 206 196 193 185 177 169 161 554 534 515 495 476 461 446 430 414 398 358 347 335 323 311 305 295 285 275 265 247 239 231 223 215 322 304 286 268 251 276 261 246 232 218 219 207 196 185 174 187 177 168 158 149 153 146 138 131 123 437 400 364 328 296 367 337 307 278 251 287 264 242 220 199 245 225 206 188 170 199 184 168 154 139 221 195 174 156 141 191 169 151 136 122 153 136 121 109 98 132 117 104 93 84 109 97 86 77 70 22.4 321 3.78 18.4 271 3.84 14.1 214 3.90 11.9 183 3.93 17.4 153 2.96 14.4 131 3.03 11.1 106 3.09 9.36 90.9 3.12 7.59 75.1 3.15 Fy Effective length KL (ft) 1⁄ 46 ksi Properties A (in2) I (in.4) r (in.) 9.59 151 3.96 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 41 Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 7× ×7 Nominal Size Thickness 5⁄ 8 1⁄ 2 3⁄ 8 6× ×6 5⁄ 16 1⁄ 4 3⁄ 16 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 50.81 42.05 32.58 27.59 22.42 17.08 42.30 35.24 27.48 23.34 19.02 14.53 Fy 46 ksi Effective length KL (ft) Wt./ft 0 584 485 375 317 258 196 486 407 316 268 219 167 6 7 8 9 10 553 543 531 518 503 461 452 443 432 421 357 351 344 336 327 302 297 291 285 278 246 242 237 232 226 188 185 181 177 173 451 438 425 410 394 379 369 358 346 333 295 288 280 271 262 251 245 239 231 223 205 200 195 189 183 157 153 149 145 140 11 12 13 14 15 488 472 454 437 418 409 396 382 368 353 318 308 298 288 277 270 262 254 245 236 220 214 207 200 193 168 164 159 153 148 377 359 341 322 303 320 306 291 276 260 252 241 230 219 207 215 206 197 187 178 176 169 162 154 146 135 130 124 119 113 16 17 18 19 20 399 380 361 342 323 338 322 307 291 276 265 254 242 230 218 226 217 207 197 187 185 177 170 162 154 142 136 130 124 118 284 265 246 227 210 245 229 214 199 184 195 184 172 160 149 168 158 148 138 129 138 131 123 115 107 107 101 95 89 83 22 24 26 28 30 285 248 214 184 161 245 215 187 161 140 195 172 151 130 113 167 148 130 113 98 138 123 108 94 81 107 95 84 73 63 175 147 125 108 94 155 131 111 96 84 127 107 91 79 69 111 93 80 69 60 92 78 67 57 50 72 61 52 45 39 32 34 141 125 123 109 100 88 86 76 72 63 56 49 83 73 73 65 60 53 53 47 44 39 34 30 35 36 37 38 39 118 111 106 100 95 103 97 92 87 83 83 79 74 71 67 72 68 64 61 58 60 57 54 51 48 47 44 42 40 38 69 61 58 50 48 45 44 41 39 37 37 35 33 31 29 27 26 24 23 40 90 79 64 55 46 36 12.4 57.3 2.15 10.4 50.5 2.21 8.08 41.6 2.27 6.86 36.3 2.30 5.59 30.3 2.33 4.27 23.8 2.36 Properties 2 A (in ) I (in.4) r (in.) 14.9 97.5 2.56 12.4 84.6 2.62 9.58 68.7 2.68 8.11 59.5 2.71 6.59 49.4 2.74 5.02 38.5 2.77 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 42 COLUMN DESIGN Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 51⁄2×51⁄2 Nominal Size 5× ×5 Thickness 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 Wt./ft 24.93 21.21 17.32 13.25 28.43 22.37 19.08 15.62 11.97 8.16 Effective length KL (ft) Fy 46 ksi 0 286 244 199 152 327 257 219 179 138 94 6 7 8 9 10 264 256 248 238 228 225 219 212 204 195 184 179 173 167 161 141 137 133 129 124 294 282 270 257 242 233 224 215 205 194 199 192 184 176 167 163 158 152 145 138 126 121 117 112 107 86 83 80 77 73 11 12 13 14 15 218 207 195 184 172 187 177 168 158 148 154 146 139 131 123 118 113 107 101 95 228 213 197 182 167 183 172 160 149 137 158 148 139 129 119 131 123 115 107 99 101 95 89 84 78 70 66 62 58 54 16 17 18 19 20 160 149 137 126 115 139 129 119 110 101 115 107 99 92 84 89 83 77 72 66 152 138 124 111 100 126 115 104 93 84 110 100 91 82 74 92 84 77 69 63 72 66 60 55 50 50 46 42 38 35 22 24 26 28 30 96 80 68 59 51 84 70 60 52 45 70 59 50 43 38 55 47 40 34 30 83 70 59 51 45 70 59 50 43 37 61 52 44 38 33 52 44 37 32 28 41 34 29 25 22 29 24 21 18 15 31 32 33 34 35 48 45 43 40 42 40 37 35 35 33 31 29 28 28 26 25 23 22 35 31 26 24 21 19 15 14 13 6.58 22.8 1.86 5.61 20.1 1.89 4.59 16.9 1.92 3.52 13.4 1.95 2.40 9.41 1.98 Properties 2 A (in ) I (in.4) r (in.) 7.33 31.2 2.07 6.23 27.4 2.10 5.09 23.0 2.13 3.89 18.1 2.16 8.36 27.0 1.80 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 43 Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 41⁄2×41⁄2 Nominal Size 4× ×4 Thickness 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 Wt./ft 19.82 16.96 13.91 10.70 7.31 Effective length KL (ft) Fy 1⁄ 2 3⁄ 8 21.63 17.27 5⁄ 16 1⁄ 4 14.83 12.21 3⁄ 16 1⁄ 8 9.42 6.46 46 ksi 0 228 195 160 123 84 249 199 170 140 108 74 6 7 8 9 10 201 192 182 171 160 172 165 157 148 139 142 136 130 123 115 110 105 100 95 90 75 72 69 65 62 208 195 180 166 151 168 158 148 137 125 145 137 128 119 110 120 114 107 100 92 93 89 83 78 72 64 61 58 54 50 11 12 13 14 15 149 137 125 114 103 129 119 110 100 91 107 100 92 84 76 84 78 72 66 60 58 54 50 46 42 136 121 107 93 81 114 102 91 81 70 100 90 81 72 63 84 76 68 61 54 66 60 54 49 43 46 42 38 34 31 16 17 18 19 20 92 82 73 66 59 81 73 65 58 53 69 62 55 49 45 55 49 44 39 36 38 35 31 28 25 71 63 56 50 46 62 55 49 44 40 55 49 44 39 35 47 42 37 34 30 38 34 30 27 24 27 24 21 19 17 21 22 23 24 25 54 49 45 41 38 48 43 40 36 34 41 37 34 31 29 32 29 27 25 23 23 21 19 17 16 41 38 34 36 33 30 27 32 29 27 25 28 25 23 21 19 22 20 18 17 16 16 14 13 12 11 26 35 31 26 21 15 27 28 29 32 29 27 25 23 20 18 17 14 13 12 10 Properties 2 A (in ) I (in.4) r (in.) 5.83 16.0 1.66 4.98 14.2 1.69 4.09 12.1 1.72 3.14 9.60 1.75 2.15 6.78 1.78 6.36 12.3 1.39 5.08 10.7 1.45 4.36 9.58 1.48 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.59 8.22 1.51 2.77 6.59 1.54 1.90 4.70 1.57 3 - 44 COLUMN DESIGN Fy = 46 ksi COLUMNS Square structural tubing Design axial strength in kips (φ = 0.85) 31⁄2×31⁄2 Nominal Size 3× ×3 Thickness 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 Wt./ft 12.7 10.51 8.15 5.61 10.58 8.81 6.87 4.75 0 146 121 93 65 122 101 79 55 6 7 8 9 10 118 109 100 90 81 99 92 84 76 69 77 72 66 60 54 54 50 46 42 39 90 80 71 61 52 76 68 61 53 45 60 54 49 43 37 42 39 35 31 27 11 12 13 14 15 71 62 54 46 40 61 54 46 40 35 49 43 38 32 28 35 31 27 23 20 44 37 31 27 23 38 32 27 24 21 32 27 23 19 17 23 20 17 14 12 16 17 18 19 20 35 31 28 25 23 31 27 24 22 20 25 22 20 18 16 18 16 14 13 11 21 18 18 16 14 15 13 12 11 10 9 8 21 22 21 18 14 13 10 9 3.73 6.09 1.28 3.09 5.29 1.31 2.39 4.29 1.34 3.11 3.58 1.07 2.59 3.16 1.10 2.02 2.60 1.13 1.40 1.90 1.16 Effective length KL (ft) Fy 46 ksi Properties A (in2) I (in.4) r (in.) 1.65 3.09 1.37 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 45 Fy = 46 ksi Y COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) X X Y Nominal Size 16× ×12 16× ×8 14× ×12 14× ×10 Thickness 1⁄ 1⁄ 1⁄ Wt./ft 89.68 76.07 82.88 63.21 76.07 0 1030 876 952 726 876 6 7 8 9 10 1020 1010 1010 998 990 848 838 827 815 801 938 933 927 920 912 715 712 707 702 697 11 12 13 14 15 982 973 963 952 941 786 771 754 736 717 904 895 886 876 865 16 17 18 19 20 929 916 903 889 875 697 677 657 635 614 22 24 26 28 30 845 813 781 746 711 32 34 36 38 40 676 640 604 568 533 2 2 2 3⁄ 8 2 12× ×10 3⁄ 8 58.10 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 69.27 53.00 44.60 36.03 669 796 609 513 414 857 850 843 834 825 655 650 644 638 631 778 772 765 757 748 596 591 586 580 573 502 498 493 488 483 405 402 399 395 390 691 684 677 669 661 815 803 791 779 765 623 615 606 597 587 738 728 716 704 692 566 558 550 541 531 477 470 463 456 448 386 380 375 369 363 854 842 829 816 803 653 644 634 625 615 751 737 721 705 689 576 565 554 542 530 679 665 650 636 620 522 511 501 489 478 440 431 422 413 404 356 349 342 335 327 569 525 480 436 393 774 744 713 681 648 593 571 548 524 499 655 620 584 547 511 504 478 451 424 396 589 556 522 488 454 454 430 404 379 353 384 363 342 321 300 311 295 278 261 244 352 313 279 250 226 615 581 547 514 480 474 448 423 398 372 474 438 403 369 335 368 341 315 289 264 420 387 355 324 293 328 302 278 254 231 278 257 237 217 197 227 210 193 177 162 17.1 476 284 1.29 4.08 20.4 419 316 1.15 3.94 15.6 330 249 1.15 4.00 13.1 281 213 1.15 4.03 10.6 230 174 1.15 4.06 Fy Effective length KL (ft) with respect to least radius of gyration 1⁄ 46 ksi Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 26.4 962 618 1.25 4.84 22.4 722 244 1.72 3.30 24.4 699 552 1.13 4.76 18.6 546 431 1.13 4.82 22.4 608 361 1.30 4.02 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 46 COLUMN DESIGN Fy = 46 ksi Y X X COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) Y 12× ×8 Nominal Size 12× ×6 Thickness 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 Wt./ft 76.33 62.46 47.90 40.35 67.82 55.66 42.79 36.10 0 876 719 551 465 778 641 493 414 6 7 8 9 10 845 835 822 809 794 695 687 677 666 655 534 527 520 512 503 450 445 439 433 425 731 715 697 677 655 604 591 577 561 543 466 456 445 434 421 392 384 376 366 355 11 12 13 14 15 778 760 742 722 702 642 628 613 598 582 494 483 473 461 449 417 409 400 390 380 632 607 581 555 528 525 505 485 464 442 407 393 378 362 346 344 332 320 307 293 16 17 18 19 20 681 659 637 614 591 565 547 530 511 493 437 424 410 397 383 370 359 348 336 325 500 473 445 418 390 420 398 375 353 331 329 313 296 279 262 280 266 252 238 224 22 24 26 28 30 544 497 451 405 362 455 417 380 343 307 355 326 298 270 243 301 277 253 230 207 338 288 245 211 184 288 247 211 182 158 230 199 170 146 128 197 171 146 126 110 32 34 36 38 39 320 283 252 227 215 273 241 215 193 184 217 192 171 154 146 185 164 146 131 125 162 143 128 115 109 139 123 110 99 94 112 99 89 80 75 97 86 76 69 65 40 205 174 139 119 89 72 62 16.4 287 96.0 1.73 2.42 12.6 228 77.2 1.72 2.48 10.6 196 66.6 1.71 2.51 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 22.4 418 221 1.38 3.14 18.4 353 188 1.37 3.20 14.1 279 149 1.37 3.26 11.9 239 128 1.37 3.28 19.9 337 112 1.73 2.37 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 47 Fy = 46 ksi Y COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) X X Y 10× ×8 Nominal Size 10× ×6 Thickness 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 Wt./ft 55.66 42.79 36.10 29.23 48.85 37.69 31.84 25.82 0 641 493 414 336 563 434 366 297 6 7 8 9 10 619 611 602 592 581 476 470 463 456 448 401 396 390 384 377 325 321 317 312 306 529 517 504 490 474 409 400 391 380 368 345 338 330 321 312 281 275 269 261 254 11 12 13 14 15 568 556 542 528 513 439 429 419 408 397 370 362 354 345 335 300 294 287 280 273 457 439 421 402 382 356 343 329 315 300 302 291 279 267 255 246 237 228 218 209 16 17 18 19 20 497 481 465 448 431 386 374 361 349 336 326 316 306 295 285 265 257 249 241 232 362 342 322 302 282 285 270 255 240 225 243 230 218 205 193 199 189 179 169 159 22 24 26 28 30 396 361 327 294 262 310 284 258 232 208 263 241 220 198 178 215 197 180 163 146 244 208 177 153 133 196 169 144 124 108 169 146 124 107 93 139 121 103 89 77 32 34 36 38 39 231 205 183 164 156 184 163 146 131 124 158 140 125 112 106 130 116 103 93 88 117 104 92 83 79 95 84 75 67 64 82 73 65 58 55 68 60 54 48 46 40 148 118 101 84 61 52 44 11.1 145 65.4 1.49 2.43 9.36 125 56.5 1.48 2.46 7.59 103 46.9 1.48 2.49 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 16.4 226 160 1.19 3.12 12.6 180 127 1.19 3.18 10.6 154 109 1.19 3.21 8.59 127 90.2 1.19 3.24 14.4 181 80.8 1.50 2.37 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 48 COLUMN DESIGN Fy = 46 ksi Y X COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) X Y 10× ×5 Nominal Size 8× ×6 Thickness 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 Wt./ft 35.13 29.72 24.12 42.05 32.58 27.59 22.42 0 403 341 277 485 375 317 258 6 7 8 9 10 370 359 347 334 319 315 306 295 284 272 256 249 241 232 222 454 444 432 419 404 352 344 335 325 315 298 292 284 276 268 243 238 232 225 218 11 12 13 14 15 304 288 272 255 239 260 246 233 219 205 212 201 191 179 168 389 373 357 340 322 303 292 279 266 253 258 248 238 227 217 211 203 195 186 178 16 17 18 19 20 222 206 189 174 159 191 178 164 151 138 157 146 135 124 114 305 287 269 252 235 240 227 213 200 187 205 194 183 172 161 169 160 151 142 133 22 24 26 28 30 131 110 94 81 71 115 96 82 71 62 95 80 68 59 51 201 170 145 125 109 161 137 117 101 88 140 119 102 88 76 116 99 85 73 64 32 34 36 38 39 62 55 54 48 45 40 96 85 76 68 77 68 61 55 52 67 59 53 48 45 56 49 44 40 38 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi 36 40 Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 10.3 128 42.9 1.72 2.04 8.73 110 37.2 1.71 2.07 7.09 91.2 31.1 1.72 2.09 12.4 103 65.7 1.25 2.31 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.58 83.7 53.5 1.25 2.36 8.11 72.4 46.4 1.25 2.39 6.59 60.1 38.6 1.25 2.42 DESIGN STRENGTH OF COLUMNS 3 - 49 Fy = 46 ksi Y COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) X X Y 8× ×4 Nominal Size 7× ×5 Thickness 5⁄ 8 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 Wt./ft 42.30 35.24 27.48 23.34 19.02 35.24 27.48 23.34 19.02 14.53 0 486 407 316 268 219 407 316 268 219 167 6 7 8 9 10 415 393 368 341 314 351 333 313 292 270 276 262 248 233 216 235 224 212 199 185 192 184 174 164 153 369 357 342 327 311 288 279 268 257 245 245 238 229 220 210 200 194 187 180 172 154 149 144 138 132 11 12 13 14 15 287 259 233 207 182 248 226 204 183 162 200 183 167 150 135 172 158 144 130 117 142 131 120 109 98 294 276 258 240 222 232 219 205 192 178 199 188 177 165 154 164 155 146 137 127 126 119 113 106 99 16 17 18 19 20 160 141 126 113 102 143 126 113 101 91 120 106 95 85 77 104 92 82 74 67 88 78 70 62 56 205 187 170 154 139 165 151 138 126 114 142 131 120 110 100 118 109 101 92 84 92 85 79 72 66 22 24 25 26 27 84 71 76 63 58 63 53 49 45 55 46 43 39 37 47 39 36 33 31 115 97 89 82 76 94 79 73 67 62 82 69 64 59 55 69 58 54 50 46 54 46 42 39 36 71 66 62 58 58 54 51 47 44 51 47 44 41 39 43 40 37 35 33 34 31 29 27 26 37 31 24 23 6.86 45.5 26.9 1.30 1.98 5.59 38.0 22.6 1.30 2.01 4.27 29.8 17.7 1.29 2.04 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi 28 29 30 31 32 33 34 Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 12.4 85.1 27.4 1.76 1.49 10.4 75.1 24.6 1.75 1.54 8.08 61.9 20.6 1.73 1.60 6.86 53.9 18.1 1.73 1.62 5.59 45.1 15.3 1.72 1.65 10.40 63.5 37.2 1.31 1.90 8.08 52.2 30.8 1.30 1.95 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 50 COLUMN DESIGN Fy = 46 ksi Y X X COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) Y 7× ×4 Nominal Size 6× ×4 Thickness 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 Wt./ft 24.93 21.21 17.32 13.25 28.43 22.37 19.08 15.62 11.97 0 287 244 199 152 327 257 219 179 138 6 7 8 9 10 249 236 223 208 193 213 202 191 179 167 175 166 158 148 138 134 128 121 114 107 279 263 246 228 210 222 211 198 185 171 190 181 171 160 148 157 149 141 132 123 121 115 109 102 96 11 12 13 14 15 178 163 148 133 118 154 141 129 116 104 128 118 107 97 88 99 92 84 76 69 191 173 155 137 121 157 143 129 116 103 136 125 113 102 91 114 104 95 85 77 89 81 74 67 61 16 17 18 19 20 105 93 83 74 67 92 82 73 65 59 78 69 62 56 50 62 55 49 44 40 106 94 84 75 68 90 80 71 64 58 80 71 63 57 51 68 60 54 48 44 54 48 43 38 35 21 22 23 24 25 61 55 51 46 43 54 49 45 41 38 45 41 38 35 32 36 33 30 28 25 62 56 51 47 52 48 44 40 37 46 42 39 36 33 39 36 33 30 28 31 29 26 24 22 26 27 40 35 30 27 23 22 30 26 20 19 5.61 26.2 13.8 1.38 1.57 4.59 22.1 11.7 1.37 1.60 3.52 17.4 9.32 1.37 1.63 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 7.33 44.0 18.1 1.56 1.57 6.23 38.5 16.0 1.56 1.60 5.09 32.3 13.5 1.55 1.63 3.89 25.4 10.7 1.54 1.66 8.36 35.3 18.4 1.39 1.48 6.58 29.7 15.6 1.38 1.54 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 51 Fy = 46 ksi Y COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) X X Y 6× ×3 Nominal Size 5× ×4 Thickness 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 Wt./ft 25.03 19.82 16.96 13.91 10.70 19.82 16.96 13.91 10.70 0 288 228 195 160 123 228 195 160 123 6 7 8 9 10 216 194 172 150 129 176 160 144 127 111 152 138 125 111 97 126 116 105 94 83 98 90 82 74 65 195 185 173 161 148 168 159 149 139 129 139 132 124 116 107 107 102 96 90 84 11 12 13 14 15 109 92 78 67 59 95 81 69 59 52 84 71 61 52 46 72 62 53 45 39 57 50 42 36 32 135 123 110 98 86 118 107 97 87 77 99 90 82 73 65 77 71 64 58 52 16 17 18 19 20 52 46 41 45 40 36 32 40 36 32 28 35 31 27 25 22 28 25 22 20 18 76 67 60 54 49 67 60 53 48 43 58 51 46 41 37 46 41 36 33 29 44 40 37 34 31 39 36 33 30 28 33 30 28 26 24 27 24 22 20 19 22 17 4.09 14.1 9.98 1.19 1.56 3.14 11.2 7.96 1.19 1.59 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi 21 22 23 24 25 26 Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 7.36 27.7 8.91 1.76 1.10 5.83 23.8 7.78 1.74 1.16 4.98 21.1 6.98 1.75 1.18 4.09 17.9 6.00 1.73 1.21 3.14 14.3 4.83 1.72 1.24 5.83 18.7 13.2 1.19 1.50 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.98 16.6 11.7 1.20 1.53 3 - 52 COLUMN DESIGN Fy = 46 ksi Y X X COLUMNS Rectangular structural tubing Design axial strength in kips (φ = 0.85) Y 5× ×3 Nominal Size 4× ×3 Thickness 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 Wt./ft 21.63 17.27 14.83 12.21 9.42 6.46 12.70 10.51 8.15 5.61 0 249 199 170 140 108 74 146 121 93 64 6 7 8 9 10 183 164 145 125 107 151 137 122 107 93 132 120 108 95 83 110 100 91 81 71 85 78 71 63 56 59 55 50 45 40 110 100 89 78 67 93 84 76 67 58 73 66 60 53 47 51 47 42 38 33 11 12 13 14 15 89 75 64 55 48 79 67 57 49 43 71 60 51 44 39 61 52 45 38 33 49 42 36 31 27 35 30 26 22 19 57 48 41 35 31 50 42 36 31 27 40 34 29 25 22 29 25 21 18 16 16 17 18 19 20 42 37 38 33 30 34 30 27 24 29 26 23 21 23 21 19 17 15 17 15 13 12 11 27 24 21 24 21 19 17 19 17 15 14 14 12 11 10 9 1.90 6.44 2.93 1.48 1.24 3.73 7.45 4.71 1.26 1.12 3.09 6.45 4.10 1.26 1.15 2.39 5.23 3.34 1.25 1.18 1.65 3.76 2.41 1.25 1.21 Effective length KL (ft) with respect to least radius of gyration Fy 46 ksi Properties 2 A (in ) Ix (in.4) Iy (in.4) rx / ry ry (in.) 6.36 16.9 7.33 1.52 1.07 5.08 14.7 6.48 1.50 1.13 4.36 13.2 5.85 1.50 1.16 3.59 11.3 5.05 1.49 1.19 2.77 9.06 4.08 1.50 1.21 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 53 Double Angles and WT Shapes Double Angles Design strengths are tabulated for the effective length KL in feet with respect to both the X-X and Y-Y axes. Design strengths about the X-X axis are in accordance with LRFD Specification Section E2. For buckling about the Y-Y axis the shear deformation of the connectors may require the slenderness to be increased in accordance with the equations for (Kl / r)m in Section E4. Incorporating this slenderness ratio, the design strengths are determined from Section E2 or E3, whichever governs. In addition to the usual limit state of flexural buckling for columns, double angle and WT shapes in compression may also be governed by the limit state of flexural-torsional buckling, in accordance with Section E3 of the LRFD Specification. This has been included in the tables. Discussion under Section C2 of the LRFD Specification Commentary points out that for trusses it is usual practice to take K = 1.0. No values are listed beyond KL / r = 200. For buckling about the X-X axis, both angles move parallel so that the design strength is not affected by the connectors. For buckling about the Y-Y axis, the design strengths are tabulated for the indicated number n of intermediate connectors. For connectors with snug-tight bolts or different spacings, the design strength must be recalculated using the corresponding modified slenderness and LRFD Specification Section E4. The number of intermediate connectors given in the table was selected so the design strength about the Y-Y axis is 90 percent or greater of that for buckling of the two angles acting as a unit. If fewer connectors are used, the strength must be reduced accordingly. According to Section E4 of the LRFD Specification, the connectors must be spaced so that the slenderness ratio a / rz of the individual angle does not exceed 75 percent of the governing slenderness ratio of the built-up member. In designing members fabricated of two angles connected to opposite faces of a gusset plate, Chapter J of the LRFD Specification states that eccentricity between the gage lines and gravity axis may be neglected. In the following tables, this eccentricity is neglected. The tabulated loads for double angles referred to in the Y-Y axis assume a 3⁄8-in. spacing between angles. These values are conservative when a wider spacing is provided. Example 3-5 illustrates a method for determining the design strength when a 3⁄4-in. gusset plate is used. Examples 3-6 and 3-7 demonstrate how to determine the number of connectors when Klx / rx governs and when the modified (Kly / ry)m governs. EXAMPLE 3-5 Given: Solution: Using 50 ksi steel, determine the design strength with respect to the Y-Y axis of a double angle member of 8×8×1 angles with an effective length equal to 12 ft, and connected to a 3⁄4-in. thick gusset plate. ry = 3.53 in. (from Double Angle Column Design Strength Table for two L8×8×1 with 3⁄8-in. plate) ry′ = 3.67 in. (from Part 1, Properties, Two Equal-Leg Angles, two L8×8×1 with 3⁄4-in. plate) ry 3.53 = = 0.962 ry′ 3.67 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 54 COLUMN DESIGN Equivalent effective length = 0.962 × 12 ft = 11.5 ft Enter Column Design Strength Table for two L8×8×1 with reference to Y-Y axis for effective lengths between 10 and 15 feet, read 1,120 and 1,000 kips, respectively. Equivalent design strength = 1,120 − (1,120 − 1,000) × 11.5 − 10 15 − 10 = 1,084 kips EXAMPLE 3-6 Given: Solution: Using a double angle member of 5×3×1⁄2 angles (short legs back to back) and 36 ksi steel, with Lx = 10 ft and Ly = 20 ft, and a factored axial load of 70 kips, determine the number of connectors required. Assume K = 1.0 and that the intermediate connectors are snug-tight bolted. Kx Lx = 10 ft, Kx lx / rx = (10 × 12) / 0.829 = 145 Ky Ly = 20 ft, Ky ly / ry = (20 × 12) / 2.5 = 96 The X-X axis governs. From the X-X axis portion of the table φPn = 76 kips > 70 kips o.k. Find number of connectors required based on Section E4: a / rz ≤ 0.75KLx / rx a ≤ 0.75(KLx / rx)rz = 0.75 (145) 0.648 = 70 in. Assume two connectors are required; a = (10 × 12) / 3 = 40 in. a / rz = 40 / rz = 40.0 / 0.648 = 61.7 Check that modified (Ky ly / ry)m does not govern. According to Specification Equation E4-1, 962 + 61.7 2 = 114 (Ky ly / ry)m = √ Modified ly′ = 114ry / Ky = 114 (2.50 in.) / 1.0 = 285 in. = 23.8 ft Inspection of the tables indicates that Kxlx / rx still governs, therefore one connector is required every 40 inches. EXAMPLE 3-7 Given: Using the same steel shape and bolts as Example 3-6, with Lx = 10 ft and Ly = 30 ft, determine the number of connectors required and the corresponding maximum design strength. Assume K = 1.0. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS Solution: 3 - 55 Kx Lx = 10 ft, Kx lx / rx = (10 × 12) / 0.829 = 145 Ky Ly = 30 ft, Ky ly / ry = (30 × 12) / 2.5 = 144 Kx lx / rx appears to govern, so try one connector in the 10-ft length. Check (Ky ly / ry)m with a / rz = 5 × 12 / 0.648 = 93 1442 + 932 = 171 (Ky ly / ry)m = √ Since (Ky ly / ry)m governs, the Y-Y portion of the table gives a design strength of 72 kips provided four connectors are used in the 30-ft length. This gives a spacing of 30 ft / 5 = 6.0 ft. Check if (Kyly / ry)m governs with = (6.0 × 12) / 0.648 = 111 a / rz 1442 + 111 2 = 182 (Kyly / ry)m = √ (Ky ly / ry)m still governs, so four connectors at 6.0 ft would be appropriate. Verify that a / rz < 0.75 governing Kl / r : 111 < (0.75 × 182 = 137) o.k. Modified ly′ = 182ry / Ky = 182(2.5 in.) / 1.0 = 455 in. = 37.9 ft From the tables, the design strength is 45 kips. The design strength can be increased by closer spacing of the connectors, which reduces (Kyly / ry)m . AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 56 COLUMN DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 57 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Equal legs 8 in. back to back of angles 3/ ′′ 8 8× ×8 Size 11⁄8 Thickness Wt./ft 36 7⁄ 8 1 113.8 Fy X-X AXIS Y 102.0 50 3⁄ 4 90.0 5⁄ 8 77.8 1⁄ 2 65.4 52.8 36 50 36 50 36 50 36 50 36 50 0 1030 1420 918 1280 811 1130 701 973 586 763 432 550 10 14 18 22 26 901 1190 795 1000 674 795 548 596 427 430 808 715 608 496 388 1070 902 719 542 391 715 633 539 440 345 945 799 638 482 349 619 549 469 384 303 819 694 556 422 306 518 461 395 325 257 651 559 456 354 261 387 348 302 253 205 478 417 349 278 212 30 34 38 39 40 323 251 201 191 182 323 251 201 191 182 294 229 183 174 165 294 229 183 174 165 262 204 163 155 147 262 204 163 155 147 230 179 143 136 129 230 179 143 136 129 196 153 122 116 110 196 153 122 116 110 159 124 99 94 90 159 124 99 94 90 123 123 105 105 85 85 0 1030 1420 918 1280 811 1130 701 973 586 763 432 550 10 15 20 25 30 939 1260 869 1130 779 975 677 803 570 632 834 772 692 601 506 1120 1000 864 711 560 726 670 599 517 432 965 865 741 606 473 615 569 509 440 368 808 728 626 514 402 495 460 413 359 302 609 555 486 407 325 345 324 297 263 226 406 378 341 295 244 35 40 45 50 55 465 366 290 235 194 477 366 290 235 194 412 324 257 208 172 422 324 257 208 172 349 272 216 175 145 354 272 216 175 145 297 232 184 150 124 301 232 184 150 124 244 191 152 124 103 248 191 152 124 103 188 150 120 98 82 193 150 120 98 82 56 57 58 59 188 181 175 169 188 181 175 169 166 161 155 166 161 155 140 135 130 140 135 130 120 116 112 120 116 112 99 96 99 96 79 76 79 76 No. of a Connectors 3⁄ Effective length KL (ft) with respect to indicated axis b Y-Y AXIS 41 2 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 33.5 2.42 3.55 30.0 2.44 3.53 26.5 2.45 3.51 22.9 2.47 3.49 19.2 2.49 3.47 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 15.5 2.50 3.45 3 - 58 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) 3⁄ 8 Equal legs in. back to back of angles 6× ×6 Size Thickness Wt./ft 74.8 Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 7⁄ 8 1 3⁄ 4 66.2 57.4 1⁄ 2 48.4 3⁄ 8 39.2 29.8 36 50 36 50 36 50 36 50 36 50 36 50 0 673 935 597 829 517 718 435 604 352 470 243 309 8 10 12 14 16 580 533 481 426 370 759 676 586 495 407 515 473 428 379 330 675 601 522 441 364 447 412 373 332 290 587 524 457 388 321 377 347 315 280 245 495 442 386 328 272 306 283 257 229 201 389 351 308 265 222 214 200 183 166 147 264 241 216 190 164 18 22 26 30 31 315 218 156 117 326 218 156 117 282 196 140 105 292 196 140 105 248 173 124 93 259 173 124 93 210 147 105 79 220 147 105 79 173 122 87 65 61 182 122 87 65 61 129 94 68 51 48 138 94 68 51 48 0 673 935 597 829 517 718 435 604 352 470 243 309 10 12 14 16 18 595 567 537 503 468 787 738 683 625 565 523 499 472 442 410 690 647 598 547 494 449 428 404 379 352 590 552 511 468 422 371 353 334 313 291 483 453 420 385 348 289 275 260 244 226 359 338 315 289 262 187 180 172 163 153 219 210 199 186 173 20 22 24 26 28 431 394 357 321 286 505 446 389 334 288 378 345 312 280 249 441 388 338 290 250 324 295 267 239 213 377 332 288 247 214 268 244 221 198 176 310 273 238 204 176 208 189 171 152 135 235 207 181 155 135 142 131 120 109 97 158 143 128 113 98 30 32 34 36 38 252 221 196 175 157 252 221 196 175 157 218 192 170 152 137 218 192 170 152 137 187 164 146 130 117 187 164 146 130 117 154 136 120 108 97 154 136 120 108 97 118 104 92 82 74 118 104 92 82 74 86 76 68 61 55 86 76 68 61 55 40 42 43 44 45 142 129 123 117 112 142 129 123 117 112 123 112 107 102 98 123 112 107 102 98 106 96 91 87 106 96 91 87 87 79 76 72 87 79 76 72 67 61 58 56 67 61 58 56 50 45 43 50 45 43 Properties of 2 A (in2) rx (in.) ry (in.) 5⁄ 8 22.0 1.80 2.73 19.5 1.81 2.70 No. of a Connectors Y 3/ ′′ 8 b 2 3 angles—3⁄8 in. back to back 16.9 1.83 2.68 14.2 1.84 2.66 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11.5 1.86 2.64 8.72 1.88 2.62 DESIGN STRENGTH OF COLUMNS 3 - 59 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Equal legs in. back to back of angles 5× ×5 Size 7⁄ 8 Thickness Wt./ft X-X AXIS 3⁄ 4 54.5 Fy Effective length KL (ft) with respect to indicated axis 1⁄ 2 47.2 3⁄ 8 32.4 5⁄ 16 24.6 20.6 36 50 36 50 36 50 36 50 36 50 0 490 680 425 591 291 404 217 282 169 215 6 8 10 12 14 433 393 348 299 251 573 502 423 343 268 377 344 305 264 222 500 440 372 304 239 259 237 211 183 155 344 304 259 213 169 194 178 160 140 119 244 219 189 159 129 152 141 127 113 97 189 171 150 128 107 16 18 20 22 24 204 162 132 109 91 206 162 132 109 91 182 145 117 97 82 183 145 117 97 82 128 103 83 69 58 130 103 83 69 58 99 80 65 54 45 102 80 65 54 45 82 68 55 46 38 86 68 55 46 38 75 75 53 53 42 39 42 39 35 33 35 33 25 26 Y-Y AXIS 3/ ′′ 8 Y 0 490 680 425 591 291 404 217 282 169 215 6 8 10 12 14 457 438 414 388 358 617 582 540 492 441 394 377 357 334 309 531 501 464 423 379 260 249 236 221 204 345 326 303 277 249 184 176 168 157 145 224 214 201 186 168 136 131 126 119 111 160 154 146 137 127 16 18 20 22 24 327 295 263 231 201 389 337 287 240 202 282 254 226 199 172 334 289 246 205 173 186 168 149 131 114 219 190 161 135 114 133 120 107 93 81 150 132 113 95 81 103 94 84 75 66 115 103 90 78 66 26 28 30 32 34 172 149 130 114 101 172 149 130 114 101 148 127 111 98 87 148 127 111 98 87 97 84 73 65 57 97 84 73 65 57 69 60 52 46 41 69 60 52 46 41 57 49 43 38 34 57 49 43 38 34 36 37 38 90 85 81 90 85 81 77 73 69 77 73 69 51 48 51 48 37 35 37 35 30 30 A (in ) rx (in.) ry (in.) 16.0 1.49 2.30 13.9 1.51 2.28 b 2 3 Properties of 2 angles—3⁄8 in. back to back 2 No. of a Connectors 3⁄ 8 9.50 1.54 2.24 7.22 1.56 2.22 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 6.05 1.57 2.21 3 - 60 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) 3⁄ 8 Equal legs in. back to back of angles 4× ×4 Size 3⁄ 4 Thickness Wt./ft 37.0 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 5⁄ 8 1⁄ 2 31.4 3⁄ 8 25.6 5⁄ 16 19.6 1⁄ 4 16.4 13.2 36 50 36 50 36 50 36 50 36 50 36 50 0 334 463 282 392 230 319 175 243 146 191 108 138 4 6 8 10 12 306 275 237 195 154 411 354 288 220 159 259 233 201 167 132 349 301 245 189 137 212 191 166 138 110 285 247 203 157 115 162 146 127 106 85 217 189 156 121 89 135 123 107 90 72 172 152 127 101 76 101 92 82 70 57 126 112 96 78 61 14 16 18 19 20 117 89 71 63 117 89 71 63 100 77 61 54 49 100 77 61 54 49 84 65 51 46 41 84 65 51 46 41 65 50 40 36 32 65 50 40 36 32 56 43 34 30 27 56 43 34 30 27 45 35 28 25 22 46 35 28 25 22 0 334 463 282 392 230 319 175 243 146 191 108 138 6 8 10 12 14 303 284 262 237 210 406 371 332 288 245 254 238 219 198 176 339 311 277 241 204 204 191 176 158 140 270 247 220 191 161 151 141 130 117 104 196 180 161 141 119 121 114 106 96 85 148 138 125 110 95 85 81 76 70 63 100 94 87 79 70 16 18 20 22 24 183 157 132 109 92 202 163 132 109 92 153 131 109 91 76 168 135 109 91 76 122 104 86 72 60 133 106 86 72 60 90 77 64 53 45 98 79 64 53 45 74 63 53 44 37 79 64 53 44 37 56 48 41 35 29 60 50 41 35 29 26 28 29 30 31 78 67 63 59 55 78 67 63 59 55 65 56 52 49 46 65 56 52 49 46 51 44 41 39 51 44 41 39 38 33 31 29 38 33 31 29 32 27 26 24 32 27 26 24 25 22 20 25 22 20 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 10.9 1.19 1.88 9.22 1.20 1.86 7.50 1.22 1.83 5.72 1.23 1.81 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.80 1.24 1.80 3.88 1.25 1.79 No. of a Connectors Y 3/ ′′ 8 b 3 DESIGN STRENGTH OF COLUMNS 3 - 61 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Equal legs 8 in. back to back of angles 31⁄2×31⁄2 Size 3⁄ 8 Thickness Wt./ft X-X AXIS 5⁄ 16 17.0 Fy Effective length KL (ft) with respect to indicated axis Y 1⁄ 4 14.4 11.6 36 50 36 50 36 50 0 152 211 128 175 100 129 2 4 6 8 10 148 137 120 100 78 204 182 152 117 84 125 115 101 84 67 169 152 127 99 72 97 90 80 67 54 125 114 97 77 58 12 14 16 17 18 59 43 33 29 59 43 33 29 50 37 28 25 22 50 37 28 25 22 41 30 23 21 18 41 30 23 21 18 0 152 211 128 175 100 129 6 8 10 12 14 130 120 108 94 81 170 152 131 109 88 107 98 89 78 67 136 123 106 89 72 80 74 67 60 52 96 88 78 67 56 16 18 20 22 24 67 54 44 37 31 69 54 44 37 31 56 45 37 30 26 57 45 37 30 26 43 36 29 24 20 44 36 29 24 20 26 26 26 22 22 17 17 3/ ′′ 8 No. of a Connectors 3⁄ b Y-Y axis 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 4.97 1.07 1.61 4.18 1.08 1.60 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.38 1.09 1.59 3 - 62 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Y 3⁄ 8 Equal legs in. back to back of angles 3× ×3 Size 1⁄ 2 Thickness Wt./ft 18.8 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 3⁄ 8 5⁄ 16 14.4 1⁄ 4 12.2 3⁄ 16 9.8 7.42 36 50 36 50 36 50 36 50 36 50 0 168 234 129 179 109 151 88 118 61 77 2 4 5 6 7 162 145 133 120 106 222 190 169 146 123 125 112 103 93 83 171 147 131 114 97 105 94 87 79 70 144 124 111 97 82 85 77 71 64 57 112 98 88 77 66 59 54 50 46 41 74 66 60 54 47 8 9 10 11 12 92 79 66 54 46 101 81 66 54 46 72 62 52 43 36 80 64 52 43 36 61 53 45 37 31 68 55 45 37 31 50 43 37 31 26 56 46 37 31 26 37 32 28 24 20 41 34 28 24 20 13 14 15 39 34 39 34 31 27 23 31 27 23 26 23 20 26 23 20 22 19 16 22 19 16 17 15 13 17 15 13 0 168 234 129 179 109 151 88 118 61 77 2 4 6 8 10 163 155 143 128 111 223 209 187 161 132 123 117 108 97 84 167 156 140 121 99 101 97 89 80 70 136 128 115 99 82 79 75 70 63 55 100 95 86 75 63 50 48 45 42 37 59 57 53 48 42 12 14 16 18 20 94 76 60 47 38 104 78 60 47 38 70 57 45 36 29 78 58 45 36 29 58 47 37 29 24 64 48 37 29 24 46 38 29 23 19 50 38 29 23 19 32 27 22 17 14 35 28 22 17 14 22 23 32 29 32 29 24 22 24 22 20 18 20 18 16 14 16 14 12 11 12 11 A (in ) rx (in.) ry (in.) b 3 Properties of 2 angles—3⁄8 in. back to back 2 No. of a Connectors 3/ ′′ 8 5.50 0.898 1.43 4.22 0.913 1.41 3.55 0.922 1.40 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.88 0.930 1.39 2.18 0.939 1.38 DESIGN STRENGTH OF COLUMNS 3 - 63 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Equal legs 8 in. back to back of angles 21⁄2×21⁄2 Size 3⁄ 8 Thickness Wt./ft X-X AXIS Y-Y AXIS 5⁄ 16 11.8 Fy Effective length KL (ft) with respect to indicated axis Y 1⁄ 4 10.0 3⁄ 16 8.2 6.14 36 50 36 50 36 50 36 50 0 106 147 90 125 73 101 54 70 2 3 4 5 6 101 94 86 76 66 137 125 110 93 76 85 80 73 65 56 116 106 93 79 65 69 65 59 53 46 94 86 76 65 53 52 48 44 40 35 66 61 54 47 40 7 8 9 10 11 55 45 36 29 24 59 46 36 29 24 47 39 31 25 21 51 39 31 25 21 39 32 26 21 17 42 33 26 21 17 30 25 20 16 13 32 25 20 16 13 12 20 20 17 17 14 14 11 11 0 106 147 90 125 73 101 54 70 2 3 4 5 6 101 99 95 90 85 138 133 126 118 109 84 82 79 75 71 114 110 105 98 90 67 65 63 60 56 89 86 82 77 71 46 45 44 42 40 57 55 53 50 47 7 8 9 10 11 79 73 66 60 53 98 88 77 67 57 66 61 55 50 44 82 73 64 55 47 52 48 44 40 35 64 58 51 44 37 37 35 32 29 26 44 40 35 31 27 12 13 14 15 16 47 41 35 31 27 48 41 35 31 27 39 34 29 26 22 40 34 29 26 22 31 27 23 20 18 32 27 23 20 18 23 20 17 15 13 23 20 17 15 13 17 18 19 20 24 21 19 17 24 21 19 17 20 18 16 14 20 18 16 14 16 14 13 16 14 13 12 11 9 12 11 9 Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.) 3.47 0.753 1.21 2.93 0.761 1.20 2.38 0.769 1.19 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.80 0.778 1.18 3/ ′′ 8 No. of a Connectors 3⁄ b 3 3 - 64 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Y 3⁄ 8 Equal legs in. back to back of angles 2× ×2 Size 3⁄ 8 Thickness Wt./ft 9.4 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 5⁄ 16 1⁄ 4 7.84 3⁄ 16 6.38 1⁄ 8 4.88 3.30 36 50 36 50 36 50 36 50 36 50 0 83 116 70 98 58 80 44 61 27 34 2 3 4 5 6 76 69 59 49 38 103 88 72 55 39 65 58 50 42 33 87 75 61 47 34 53 48 41 35 28 71 62 51 39 29 40 37 32 27 21 54 47 39 30 22 25 23 20 17 14 31 28 24 19 15 7 8 9 10 29 22 18 29 22 18 25 19 15 12 25 19 15 12 21 16 13 10 21 16 13 10 16 13 10 8 16 13 10 8 11 9 7 6 11 9 7 6 0 83 116 70 98 58 80 44 61 27 34 2 3 4 5 6 79 76 72 67 61 108 102 95 86 76 67 64 60 56 51 90 86 79 72 63 54 51 49 45 41 72 68 63 57 51 39 38 36 33 31 52 49 46 42 37 22 21 20 19 18 26 25 24 22 20 7 8 9 10 11 55 49 43 37 31 66 55 46 37 31 46 41 36 30 26 55 46 38 31 26 37 33 29 24 21 44 37 30 25 21 27 24 21 18 15 32 27 22 18 15 16 15 13 11 10 18 16 14 12 10 12 13 14 15 16 26 22 19 17 15 26 22 19 17 15 22 18 16 14 12 22 18 16 14 12 17 15 13 11 10 17 15 13 11 10 13 11 9 8 7 13 11 9 8 7 8 7 6 5 5 8 7 6 5 5 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 2.72 0.594 1.01 2.30 0.601 1.00 1.88 0.609 0.989 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.43 0.617 0.977 0.960 0.626 0.965 No. of a Connectors 3/ ′′ 8 b 3 DESIGN STRENGTH OF COLUMNS 3 - 65 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Long legs 3⁄8 in. back to back of angles 3⁄ 4 1⁄ 2 Wt./ft 88.4 67.6 46.0 Fy 36 X-X AXIS 1⁄ 2 57.4 39.2 36 50 36 50 36 50 846 376 479 0 673 935 517 718 321 408 10 12 14 16 18 704 667 626 582 535 932 865 792 715 637 541 513 483 450 415 717 667 613 555 496 339 323 306 287 267 419 395 368 340 310 10 12 14 16 18 597 567 533 496 457 792 736 676 612 546 460 437 412 384 354 611 569 523 475 425 289 276 262 246 230 358 338 315 292 267 20 22 24 26 28 488 440 393 348 305 560 486 415 353 305 379 343 308 273 241 438 381 328 279 241 247 226 205 185 165 280 250 221 193 167 20 22 24 26 28 418 378 338 300 264 482 419 359 306 264 324 294 264 235 207 376 328 283 241 208 212 195 177 160 143 242 216 192 168 146 30 32 34 36 38 265 233 207 184 165 265 233 207 184 165 210 184 163 146 131 210 184 163 146 131 146 128 113 101 91 146 128 113 101 91 30 32 34 36 38 230 230 202 202 179 179 160 160 143 143 181 159 141 126 113 181 127 127 159 112 112 141 99 99 126 88 88 113 79 79 41 42 142 142 112 107 112 107 78 74 78 74 40 42 43 129 129 102 102 117 117 92 92 0 Y-Y AXIS Effective length KL (ft) with respect to indicated axis 3⁄ 4 74.8 796 1110 609 0 50 8× ×4 1 b 50 36 50 71 65 62 796 1110 609 846 376 479 0 729 703 672 636 595 978 932 876 811 741 537 519 496 470 440 709 677 638 593 543 301 293 282 270 256 357 346 331 314 295 6 8 10 12 14 568 741 416 533 234 275 520 657 381 473 217 251 464 562 339 405 197 223 404 463 294 333 175 192 342 368 248 263 150 159 935 517 718 321 408 16 18 20 22 24 551 506 459 412 366 667 592 517 445 378 408 375 340 305 271 490 435 381 328 279 240 223 205 187 169 273 249 225 200 176 16 18 20 22 24 282 238 194 160 135 300 238 194 160 135 203 162 132 110 93 26 28 32 321 279 214 323 279 214 238 207 159 239 207 159 151 133 103 152 133 103 25 26 125 115 125 115 85 34 36 40 41 42 190 170 138 131 125 190 170 138 131 125 141 126 103 98 141 126 103 98 92 82 67 92 82 67 A rx (in.) ry (in.) 26.0 2.49 2.52 19.9 2.53 2.48 13.5 2.56 2.44 22.0 2.52 1.61 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 204 126 127 162 103 103 132 84 84 110 70 70 93 60 60 85 55 55 3 Properties of 2 angles—3⁄8 in. back to back (in2) b 71 65 62 6 8 10 12 14 2 673 36 No. of a Connectors 1 No. of a Connectors 8× ×6 Size Thickness Y 16.9 2.55 1.55 11.5 2.59 1.51 3 - 66 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 3⁄ 4 1⁄ 2 3⁄ 8 Wt./ft 52.4 35.8 27.2 Fy 36 50 36 50 36 50 X-X AXIS Effective length KL (ft) with respect to indicated axis 0 471 655 310 401 205 254 3⁄ 4 5⁄ 8 1⁄ 2 3⁄ 8 47.2 40.0 32.4 24.6 36 0 50 36 50 36 50 36 50 425 591 358 497 291 388 201 256 8 10 12 14 16 427 404 378 349 318 571 529 481 431 379 283 268 252 233 214 355 332 306 278 248 189 181 171 161 149 230 218 204 188 172 8 10 12 14 16 371 343 312 279 246 488 439 385 329 276 313 290 265 237 209 413 371 327 281 236 18 20 22 24 26 286 255 224 194 166 328 278 232 195 166 194 174 154 135 117 219 190 162 137 117 137 125 113 101 89 155 138 121 105 90 18 20 22 24 26 212 180 150 126 108 225 182 150 126 108 181 155 129 109 93 193 148 158 110 119 156 127 128 96 100 129 106 106 82 82 109 89 89 69 69 93 76 76 59 59 28 143 143 100 100 30 125 125 88 88 32 110 110 77 77 34 97 97 68 68 78 68 59 53 78 68 59 53 28 30 31 32 93 81 76 93 81 76 80 70 65 36 37 47 44 47 44 87 82 87 82 61 58 61 58 b 0 471 655 310 401 205 254 Y-Y AXIS 6× ×4 No. of a Connectors 7× ×4 Size Thickness 6 8 10 12 14 394 362 325 284 242 511 456 393 327 262 238 221 200 176 151 286 260 229 196 161 146 137 127 115 101 167 156 142 126 108 16 18 20 22 24 201 162 132 110 92 204 126 128 162 103 103 132 84 84 110 70 70 92 59 59 87 74 61 51 43 90 74 61 51 43 25 26 27 85 79 73 40 40 0 80 70 65 254 236 216 193 171 65 57 53 325 294 260 225 191 65 57 53 179 167 154 140 125 51 44 41 39 220 202 182 161 140 b 51 44 41 39 425 591 358 497 291 388 201 256 6 8 10 12 14 367 339 306 270 232 481 432 375 315 256 302 279 252 222 191 394 354 308 259 210 236 218 197 174 150 293 266 233 198 162 153 144 132 118 104 181 167 151 132 112 16 18 20 22 24 195 160 136 113 95 211 161 165 126 129 167 132 132 103 103 136 107 107 84 84 113 89 89 70 70 95 75 75 59 59 89 75 61 51 43 93 75 61 51 43 26 27 28 81 75 70 37 35 37 35 2 85 79 73 55 51 55 51 2 81 75 70 64 59 64 59 50 47 50 47 3 Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.) No. of a Connectors Long legs 3⁄8 in. back to back of angles Y 15.4 2.22 1.62 10.5 2.25 1.57 7.97 2.27 1.55 13.9 1.88 1.69 11.7 1.90 1.67 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.50 1.91 1.64 7.22 1.93 1.62 DESIGN STRENGTH OF COLUMNS 3 - 67 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Long legs 3⁄8 in. back to back of angles Wt./ft 23.4 Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 5⁄ 16 19.6 36 50 36 50 0 191 243 145 179 8 10 12 14 16 170 159 146 133 119 209 192 173 153 133 130 123 114 105 95 157 146 134 120 106 18 20 22 24 26 105 92 78 66 56 114 95 79 66 56 85 75 65 56 48 93 79 67 56 48 28 30 32 49 42 37 49 42 37 41 36 32 0 191 243 4 6 8 10 12 148 139 127 113 98 14 16 18 20 22 23 3⁄ 4 1⁄ 2 39.6 3⁄ 8 27.2 5⁄ 16 20.8 50 36 50 0 355 493 245 340 183 238 143 182 4 6 8 10 12 337 317 290 259 225 460 233 421 219 372 202 318 181 262 158 14 16 18 20 22 191 158 127 103 85 209 161 127 103 85 41 36 32 24 25 26 72 66 72 66 51 47 44 145 179 0 355 493 245 176 163 147 127 105 107 101 94 85 75 122 115 106 94 80 4 6 8 10 12 325 303 274 241 206 437 215 396 200 345 182 289 160 232 136 284 258 226 189 152 152 142 129 114 98 81 66 53 43 36 84 66 53 43 36 64 53 43 35 29 66 53 43 35 29 14 16 18 20 22 170 144 114 93 77 188 144 114 93 77 113 90 72 58 48 117 90 72 58 48 82 65 52 43 35 84 65 52 43 35 65 53 43 35 29 68 53 43 35 29 33 33 27 27 24 25 65 60 65 60 41 41 30 30 25 25 b 318 292 260 223 185 36 17.4 36 175 165 152 137 120 50 36 50 224 208 187 163 138 137 130 120 109 97 172 161 146 129 111 135 149 104 113 113 116 87 90 91 91 71 71 74 74 58 58 61 61 48 48 85 72 60 49 41 93 76 61 49 41 34 31 29 34 31 29 51 47 44 40 37 34 40 37 34 A (in ) rx (in.) ry (in.) 186 113 134 171 107 125 152 98 114 130 88 99 107 77 84 2 6.84 1.94 1.39 5.74 1.95 1.38 b 340 183 238 143 182 2 3 Properties of 2 angles—3⁄8 in. back to back 2 No. of a Connectors 3⁄ 8 Thickness 5× ×31⁄2 No. of a Connectors 6× ×31⁄2 Size Y 11.6 1.55 1.53 8.00 1.58 1.49 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 6.09 1.60 1.46 5.12 1.61 1.45 3 - 68 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 5× ×3 Size 1⁄ 2 Thickness Wt./ft 25.6 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 3⁄ 8 5⁄ 16 19.6 1⁄ 4 16.4 13.2 36 50 36 50 36 50 36 50 0 230 319 172 223 134 170 95 117 2 4 6 8 10 227 219 206 189 170 313 298 274 244 210 170 164 155 143 129 220 210 195 176 154 132 128 122 113 103 168 161 151 137 121 95 92 88 82 76 115 112 105 97 88 12 14 16 18 20 149 128 107 87 70 175 141 110 87 70 114 98 82 68 55 130 107 86 68 55 91 79 68 56 46 104 88 71 57 46 68 61 53 45 38 78 67 56 47 38 22 24 26 27 58 49 42 58 49 42 45 38 32 45 38 32 38 32 27 38 32 27 31 26 22 21 31 26 22 21 0 230 319 172 223 134 170 95 117 2 4 6 8 10 207 195 177 153 128 276 255 223 184 143 146 138 125 110 92 179 167 149 126 101 107 102 94 84 72 128 121 110 95 78 71 68 64 58 51 80 77 72 64 55 12 14 16 18 20 101 81 62 49 40 109 81 62 49 40 74 57 44 35 28 76 57 44 35 28 59 46 36 29 23 61 46 36 29 23 43 35 28 22 18 45 35 28 22 18 No. of a Connectors Long legs 3⁄8 in. back to back of angles Y b 2 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 7.50 1.59 1.25 5.72 1.61 1.23 4.80 1.61 1.22 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.88 1.62 1.21 DESIGN STRENGTH OF COLUMNS 3 - 69 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Long legs 3⁄8 in. back to back of angles 1⁄ 2 Thickness Wt./ft 23.8 Fy X-X AXIS 3⁄ 8 5⁄ 16 18.2 15.4 12.4 36 50 36 50 36 50 36 50 0 214 298 163 227 137 179 101 129 2 4 6 8 10 210 198 179 155 130 289 266 232 191 148 160 151 137 120 101 221 204 178 147 116 134 127 115 101 85 174 162 143 120 96 99 94 87 77 66 126 118 106 91 75 12 14 16 18 20 104 80 61 48 39 109 80 61 48 39 81 63 48 38 31 86 63 48 38 31 69 54 41 33 26 73 54 41 33 26 55 44 34 27 22 59 44 34 27 22 24 24 20 20 0 214 298 163 227 137 179 101 129 2 4 6 8 10 203 196 183 167 148 276 262 240 211 180 150 144 135 124 110 200 190 174 155 132 121 116 110 101 90 150 143 133 120 104 84 81 77 72 65 99 96 91 83 74 12 14 16 18 20 128 108 88 74 60 147 116 93 74 60 95 80 66 53 43 108 86 66 53 43 78 66 54 43 35 87 70 54 43 35 58 50 42 34 28 64 53 42 34 28 22 24 25 26 50 42 39 36 50 42 39 36 35 30 28 25 35 30 28 25 29 25 23 29 25 23 23 20 18 23 20 18 b 21 Y-Y AXIS 1⁄ 4 No. of a Connectors 4× ×31⁄2 Size Effective length KL (ft) with respect to indicated axis Y 2 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 7.00 1.23 1.58 5.34 1.25 1.56 4.49 1.26 1.55 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.63 1.27 1.54 3 - 70 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 4× ×3 Size 1⁄ 2 Thickness Wt./ft 22.2 X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 3⁄ 8 17.0 1⁄ 4 14.4 11.6 36 50 36 50 36 50 36 50 0 199 276 152 211 127 166 94 120 2 4 6 8 10 195 184 167 146 122 269 248 217 179 141 149 141 128 112 94 206 190 166 138 109 125 118 108 94 80 162 151 133 112 90 93 88 81 72 62 117 110 99 85 70 12 14 16 18 20 99 77 59 46 38 105 77 59 46 38 76 60 46 36 29 81 60 46 36 29 65 51 39 31 25 69 51 39 31 25 51 41 32 25 21 55 42 32 25 21 27 27 23 23 19 19 0 199 276 152 211 127 166 94 120 2 4 6 8 10 187 177 161 142 120 253 235 207 173 137 138 131 119 105 89 183 171 151 127 101 111 105 96 85 73 137 129 116 99 81 77 74 69 62 54 92 88 80 71 59 12 14 16 18 20 97 76 61 49 39 108 80 61 49 39 72 56 43 35 28 76 56 43 35 28 59 46 36 29 23 62 46 36 29 23 45 36 28 23 18 47 36 28 23 18 21 22 36 33 36 33 25 25 21 21 17 17 b 21 Y-Y AXIS 5⁄ 16 2 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) No. of a Connectors Long legs 3⁄8 in. back to back of angles Y 6.50 1.25 1.33 4.97 1.26 1.31 4.18 1.27 1.30 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.38 1.28 1.29 DESIGN STRENGTH OF COLUMNS 3 - 71 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Long legs 3⁄8 in. back to back of angles Wt./ft 15.8 X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 5⁄ 16 1⁄ 4 13.2 10.8 36 50 36 50 36 50 0 140 195 118 162 92 119 2 4 6 8 10 137 127 112 93 74 188 169 142 111 80 115 107 95 79 63 157 141 119 94 69 90 84 75 63 51 116 106 91 73 55 12 14 16 17 18 56 41 32 28 25 56 41 32 28 25 48 35 27 24 21 48 35 27 24 21 39 29 22 20 18 0 140 195 118 162 2 4 6 8 10 131 124 114 101 86 176 164 146 123 99 107 102 94 83 71 12 14 71 56 76 59 16 18 20 45 36 29 22 24 3⁄ 8 1⁄ 4 14.4 9.8 36 50 36 50 0 129 179 85 110 2 4 6 8 10 126 117 103 86 69 173 156 131 103 75 83 77 69 59 47 107 97 84 68 52 40 29 22 20 18 12 14 16 18 52 39 30 23 53 39 30 23 37 27 21 17 37 27 21 17 92 119 0 129 179 85 110 140 131 118 100 81 79 76 70 63 54 97 92 83 73 60 2 4 6 8 10 118 109 96 80 63 158 142 119 92 69 71 67 59 50 40 87 80 69 56 42 59 46 62 47 45 36 48 36 12 14 49 36 49 36 30 22 30 22 45 36 29 36 29 23 36 29 23 28 22 18 28 22 18 16 18 28 22 28 22 17 14 17 14 24 19 19 15 15 b No. of a Connectors 3⁄ 8 Thickness 31⁄2×21⁄2 No. of a Connectors 31⁄2×3 Size Y b 2 Y-Y AXIS 2 3 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 4.59 1.09 1.36 3.87 1.10 1.35 3.13 1.11 1.33 4.22 1.10 1.11 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.88 1.12 1.09 3 - 72 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi Y X COLUMNS Double angles X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 3⁄ 8 Thickness 13.2 Wt./ft Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 1⁄ 4 36 3⁄ 16 9.0 6.77 50 36 50 36 50 0 118 163 80 107 55 71 2 113 155 3 109 146 4 102 134 5 94 120 6 86 105 78 75 70 65 59 103 97 90 81 71 54 52 49 46 42 68 65 60 55 50 3× ×2 No. of a Connectors 3× ×21⁄2 Size 3⁄ 8 5⁄ 16 11.8 36 1⁄ 4 10.0 3⁄ 16 8.2 36 6.1 50 36 50 50 0 106 147 90 125 73 97 50 64 2 3 4 5 6 103 98 93 86 78 141 132 122 109 96 87 83 78 73 66 119 112 103 93 82 70 68 64 59 54 93 88 81 74 65 49 47 45 42 38 61 59 55 50 45 7 8 9 10 11 70 61 53 45 38 82 69 56 45 38 59 52 45 39 32 70 59 48 39 32 49 43 37 32 27 57 48 40 32 27 35 31 28 24 20 40 35 30 25 21 12 13 14 15 16 32 27 23 20 32 27 23 20 27 23 20 17 27 23 20 17 22 19 16 14 22 19 16 14 17 15 13 11 10 17 15 13 11 10 7 8 9 10 11 76 67 58 49 40 90 75 60 49 40 53 47 40 34 29 62 52 43 35 29 38 34 30 26 22 44 38 32 27 22 12 13 14 15 34 29 25 22 34 29 25 22 24 21 18 15 24 21 18 15 19 16 14 12 19 16 14 12 0 118 163 80 107 55 71 0 106 147 90 125 73 97 50 64 2 110 149 3 107 143 4 102 135 5 97 125 6 90 114 71 69 66 63 59 90 87 83 77 71 45 44 43 41 39 54 53 51 48 45 2 3 4 5 6 97 131 93 122 86 111 79 98 71 84 80 76 71 65 58 107 100 91 81 69 63 60 56 51 46 79 74 68 61 53 40 39 37 34 31 48 46 43 39 35 7 8 9 10 11 62 53 47 39 32 70 60 48 39 32 51 44 37 32 27 58 49 39 32 27 40 35 29 25 21 45 37 31 25 21 28 24 21 17 15 30 26 21 17 15 12 13 14 15 27 23 20 18 27 23 20 18 22 19 17 14 22 19 17 14 18 15 13 18 15 13 12 11 10 12 11 10 7 8 9 10 11 83 102 76 90 68 77 61 66 53 58 54 50 45 40 35 64 57 49 42 35 36 34 31 28 25 41 38 34 30 26 12 13 14 15 16 48 42 36 31 28 49 42 36 31 28 30 26 23 20 18 30 26 23 20 18 22 19 16 14 13 22 19 16 14 13 17 18 19 24 22 20 24 22 20 16 14 16 14 11 10 11 10 b 2 3 Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.) 3.84 0.928 1.16 2.63 0.945 1.13 1.99 0.954 1.12 3.47 0.940 0.917 2.93 0.948 0.903 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.38 0.957 0.891 1.80 0.966 0.879 No. of a Connectors Long legs 3⁄8 in. back to back of angles Y b 2 3 DESIGN STRENGTH OF COLUMNS 3 - 73 Fy = 36 ksi Fy = 50 ksi Y COLUMNS Double angles X X Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Long legs 3⁄8 in. back to back of angles 3⁄ 8 Thickness Wt./ft 10.6 X-X AXIS Fy Y-Y AXIS 5⁄ 16 1⁄ 4 9.0 3⁄ 16 7.2 5.5 36 50 36 50 36 50 36 50 0 95 131 80 111 65 91 49 63 2 3 4 5 6 90 84 77 69 60 122 112 99 84 69 76 72 66 59 51 104 95 84 72 59 62 58 54 48 42 85 78 69 59 49 46 44 40 36 32 59 55 49 43 36 7 8 9 10 11 50 42 33 27 22 55 42 33 27 22 43 36 29 23 19 47 37 29 23 19 36 30 24 19 16 39 30 24 19 16 27 23 19 15 12 30 24 19 15 12 12 13 19 19 16 16 13 11 13 11 10 9 10 9 0 95 131 80 111 65 91 49 63 2 3 4 5 6 89 85 80 74 67 120 113 104 93 82 74 71 66 61 55 99 93 85 76 66 58 56 52 48 44 77 73 67 60 52 41 39 37 34 31 50 48 44 40 36 7 8 9 10 11 60 52 45 38 32 70 58 47 38 32 49 42 36 32 26 56 48 39 32 26 39 33 28 25 21 44 36 31 25 21 28 24 21 17 15 31 26 22 18 15 12 13 14 15 16 27 23 20 17 15 27 23 20 17 15 22 19 16 14 22 19 16 14 17 15 13 11 17 15 13 11 13 11 10 8 13 11 10 8 b Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) No. of a Connectors 21⁄2×2 Size Effective length KL (ft) with respect to indicated axis Y 3.09 0.768 0.961 2.62 0.776 0.948 2.13 0.784 0.935 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.62 0.793 0.923 2 3 3 - 74 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs 8× ×6 Size Thickness Wt./ft 88.4 Fy 36 X-X AXIS Y-Y AXIS 67.6 46.0 50 36 50 796 1110 609 846 376 479 8 12 16 20 24 677 552 416 288 200 882 666 449 288 200 521 428 325 228 159 680 518 354 228 159 328 276 217 159 111 402 323 237 160 111 28 29 147 147 116 109 116 109 82 76 796 1110 609 846 12 16 20 24 28 725 681 628 569 506 970 890 796 695 591 547 514 474 429 382 32 36 40 44 48 443 380 320 265 223 490 396 321 265 223 52 56 60 61 62 190 164 143 138 134 190 164 143 138 134 63 130 130 0 50 1⁄ 2 36 0 Effective length KL (ft) with respect to indicated axis 3⁄ 4 1 8× ×4 3⁄ 4 1 74.8 1⁄ 2 57.4 50 0 673 935 517 718 321 408 4 6 8 10 12 600 521 426 329 240 798 654 495 346 240 82 76 14 16 17 18 176 176 141 141 101 101 135 135 108 108 78 78 120 120 96 96 69 69 61 61 376 479 0 673 935 517 718 321 408 727 667 598 522 444 325 308 287 263 237 393 368 338 304 267 12 16 20 24 28 628 596 558 514 467 849 790 720 643 563 480 455 426 392 355 647 602 548 489 426 295 281 264 245 224 365 344 318 290 258 333 286 240 199 168 368 297 241 199 168 210 183 156 131 110 229 192 157 131 110 32 36 40 44 48 418 369 320 274 231 483 405 333 275 231 317 279 242 206 174 364 305 250 206 174 202 179 157 135 115 227 195 165 137 115 143 123 108 104 101 143 123 108 104 101 94 81 71 69 94 81 71 69 52 56 60 64 66 197 170 148 130 122 197 148 148 170 128 128 148 111 111 130 98 98 122 92 92 98 85 74 65 61 98 85 74 65 61 67 68 119 119 115 115 b 3 36 39.2 36 463 404 333 260 192 50 616 509 390 276 192 89 36 292 259 219 177 137 50 361 311 252 192 138 89 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 26.0 1.73 3.78 19.9 1.76 3.74 13.5 1.79 3.69 22.0 1.03 4.10 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 16.9 1.05 4.05 11.5 1.08 4.00 No. of a Connectors Short legs 3⁄8 in. back to back of angles No. of a Connectors Y Design axial strength in kips (φ = 0.85) 3/ ′′ 8 b 6 DESIGN STRENGTH OF COLUMNS 3 - 75 Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs 7× ×4 Size 3⁄ 4 Thickness Wt./ft 1⁄ 2 52.4 Fy 36 50 3⁄ 8 35.8 36 50 27.2 36 50 No. of a Connectors Short legs 3⁄8 in. back to back of angles Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS 0 471 655 310 401 205 254 4 6 8 10 12 426 375 313 249 188 568 476 371 270 188 282 250 212 171 132 354 304 245 186 133 189 171 149 124 100 230 203 171 137 104 14 138 138 16 106 106 18 84 84 98 75 59 98 75 59 77 59 47 3/ ′′ 8 Y 6× ×4 3⁄ 4 5⁄ 8 47.2 50 0 36 50 1⁄ 2 40.0 36 3⁄ 8 32.4 50 36 24.6 50 36 50 425 591 358 497 291 388 201 256 4 6 8 10 12 386 342 289 232 178 436 370 293 218 154 265 236 201 164 127 343 295 238 181 129 186 168 146 122 97 231 203 170 135 102 77 59 47 14 16 18 19 132 132 113 113 101 101 86 86 80 80 68 68 95 73 57 52 95 73 57 52 75 57 45 41 75 57 45 41 0 471 655 310 401 205 254 0 8 12 16 20 24 449 427 397 362 324 611 570 516 454 389 291 277 259 236 212 368 346 317 282 245 28 32 36 40 44 283 243 204 168 139 323 261 207 168 139 186 160 135 111 92 207 129 143 171 113 122 137 98 102 111 83 83 92 69 69 48 117 117 52 99 99 56 86 86 57 83 83 58 80 80 77 66 57 55 77 66 57 55 188 181 171 158 144 58 49 43 41 b 225 215 201 184 164 58 49 43 41 5 517 437 345 255 179 326 289 245 198 152 A (in ) rx (in.) ry (in.) 15.4 1.09 3.49 10.5 1.11 3.44 7.97 1.13 3.42 b 425 591 358 497 291 388 201 256 8 12 16 20 24 398 370 334 293 249 538 486 422 352 282 28 32 36 40 44 206 166 131 106 88 216 172 179 138 143 100 105 165 138 138 110 110 81 82 131 109 109 87 87 65 65 106 88 88 71 71 52 52 88 73 73 58 58 43 43 45 46 47 48 49 84 80 77 74 71 84 80 77 74 71 333 310 279 245 208 70 67 64 61 449 406 352 294 235 70 67 64 61 267 249 224 197 167 56 53 51 49 346 314 275 230 186 56 53 51 49 181 170 155 138 119 42 40 38 222 205 184 158 131 42 40 38 Properties of 2 angles—3⁄8 in. back to back 2 No. of a Connectors Design axial strength in kips (φ = 0.85) 13.9 1.12 2.94 11.7 1.13 2.92 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.50 1.15 2.90 7.22 1.17 2.87 4 3 - 76 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs 6× ×31⁄2 Size 3⁄ 8 Thickness Wt./ft 23.4 Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 5⁄ 16 19.6 36 50 36 50 0 191 243 145 179 4 6 8 10 170 148 121 94 210 175 136 99 131 115 97 77 158 135 109 82 12 14 16 69 50 39 69 50 39 58 43 33 59 43 33 0 191 243 145 8 12 16 20 24 173 160 144 125 112 213 194 170 142 124 28 32 36 40 44 94 76 63 51 42 48 49 36 34 5× ×31⁄2 3⁄ 4 1⁄ 2 39.6 3⁄ 8 27.2 5⁄ 16 20.8 50 36 50 0 355 493 245 340 183 238 143 182 2 4 6 8 10 344 313 267 214 160 472 238 326 413 217 288 331 187 234 243 152 176 164 116 121 12 14 16 17 114 84 64 114 84 64 84 62 47 179 0 355 493 245 340 183 238 143 182 130 122 111 98 84 154 143 128 110 98 8 10 12 14 16 318 300 279 257 233 423 390 354 334 297 217 205 191 175 159 287 265 240 214 201 99 80 63 51 42 75 62 53 43 35 80 66 53 43 35 18 20 22 24 26 224 201 179 157 144 260 225 201 169 144 152 136 121 106 96 175 106 127 151 101 111 134 90 95 113 79 84 96 69 72 36 34 30 29 30 29 28 30 32 34 36 125 109 95 85 75 125 109 95 85 75 83 72 64 56 50 83 72 64 56 50 62 54 48 42 38 62 54 48 42 38 49 43 38 33 30 49 43 38 33 30 38 39 40 68 64 61 68 64 61 45 43 41 45 43 41 34 32 31 34 32 31 27 25 27 25 41 58 58 b 5 36 17.4 36 178 163 141 116 89 84 62 47 50 50 229 139 176 205 129 159 170 113 135 131 94 107 94 74 79 65 48 37 32 160 151 141 130 118 36 65 48 37 32 198 185 169 153 143 56 41 31 28 123 117 110 102 94 6.84 0.988 2.95 5.74 0.996 2.94 11.6 0.977 2.48 8.00 1.01 2.43 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 6.09 1.02 2.41 b 56 41 31 28 149 140 130 119 106 85 100 81 89 73 77 65 66 57 57 Properties of 2 angles—3⁄8 in. back to back A (in2) rx (in.) ry (in.) No. of a Connectors Short legs 3⁄8 in. back to back of angles No. of a Connectors Y Design axial strength in kips (φ = 0.85) 3/ ′′ 8 5.12 1.03 2.39 4 DESIGN STRENGTH OF COLUMNS 3 - 77 Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs Short legs 3⁄8 in. back to back of angles 5× ×3 Size 1⁄ 2 Thickness Wt./ft X-X AXIS Y-Y AXIS 3⁄ 8 25.6 Fy Effective length KL (ft) with respect to indicated axis Y 5⁄ 16 19.6 1⁄ 4 16.4 13.2 36 50 36 50 36 50 36 50 0 230 319 172 223 134 170 95 117 2 4 6 8 10 220 192 154 113 76 300 249 184 119 76 165 146 118 88 61 212 180 137 94 61 129 115 95 73 52 162 140 110 79 52 92 84 71 56 42 112 99 81 61 43 12 13 14 53 45 53 45 42 36 31 42 36 31 36 31 26 36 31 26 30 25 22 30 25 22 0 230 319 172 223 134 170 95 117 8 10 12 14 16 205 194 181 167 152 273 253 230 205 194 152 144 135 125 114 190 178 163 147 139 118 112 106 98 90 144 135 126 115 103 83 79 75 71 66 96 92 87 81 75 18 20 22 24 26 146 132 117 103 95 170 147 132 112 95 109 99 88 78 68 124 109 94 84 71 82 79 71 63 56 98 87 76 66 59 61 56 54 49 44 68 65 58 51 45 28 30 32 34 36 82 72 63 56 50 82 72 63 56 50 62 54 47 42 37 62 54 47 42 37 51 45 39 35 31 51 45 39 35 31 39 36 31 28 25 41 36 31 28 25 38 40 41 45 40 38 45 40 38 34 30 29 34 30 29 28 25 24 28 25 24 22 20 19 22 20 19 3/ ′′ 8 No. of a Connectors Design axial strength in kips (φ = 0.85) b 4 5 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 7.50 0.829 2.50 5.72 0.845 2.48 4.80 0.853 2.47 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.88 0.861 2.46 3 - 78 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X Y Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Short legs 3⁄8 in. back to back of angles 4× ×31⁄2 Size 1⁄ 2 Thickness Wt./ft 23.8 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 3⁄ 8 5⁄ 16 18.2 1⁄ 4 15.4 12.4 36 50 36 50 36 50 36 50 0 214 298 163 227 137 179 101 129 2 4 6 8 10 208 191 166 137 106 286 255 210 160 112 159 147 128 106 83 219 195 162 125 89 133 123 108 90 71 172 156 131 103 76 99 92 81 69 55 125 114 98 79 60 12 14 16 17 78 57 44 39 78 57 44 39 62 45 35 31 62 45 35 31 53 39 30 26 53 39 30 26 42 31 24 21 43 31 24 21 0 214 298 163 227 137 179 101 129 4 6 8 10 12 201 190 177 161 143 271 252 228 200 181 150 142 132 120 107 200 187 169 149 127 122 116 108 99 89 152 143 132 117 102 86 83 78 72 66 103 99 92 84 75 14 16 18 20 22 132 115 98 86 71 153 126 106 86 71 94 86 73 61 53 114 94 75 61 53 77 71 61 51 42 92 77 62 51 42 58 54 47 40 33 65 59 49 40 33 24 26 28 30 31 60 51 44 38 36 60 51 44 38 36 45 38 33 29 27 45 38 33 29 27 36 30 26 23 21 36 30 26 23 21 28 24 21 18 28 24 21 18 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 7.00 1.04 1.89 5.34 1.06 1.87 4.49 1.07 1.86 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.63 1.07 1.85 No. of a Connectors X b 3 DESIGN STRENGTH OF COLUMNS 3 - 79 Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs Short legs 3⁄8 in. back to back of angles 4× ×3 Size 1⁄ 2 Thickness Wt./ft X-X AXIS Y-Y AXIS 3⁄ 8 22.2 Fy Effective length KL (ft) with respect to indicated axis Y 5⁄ 16 17.0 1⁄ 4 14.4 11.6 36 50 36 50 36 50 36 50 0 199 276 152 211 127 166 94 120 2 4 6 8 10 191 169 138 104 72 261 220 166 112 72 146 130 107 81 57 200 170 129 88 57 123 109 90 69 49 158 136 106 75 49 91 82 69 54 40 115 101 81 59 40 12 14 50 37 50 37 40 29 40 29 34 25 34 25 28 21 28 21 0 199 276 152 211 127 166 94 120 4 6 8 10 12 190 182 172 160 146 259 245 226 204 180 143 137 130 121 110 193 183 169 153 135 118 113 107 99 91 149 142 132 120 107 85 82 78 73 67 103 99 93 86 78 14 16 18 20 22 131 116 101 86 73 156 131 108 88 73 99 87 76 65 54 117 98 81 66 54 81 72 62 53 44 93 79 65 53 44 61 55 48 41 35 69 60 51 42 35 24 26 28 30 32 61 52 45 39 34 61 52 45 39 34 46 39 34 29 26 46 39 34 29 26 37 32 27 24 21 37 32 27 24 21 30 25 22 19 17 30 25 22 19 17 3/ ′′ 8 No. of a Connectors Design axial strength in kips (φ = 0.85) b 3 4 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 6.50 0.864 1.96 4.97 0.879 1.94 4.18 0.887 1.93 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.38 0.896 1.92 3 - 80 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs 31⁄2×3 Size 3⁄ 8 Thickness Wt./ft 15.8 X-X AXIS Fy Y-Y AXIS Effective length KL (ft) with respect to indicated axis 5⁄ 16 1⁄ 4 13.2 10.8 36 50 36 50 36 50 0 140 195 118 162 92 2 4 6 8 10 135 121 100 77 55 185 158 122 84 55 114 102 85 65 47 154 132 103 72 47 12 14 15 38 28 38 28 33 24 21 0 140 195 4 6 8 10 12 130 123 114 103 91 14 16 18 20 22 24 26 27 31⁄2×21⁄2 3⁄ 8 1⁄ 4 14.4 9.8 50 36 50 36 50 119 0 129 179 85 110 89 80 67 53 38 114 100 79 58 39 2 4 6 8 10 122 102 76 51 32 165 129 86 51 32 81 68 52 36 23 102 83 59 36 23 33 24 21 27 20 17 27 20 17 11 12 27 27 19 16 19 16 118 162 92 119 0 129 179 85 110 175 162 146 127 107 108 102 94 85 75 142 132 119 104 88 82 77 72 66 58 100 94 86 77 66 4 6 8 10 12 122 116 108 98 87 165 154 139 122 105 78 74 69 63 57 97 91 84 75 65 78 66 54 44 36 87 68 54 44 36 65 55 45 37 30 72 57 45 37 30 51 43 36 29 24 55 45 36 29 24 14 16 18 20 22 76 65 55 45 37 87 70 55 45 37 50 43 36 30 25 55 46 37 30 25 31 26 24 31 26 24 26 22 20 26 22 20 20 17 16 20 17 16 24 26 28 29 31 27 23 21 31 27 23 21 21 18 15 21 18 15 b 3 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 4.59 0.897 1.67 3.87 0.905 1.66 3.13 0.914 1.65 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.22 0.719 1.74 2.88 0.735 1.72 No. of a Connectors Short legs 3⁄8 in. back to back of angles No. of a Connectors Y Design axial strength in kips (φ = 0.85) 3/ ′′ 8 b 4 DESIGN STRENGTH OF COLUMNS 3 - 81 Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X X Unequal legs 3× ×21⁄2 Size 3⁄ 8 Thickness Wt./ft 13.2 X-X AXIS Fy 36 3⁄ 16 9.0 6.77 50 36 50 36 50 0 118 163 80 107 55 71 2 111 151 3 104 137 4 94 120 5 83 100 6 71 81 76 71 65 58 50 100 91 81 69 56 53 50 46 41 36 66 62 55 48 41 45 35 27 22 18 31 26 21 17 14 34 27 21 17 14 3/ ′′ 8 Y 3× ×2 3⁄ 8 5⁄ 16 11.8 50 36 1⁄ 4 10.0 3⁄ 16 8.2 6.1 50 36 50 36 50 36 50 0 106 147 90 125 73 97 50 64 2 3 4 5 6 96 129 85 109 72 86 58 64 44 45 82 73 61 50 38 109 93 74 55 39 66 59 50 41 32 86 74 59 45 32 46 42 36 30 24 58 51 42 33 25 7 8 9 33 25 20 33 25 20 28 22 17 28 22 17 24 18 14 24 18 14 18 14 11 18 14 11 106 147 90 125 73 97 50 64 b 7 8 9 10 11 59 48 38 31 25 63 48 38 31 25 42 34 27 22 18 12 21 b 21 15 15 12 12 0 118 163 80 107 55 71 0 2 113 155 4 109 146 6 101 132 8 91 114 10 79 95 75 72 67 60 53 97 92 84 73 62 49 47 45 41 36 59 57 53 48 41 2 4 6 8 10 104 100 93 85 76 143 135 123 109 92 87 84 78 71 63 119 113 103 91 77 70 67 63 57 51 92 87 80 70 60 47 45 43 39 35 58 55 52 47 41 12 14 16 18 20 67 56 44 35 28 76 58 44 35 28 45 37 29 23 19 50 38 29 23 19 32 27 22 17 14 35 28 22 17 14 12 14 16 18 20 65 55 45 36 29 75 59 46 36 29 54 46 37 30 24 62 49 38 30 24 44 37 30 24 19 49 39 30 24 19 31 26 22 18 14 35 28 22 18 14 22 24 23 20 23 20 16 13 16 13 12 10 12 10 22 24 25 24 20 19 24 20 20 17 19 15 20 16 17 13 15 12 16 13 12 12 10 9 12 10 9 3 Y-Y AXIS Effective length KL (ft) with respect to indicated axis 1⁄ 4 No. of a Connectors Short legs 3⁄8 in. back to back of angles No. of a Connectors Design axial strength in kips (φ = 0.85) Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 3.84 0.736 1.47 2.63 0.753 1.45 1.99 0.761 1.44 3.47 0.559 1.55 2.93 0.567 1.53 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.38 0.574 1.52 1.80 0.583 1.51 4 3 - 82 COLUMN DESIGN Fy = 36 ksi Fy = 50 ksi COLUMNS Double angles Y X Y Design axial strength in kips (φ = 0.85) Unequal legs 3/ ′′ 8 Short legs 3⁄8 in. back to back of angles 21⁄2×2 Size 3⁄ 8 Thickness Wt./ft 10.6 X-X AXIS Fy Effective length KL (ft) with respect to indicated axis 5⁄ 16 1⁄ 4 9.0 3⁄ 16 7.2 5.5 36 50 36 50 36 50 36 50 0 95 131 80 111 65 91 49 63 2 3 4 5 6 86 77 66 54 42 116 99 79 60 42 73 66 56 46 36 98 84 68 51 37 60 54 46 38 30 80 69 56 43 31 45 40 35 29 23 57 50 41 32 24 7 8 9 10 31 24 19 31 24 19 27 21 16 27 21 16 23 17 14 23 17 14 18 14 11 9 18 14 11 9 0 95 131 80 111 65 91 49 63 2 4 6 8 10 92 86 78 69 58 126 116 101 84 66 77 73 66 57 47 105 97 84 69 54 62 58 53 46 38 84 77 67 55 43 45 42 38 33 28 56 52 46 39 31 12 14 16 18 20 46 36 28 22 18 49 36 28 22 18 38 29 22 17 14 39 29 22 17 14 30 23 18 14 11 31 23 18 14 11 22 17 13 10 9 23 17 13 10 9 21 16 16 13 13 No. of a Connectors X b Y-Y AXIS 3 4 Properties of 2 angles—3⁄8 in. back to back 2 A (in ) rx (in.) ry (in.) 3.09 0.577 1.28 2.62 0.584 1.26 2.13 0.592 1.25 aFor Y-Y axis, welded or fully tensioned bolted connectors only. bFor number of connectors, see double angle column discussion. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.62 0.600 1.24 DESIGN STRENGTH OF COLUMNS 3 - 83 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Designation X-X AXIS Y-Y AXIS Effective length KL (ft) with respect to indicated axis Y WT 18 150 Wt./ft Fy X 140 130 122.5 115 36 50 36 50 36 50 36 50 36 50 0 1350 1730 1260 1510 1150 1330 1040 1170 925 1030 10 12 14 16 18 1310 1300 1280 1260 1240 1670 1650 1620 1590 1550 1230 1210 1190 1180 1150 1470 1440 1420 1390 1360 1120 1100 1090 1070 1050 1290 1270 1250 1220 1200 1010 998 985 970 953 1140 1130 1110 1090 1070 903 893 882 869 855 998 986 972 956 939 20 22 24 26 28 1210 1180 1150 1120 1090 1510 1460 1420 1370 1320 1130 1100 1080 1050 1020 1330 1290 1250 1210 1170 1030 1010 983 957 930 1170 1140 1110 1070 1040 935 915 893 870 847 1050 1020 993 964 934 839 822 803 784 763 920 899 876 853 828 30 32 34 36 38 1060 1020 984 947 910 1260 1210 1160 1100 1040 984 951 917 883 847 1120 1080 1030 987 940 901 871 841 810 778 1000 965 926 886 847 822 796 769 742 714 903 871 838 804 770 742 719 696 673 649 802 776 748 720 692 40 872 989 812 893 746 806 686 736 624 663 0 1350 1730 1260 1510 1150 1330 1040 1170 925 1030 10 12 14 16 18 1210 1190 1160 1130 1090 1510 1470 1430 1370 1320 1120 1100 1070 1040 1010 1320 1290 1250 1210 1160 1010 990 966 938 908 1140 1120 1090 1050 1010 906 888 867 843 817 1010 985 959 930 898 803 788 770 750 728 874 857 836 812 786 20 22 24 26 28 1050 1010 962 916 868 1260 1190 1130 1060 988 972 932 891 848 804 1110 1060 1000 943 884 876 841 804 766 726 971 927 880 833 784 789 759 727 693 659 863 826 787 747 705 704 679 651 623 593 758 728 696 662 628 30 32 34 36 38 820 771 721 672 624 918 848 780 713 647 758 713 667 622 577 825 766 708 650 595 686 645 604 563 523 734 684 634 585 537 623 587 551 515 480 662 619 577 534 493 563 532 501 469 438 592 557 521 485 450 40 577 585 533 540 484 490 445 452 408 415 Properties A (in2) rx (in.) ry (in.) 44.1 5.27 3.83 41.2 5.25 3.81 38.2 5.26 3.78 36.0 5.26 3.75 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 33.8 5.25 3.73 3 - 84 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation 105 Wt./ft X-X AXIS Fy 36 97 50 91 85 80 75 67.5 36 50 36 50 36 50 36 50 36 50 36 50 0 908 1040 772 851 683 726 587 601 518 521 458 457 385 385 10 12 14 16 18 887 1010 755 878 1000 748 868 986 740 856 971 731 843 954 720 831 822 812 801 788 670 664 657 649 640 710 704 696 687 677 576 571 566 560 553 590 585 579 572 565 509 505 500 495 489 512 508 503 498 492 451 448 444 440 435 449 446 442 438 433 380 377 374 371 367 380 377 374 371 367 20 22 24 26 28 828 813 796 778 759 935 915 893 870 846 709 696 683 668 653 775 759 743 726 708 631 620 609 597 584 667 655 642 629 614 545 537 528 518 508 557 548 539 529 518 483 476 468 460 452 486 479 471 463 454 429 424 417 411 403 428 422 416 409 402 363 359 354 348 343 363 359 354 348 343 30 32 36 40 739 719 675 630 821 795 740 684 637 621 586 549 689 669 628 585 571 557 527 496 599 584 551 517 497 486 462 437 507 495 470 444 443 433 413 392 445 436 415 394 396 388 371 353 395 387 370 352 337 331 317 303 337 331 317 303 908 1040 772 851 683 726 587 601 518 521 458 457 385 385 10 12 14 16 18 716 687 654 617 578 791 756 715 670 622 607 585 559 530 499 653 627 597 563 527 534 515 494 470 444 558 538 515 488 460 457 442 425 406 385 465 450 432 412 391 397 385 371 356 339 399 387 373 357 340 344 335 323 311 297 344 334 323 310 296 268 261 253 244 234 268 261 253 244 234 20 22 24 26 28 537 494 450 407 364 572 521 469 418 367 465 431 395 360 325 489 449 409 369 330 416 387 358 327 297 430 398 366 333 301 363 340 315 291 266 368 344 319 293 268 320 301 280 260 239 321 302 281 260 239 281 265 248 231 213 281 265 248 231 213 223 211 198 185 172 223 211 198 185 172 30 32 34 36 39 323 285 254 228 195 323 285 254 228 195 291 258 230 206 176 291 258 230 206 176 268 239 213 191 164 269 239 213 191 164 242 218 194 174 150 242 218 194 174 150 218 197 177 159 137 218 197 177 159 137 196 178 161 144 124 195 178 161 144 124 158 144 131 118 102 158 144 131 118 102 41 42 43 177 169 161 177 160 169 153 161 160 153 149 142 149 142 136 130 136 130 124 124 113 113 0 Y-Y AXIS Effective length KL (ft) with respect to indicated axis WT 18 Properties A (in2) rx (in.) ry (in.) 30.9 5.65 2.58 28.5 5.62 2.56 26.8 5.62 2.55 25.0 5.61 2.53 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 23.5 5.61 2.50 22.1 5.62 2.47 19.9 5.66 2.38 DESIGN STRENGTH OF COLUMNS 3 - 85 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis WT 16.5 120.5 Wt./ft Y 36 50 110.5 36 50 100.5 76 70.5 65 59 36 50 36 50 36 50 36 50 0 1080 1300 964 1110 810 899 532 548 463 467 402 401 330 330 10 12 14 16 18 1050 1040 1020 1000 980 1260 1240 1210 1190 1160 935 923 909 893 875 1070 1050 1030 1010 990 788 779 767 755 741 872 860 847 831 814 521 516 510 503 495 535 530 524 516 508 453 449 444 439 433 457 453 448 442 436 394 391 387 383 378 393 390 386 382 377 324 321 318 315 311 324 321 318 315 311 20 22 24 26 28 958 933 907 880 851 1120 1090 1050 1020 975 855 834 811 787 762 965 937 908 878 846 725 708 690 672 652 795 775 753 730 706 487 478 468 458 447 500 490 480 469 458 426 419 411 402 393 429 422 414 405 396 372 366 360 353 345 371 365 359 352 345 307 303 298 293 287 307 303 298 293 287 30 32 34 36 40 821 790 759 727 662 934 892 849 806 720 737 710 682 654 598 813 779 745 710 639 631 610 588 565 520 681 656 630 603 549 436 424 411 399 373 446 433 420 407 379 384 374 364 354 332 387 377 366 356 334 338 330 321 313 295 337 329 321 312 295 282 276 269 263 249 282 276 269 263 249 0 1080 1300 964 1110 810 899 532 548 463 467 402 401 330 330 10 12 14 16 18 951 929 904 876 845 1110 1080 1050 1010 967 833 815 793 769 743 934 911 884 854 821 692 678 661 643 622 753 736 717 695 671 420 406 389 370 349 429 414 396 377 355 358 346 333 318 301 360 348 335 319 302 300 291 280 268 255 299 290 280 268 255 234 228 220 212 203 234 228 220 212 203 20 22 24 26 28 811 775 738 699 659 922 874 824 772 720 714 683 651 617 583 785 747 707 666 624 600 576 551 525 497 644 616 587 556 525 327 305 281 257 234 332 309 284 260 235 283 264 245 225 206 284 266 246 226 206 241 226 211 195 179 241 226 210 195 178 192 181 170 158 146 192 181 170 158 146 30 34 36 38 39 618 537 497 458 439 667 564 514 464 441 548 477 442 408 391 581 496 455 414 394 470 413 385 357 343 492 427 395 363 348 211 167 150 135 129 211 167 150 135 129 186 149 134 121 115 187 149 134 121 115 162 131 118 107 102 162 131 118 107 102 134 109 98 89 134 109 98 89 40 41 420 401 420 375 401 358 375 330 358 316 332 317 123 117 123 117 109 109 Properties A (in2) rx (in.) ry (in.) 35.4 4.96 3.63 32.5 4.96 3.59 29.5 4.95 3.56 22.4 5.14 2.47 20.8 5.15 2.43 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 19.2 5.18 2.39 17.3 5.20 2.32 3 - 86 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation 105.5 Wt./ft Fy 36 Effective length KL (ft) with respect to indicated axis X-X AXIS 0 50 95.5 36 50 86.5 36 66 50 36 62 50 36 58 50 36 54 50 36 49.5 50 36 50 949 1180 844 974 708 791 505 546 447 465 402 412 357 361 304 303 10 12 14 16 18 913 897 879 859 837 1130 1100 1080 1050 1010 812 799 783 765 746 932 914 894 870 845 684 673 661 647 632 761 748 733 715 696 490 484 477 468 459 529 521 513 503 492 434 429 423 416 408 452 446 439 432 423 392 387 382 376 369 401 396 391 384 377 348 344 340 335 329 352 348 343 338 332 297 294 290 286 282 296 293 290 286 281 20 22 24 26 28 813 787 759 731 701 976 938 897 855 811 724 702 678 652 626 817 787 756 724 690 615 597 578 558 537 676 654 630 606 581 449 437 426 413 400 480 467 454 439 424 399 390 380 370 359 414 404 393 382 370 361 353 345 336 326 369 361 352 343 333 323 316 309 301 293 326 319 311 304 295 277 271 266 259 253 276 271 265 259 253 30 32 34 36 40 670 639 607 575 511 767 723 678 634 547 599 571 543 515 459 656 621 586 551 482 515 493 471 448 402 555 528 501 474 421 387 373 358 344 314 409 393 377 360 327 347 335 323 311 285 358 345 332 319 292 316 306 295 284 262 322 311 300 289 266 284 276 267 257 238 287 278 269 259 240 246 239 232 224 209 246 239 232 224 209 0 Y-Y AXIS WT 15 949 1180 844 974 708 791 505 546 447 465 402 412 357 361 304 303 10 12 14 16 18 838 1010 734 828 609 667 817 982 716 805 595 651 793 946 695 778 579 631 766 907 672 749 561 610 736 864 646 717 541 586 389 371 350 328 303 411 391 368 343 316 340 325 308 290 269 350 335 317 297 275 298 286 271 256 238 303 290 276 259 241 254 244 233 220 206 256 246 234 221 207 207 199 191 181 170 206 199 191 181 170 20 22 24 26 28 704 670 635 598 561 818 769 720 669 617 619 589 559 527 495 682 645 607 568 528 520 497 473 448 422 561 533 505 475 445 278 252 227 201 176 288 259 231 203 176 248 226 204 183 161 253 230 207 184 161 220 201 182 163 145 223 203 183 164 145 191 175 159 143 127 192 176 160 143 127 159 147 134 121 108 159 146 134 121 108 30 32 34 35 36 523 486 449 430 412 567 517 468 444 420 462 429 397 381 365 488 448 410 391 372 396 370 344 331 318 415 384 354 339 325 155 137 122 115 109 155 137 122 115 109 142 125 112 106 100 142 127 127 112 112 125 113 113 100 100 112 100 100 89 89 106 95 95 84 84 100 90 90 96 85 76 96 85 76 37 38 40 395 377 342 398 349 353 305 310 103 103 378 334 335 293 296 342 303 303 268 268 95 95 Properties A (in2) rx (in.) ry (in.) 31.0 4.43 3.49 28.1 4.42 3.46 25.4 4.42 3.43 19.4 4.66 2.25 18.2 4.66 2.23 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 17.1 4.67 2.19 15.9 4.69 2.15 14.5 4.71 2.10 DESIGN STRENGTH OF COLUMNS 3 - 87 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation WT 13.5 89 Wt./ft Fy 36 X-X AXIS 50 73 57 51 47 42 50 36 50 36 50 36 50 36 50 36 50 799 1040 725 857 617 698 453 498 358 369 308 311 251 250 10 12 14 16 18 761 745 727 707 684 978 951 921 887 850 691 676 660 641 620 810 790 767 741 712 589 577 564 549 532 663 648 631 612 591 436 428 420 410 399 477 468 458 447 434 346 341 334 328 320 356 350 344 337 329 298 294 289 284 278 301 297 292 286 280 244 241 238 234 229 243 240 236 232 228 20 22 24 26 28 660 634 606 578 549 811 770 727 683 638 598 574 549 523 496 682 650 617 583 548 514 495 474 453 431 568 544 519 493 466 388 375 362 348 334 420 405 390 373 357 312 303 293 283 273 320 310 300 290 279 271 264 256 248 240 273 266 258 250 241 224 219 213 207 201 223 218 212 206 200 30 32 34 36 38 519 489 459 430 400 594 550 506 464 423 469 442 415 388 361 513 478 443 409 376 409 387 364 342 319 439 412 385 358 332 319 304 289 274 259 339 322 304 287 269 262 251 240 229 218 268 256 244 233 221 231 222 213 204 194 233 223 214 205 195 194 187 180 173 166 193 187 180 173 165 371 40 383 335 344 298 306 244 252 206 209 185 186 159 158 799 1040 725 857 617 698 453 498 358 369 308 311 251 250 10 12 14 16 18 701 681 658 632 604 877 845 808 768 725 627 609 588 565 540 720 696 669 639 606 527 513 497 479 459 583 566 546 524 500 349 331 311 288 264 374 353 330 304 277 275 263 248 232 215 281 268 253 236 218 231 221 210 197 184 233 223 211 198 185 181 174 166 157 147 180 173 165 156 147 20 22 24 26 28 574 542 509 476 442 678 631 582 533 484 513 485 456 426 395 571 534 497 458 420 437 415 391 367 342 474 446 418 389 359 240 215 191 167 145 249 221 193 167 145 197 179 160 142 125 199 180 161 143 125 169 154 140 125 110 170 155 140 125 110 137 126 114 103 92 136 125 114 103 92 30 32 34 35 36 408 374 342 326 310 436 390 347 328 310 365 335 305 291 277 382 345 309 292 277 317 292 268 256 244 330 301 273 259 245 127 112 100 94 89 127 112 100 94 89 109 97 86 81 109 97 86 81 97 86 76 72 97 86 76 72 81 72 64 81 72 64 40 252 252 225 225 200 200 0 Y-Y AXIS 80.5 36 0 Effective length KL (ft) with respect to indicated axis Y Properties A (in2) rx (in.) ry (in.) 26.1 3.98 3.26 23.7 3.96 3.24 21.5 3.95 3.21 16.8 4.15 2.18 15.0 4.14 2.15 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 13.8 4.16 2.12 12.4 4.18 2.07 3 - 88 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 12 81 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 73 65.5 58.5 52 36 50 36 50 36 50 36 50 36 50 0 731 1020 658 864 591 726 506 580 410 450 10 12 14 16 18 687 669 648 624 598 932 898 858 815 769 618 602 583 562 538 797 769 737 702 664 556 541 524 505 484 673 652 627 599 569 477 465 451 435 418 542 526 508 487 465 389 379 369 357 344 424 413 401 387 371 20 22 24 26 28 571 542 512 481 450 720 670 619 568 518 514 488 461 433 405 624 583 541 499 457 462 439 415 391 366 537 504 471 437 403 400 380 360 339 318 442 418 392 367 341 331 316 301 285 269 355 338 320 302 283 30 32 34 36 38 419 388 358 328 299 469 421 375 335 300 377 349 322 295 269 416 376 338 301 270 341 316 291 267 244 369 336 304 273 245 297 276 255 235 215 315 290 265 241 217 252 236 220 204 188 264 246 227 209 192 40 271 271 244 244 221 221 196 196 173 175 0 731 1020 658 864 591 726 506 580 410 450 10 12 14 16 18 648 626 601 574 544 858 819 775 727 675 575 555 533 508 482 723 691 656 617 575 505 487 468 446 422 597 573 545 515 482 424 410 395 377 358 472 455 435 414 390 338 328 317 304 290 363 352 339 324 308 20 22 24 26 28 512 480 446 412 378 622 568 514 460 409 453 424 393 363 332 532 487 442 398 355 397 371 345 317 290 448 412 376 340 305 338 316 294 272 249 365 339 313 286 259 275 260 243 226 209 291 273 254 235 216 30 32 34 36 38 345 312 281 251 225 359 316 281 251 225 303 273 245 219 197 313 276 245 219 197 264 238 213 190 171 271 239 213 190 171 227 206 184 165 149 233 207 184 165 149 192 175 159 143 129 196 178 159 143 129 40 204 204 178 178 155 155 135 135 117 117 Properties A (in2) rx (in.) ry (in.) 23.9 3.50 3.05 21.5 3.50 3.01 19.3 3.52 2.97 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 17.2 3.51 2.94 15.3 3.51 2.91 DESIGN STRENGTH OF COLUMNS 3 - 89 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation WT 12 47 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy Y 42 38 34 31 27.5 36 50 36 50 36 50 36 50 36 50 36 50 0 378 419 307 321 254 258 209 208 202 203 155 155 10 12 14 16 18 360 352 343 332 321 396 387 376 363 350 293 287 280 273 265 306 299 292 284 275 244 240 234 229 222 247 243 237 231 225 201 198 194 189 185 200 197 193 189 184 194 191 187 183 178 196 192 188 184 179 150 148 145 142 139 150 148 145 142 139 20 22 24 26 28 309 296 283 269 255 335 320 304 287 271 256 246 236 225 215 265 255 244 233 221 215 208 200 192 184 218 210 202 194 185 179 174 168 162 155 179 173 167 161 155 173 168 162 156 150 174 169 163 157 150 136 132 128 124 120 136 132 128 124 120 30 32 34 36 38 240 226 211 197 183 254 237 220 203 187 204 192 181 170 159 209 197 185 173 161 175 166 157 148 140 176 167 158 149 140 148 142 135 128 121 148 141 135 128 121 143 136 130 123 116 144 137 130 123 117 115 111 106 101 96 115 111 106 101 96 40 169 171 148 150 131 131 114 114 109 110 92 92 0 378 419 307 321 254 258 209 208 202 203 155 155 10 12 14 16 18 288 269 248 226 202 310 288 263 237 211 231 218 202 185 168 239 224 208 190 171 188 178 166 154 140 190 179 167 155 141 148 140 132 123 113 147 140 132 123 113 121 110 97 84 71 122 110 98 84 71 91 84 75 67 57 91 84 75 67 57 20 22 23 24 26 179 156 145 134 115 184 158 145 134 115 150 132 124 115 99 152 134 124 115 99 126 113 106 99 86 127 113 106 99 86 103 92 87 82 71 103 92 87 82 71 59 49 46 59 49 46 48 41 48 41 28 30 31 32 33 99 87 82 77 72 99 87 82 77 72 86 75 71 66 86 75 71 66 74 65 61 58 74 65 61 58 62 55 51 62 55 51 Properties A (in2) rx (in.) ry (in.) 13.8 3.67 1.98 12.4 3.67 1.95 11.2 3.68 1.92 10.0 3.70 1.87 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 9.11 3.79 1.38 8.10 3.80 1.34 3 - 90 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 10.5 73.5 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 66 61 55.5 50.5 36 50 36 50 36 50 36 50 36 50 0 661 918 594 825 548 757 499 637 452 524 10 12 14 16 18 610 589 565 539 510 822 782 739 691 641 547 528 507 483 457 737 701 661 618 573 505 487 466 444 420 676 643 606 566 524 459 443 424 404 382 573 547 518 486 453 416 401 384 366 346 476 457 434 410 384 20 22 24 26 28 480 449 417 385 353 589 536 484 434 385 429 401 372 343 315 526 478 431 386 341 395 368 341 315 288 481 437 394 352 311 358 334 310 285 261 418 382 347 312 279 324 303 280 258 236 357 329 301 274 247 30 32 34 36 38 322 292 262 234 210 337 296 263 234 210 286 259 233 208 186 299 263 233 208 186 262 236 212 189 170 272 239 212 189 170 237 214 192 171 154 246 217 192 171 154 214 193 173 154 139 221 195 173 154 139 40 190 190 168 168 153 153 139 139 125 125 0 661 918 594 825 548 757 499 637 452 524 10 12 14 16 18 587 566 542 515 486 778 740 697 650 601 522 503 482 458 432 689 655 617 576 532 478 461 441 419 396 626 596 562 524 485 430 415 397 377 356 526 503 476 447 415 385 372 356 339 320 434 417 397 375 352 20 22 24 26 28 456 424 392 360 328 550 498 447 397 349 405 377 348 320 291 487 441 395 351 308 371 345 319 293 267 444 402 361 321 281 334 311 287 263 239 383 349 316 283 251 300 279 258 237 216 327 301 275 249 223 30 32 34 36 38 297 267 238 213 191 305 268 238 213 191 263 237 210 188 169 269 237 210 188 169 241 216 193 172 155 246 217 193 172 155 216 194 172 154 139 220 194 172 154 139 195 175 156 139 125 199 175 156 139 125 40 173 173 153 153 140 140 125 125 113 113 Properties A (in2) rx (in.) ry (in.) 21.6 3.08 2.95 19.4 3.06 2.93 17.9 3.04 2.92 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 16.3 3.03 2.90 14.9 3.01 2.89 DESIGN STRENGTH OF COLUMNS 3 - 91 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation Fy 36 X-X AXIS Effective length KL (ft) with respect to indicated axis 0 50 41.5 36 50 36.5 36 34 50 36 31 50 36 28.5 50 36 50 25 36 22 50 36 50 419 562 373 444 297 331 261 283 219 225 203 210 165 167 127 127 6 8 10 12 14 409 400 390 378 364 543 529 511 489 466 364 356 347 336 323 430 420 407 392 374 290 284 278 270 260 322 316 307 297 286 255 251 245 239 231 276 271 264 256 247 214 211 206 201 195 221 217 212 207 201 199 196 192 187 182 206 203 199 194 188 162 160 157 153 149 164 161 158 155 151 125 123 121 119 116 125 123 121 119 116 16 18 20 22 24 349 332 315 296 277 439 412 383 353 323 310 295 279 262 245 355 335 314 291 269 250 239 227 215 202 274 260 246 231 216 222 213 203 192 182 237 227 215 203 191 189 181 174 165 157 194 186 178 169 160 176 170 163 155 147 182 175 167 159 151 145 140 134 129 123 146 141 136 130 124 113 110 106 102 98 113 110 106 102 98 26 28 30 32 34 258 239 220 201 183 293 264 236 209 185 228 210 193 177 160 247 225 203 182 162 189 176 163 150 137 200 185 169 155 140 170 159 148 137 126 178 165 153 140 128 148 139 130 121 112 151 142 132 123 114 139 131 123 115 107 143 117 118 134 111 111 125 104 105 117 98 98 108 91 92 94 90 85 81 76 94 90 85 81 76 36 38 40 165 165 145 145 125 126 115 117 104 104 148 148 130 130 113 113 105 105 95 96 134 134 117 117 102 102 95 95 87 87 71 67 63 71 67 63 0 Y-Y AXIS WT 10.5 46.5 Wt./ft Y 99 100 91 92 84 84 85 79 73 85 79 73 419 562 373 444 297 331 261 283 219 225 203 210 165 167 127 127 6 8 10 12 14 357 337 313 285 256 452 420 381 338 293 311 294 273 250 224 357 334 307 276 243 245 233 218 201 182 267 252 235 214 192 213 203 191 177 161 227 215 202 186 168 152 147 141 133 123 153 142 128 113 97 16 18 20 21 22 226 195 166 151 138 247 203 166 151 138 198 171 145 132 121 210 177 145 132 121 162 142 122 113 103 169 146 124 113 103 145 128 111 103 95 150 112 113 131 101 102 112 90 90 103 84 84 95 78 78 81 66 54 49 45 24 26 28 29 30 117 117 102 102 100 100 88 88 86 86 76 76 80 80 71 71 75 75 66 66 87 75 65 60 57 87 75 65 60 57 80 69 60 56 52 80 69 60 56 52 149 145 138 131 122 67 58 51 47 157 116 117 145 108 109 131 99 99 115 88 88 98 76 76 82 66 54 49 45 64 52 43 39 64 52 43 39 85 80 74 67 59 85 80 74 67 59 51 42 35 32 51 42 35 32 67 58 51 47 Properties A (in2) rx (in.) ry (in.) 13.7 3.25 1.84 12.2 3.22 1.83 10.7 3.21 1.81 10.0 3.20 1.80 9.13 3.21 1.77 8.37 3.29 1.35 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 7.36 3.30 1.30 6.49 3.31 1.26 3 - 92 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 9 59.5 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 53 48.5 43 38 36 50 36 50 36 50 36 50 36 50 0 536 744 477 663 438 608 389 507 339 393 10 12 14 16 18 479 456 430 402 372 636 594 548 499 449 426 406 383 357 331 567 529 487 444 399 390 370 349 325 301 518 482 444 403 361 346 329 309 288 266 436 407 376 344 310 302 287 270 252 233 343 323 302 278 254 20 22 24 26 28 342 311 281 251 222 399 350 303 259 224 304 276 249 222 197 354 310 268 229 198 275 250 225 200 177 320 279 241 205 177 244 221 199 177 156 276 243 211 181 156 213 193 174 155 136 229 205 181 158 137 30 34 38 42 43 195 152 121 99 95 195 152 121 99 95 172 134 107 88 84 172 134 107 88 84 154 120 96 79 154 120 96 79 136 106 85 69 136 106 85 69 119 93 74 61 119 93 74 61 0 536 744 477 663 438 608 389 507 339 393 10 12 14 16 18 471 450 427 401 374 622 584 543 499 453 415 397 376 353 329 546 513 477 438 397 379 362 343 322 300 496 467 434 398 361 331 317 300 282 263 411 388 362 334 305 285 272 258 243 226 320 304 287 267 246 20 22 24 26 28 346 318 289 260 233 407 361 317 274 237 304 279 253 228 203 356 315 276 238 206 277 254 230 207 185 324 286 251 216 187 242 222 201 181 161 275 245 216 188 163 209 192 174 156 139 225 203 182 161 140 30 34 38 42 43 206 161 129 106 101 206 161 129 106 101 180 140 112 92 88 180 140 112 92 88 163 127 102 84 80 163 127 102 84 80 142 111 89 73 70 142 111 89 73 70 123 96 77 63 61 123 96 77 63 61 44 96 96 84 84 76 76 Properties A (in2) rx (in.) ry (in.) 17.5 2.60 2.69 15.6 2.59 2.66 14.3 2.56 2.65 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 12.7 2.55 2.63 11.2 2.54 2.61 DESIGN STRENGTH OF COLUMNS 3 - 93 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation Fy 36 X-X AXIS Effective length KL (ft) with respect to indicated axis 0 32.5 50 36 30 50 36 27.5 50 36 25 50 36 23 50 36 20 50 36 17.5 50 36 50 318 426 292 356 261 299 226 253 184 194 172 183 124 124 101 101 10 12 14 16 18 288 275 261 246 229 372 351 327 302 275 264 252 239 225 210 314 297 279 259 238 236 226 214 202 189 266 253 239 223 206 206 197 188 178 167 227 217 206 193 180 169 163 156 148 140 177 171 163 154 145 168 161 154 146 138 116 112 108 104 99 116 112 108 104 99 95 92 89 86 82 95 92 89 86 82 20 22 24 26 28 212 195 178 161 144 248 222 196 171 148 194 178 162 146 131 216 195 173 153 134 175 161 147 133 119 189 172 155 138 122 155 143 131 120 108 166 152 138 124 111 131 122 113 103 94 135 124 129 126 116 120 116 107 111 106 99 101 96 90 92 94 89 84 78 72 94 89 83 78 72 78 74 70 66 62 78 74 70 66 62 30 32 34 36 38 128 129 116 116 106 107 113 113 102 102 94 94 100 100 91 91 83 83 89 89 81 81 74 74 80 80 72 72 66 66 97 86 76 68 61 98 86 76 68 61 85 77 68 61 55 86 77 68 61 55 82 74 67 59 53 83 75 67 59 53 67 61 56 51 46 67 61 56 51 46 57 53 49 45 41 57 53 49 45 41 55 50 48 44 55 50 48 44 49 45 43 39 49 45 43 39 48 44 42 38 36 48 44 42 38 36 41 38 36 33 31 41 38 36 33 31 37 34 32 29 28 37 34 32 29 28 40 42 43 45 46 0 Y-Y AXIS WT 9 35.5 Wt./ft Y 72 66 63 57 72 66 63 57 65 59 57 52 65 59 57 52 60 54 52 47 60 54 52 47 318 426 292 356 261 299 226 253 184 194 172 183 124 124 101 101 10 12 14 16 18 231 207 182 157 132 279 242 204 167 133 210 188 165 142 119 238 209 179 149 120 187 168 149 129 109 204 182 158 134 111 161 146 130 113 96 20 21 22 24 26 109 109 99 99 90 90 76 76 65 65 98 89 82 69 59 98 89 82 69 59 90 82 75 63 54 90 82 75 63 54 80 73 67 57 48 80 73 67 57 48 70 64 59 50 43 70 64 59 50 43 55 51 55 51 50 47 50 47 45 45 40 40 27 28 159 153 147 140 132 60 56 60 56 173 132 137 107 111 155 121 125 92 94 136 109 111 77 78 117 96 98 62 62 98 83 84 50 50 40 37 40 37 80 71 61 51 41 80 71 61 51 41 61 54 47 40 32 61 54 47 40 32 34 31 34 31 27 27 Properties A (in2) rx (in.) ry (in.) 10.4 2.74 1.70 9.55 2.72 1.69 8.82 2.71 1.69 8.10 2.71 1.67 7.33 2.70 1.65 6.77 2.77 1.29 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5.88 2.76 1.27 5.15 2.79 1.22 3 - 94 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 8 50 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 44.5 38.5 33.5 36 50 36 50 36 50 36 50 0 450 625 401 557 346 476 301 361 10 12 14 16 18 389 365 338 310 280 510 467 420 372 324 346 324 300 275 249 454 415 373 330 287 297 278 257 235 212 386 353 316 279 243 258 241 223 203 183 300 277 251 225 199 20 22 24 26 28 251 222 194 167 144 278 234 197 167 144 223 197 172 148 128 246 207 174 148 128 189 166 145 124 107 207 174 146 124 107 163 143 124 106 92 173 148 125 106 92 30 32 34 36 37 126 111 98 87 83 126 111 98 87 83 111 98 87 77 73 111 98 87 77 73 93 82 73 65 61 93 82 73 65 61 80 70 62 55 52 80 70 62 55 52 38 78 78 0 450 625 401 557 346 476 301 361 10 12 14 16 18 391 371 349 325 300 514 479 440 399 357 346 328 309 287 265 453 422 388 351 314 295 280 263 245 226 382 356 327 297 265 254 241 226 211 194 294 276 257 236 214 20 22 24 26 28 274 248 223 198 174 315 275 236 201 174 242 219 196 173 152 277 241 206 176 152 206 186 166 147 129 234 203 174 149 129 177 160 143 127 111 192 170 148 128 111 30 32 34 36 38 151 133 118 105 95 151 133 118 105 95 133 117 103 92 83 133 117 103 92 83 112 99 88 78 70 112 99 88 78 70 97 85 75 67 61 97 85 75 67 61 41 81 81 71 71 60 60 52 52 Properties A (in2) rx (in.) ry (in.) 14.7 2.28 2.51 13.1 2.27 2.49 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 11.3 2.24 2.47 9.84 2.22 2.46 DESIGN STRENGTH OF COLUMNS 3 - 95 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation Y-Y AXIS X-X AXIS Fy Effective length KL (ft) with respect to indicated axis WT 8 28.5 Wt./ft Y 25 22.5 20 18 15.5 13 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 256 336 223 259 184 205 141 145 122 124 93 93 66 66 6 8 10 12 14 245 236 225 212 199 316 301 283 262 240 213 205 196 185 173 245 235 223 208 193 176 170 163 154 145 195 188 179 169 157 136 132 127 121 115 140 136 130 124 117 118 114 111 106 101 120 116 112 108 102 91 88 86 83 79 90 88 85 82 79 65 63 62 60 58 65 63 62 60 58 16 18 20 22 24 184 168 152 136 121 217 193 169 147 125 160 146 133 119 105 176 159 141 125 108 135 124 114 103 92 145 133 120 107 95 108 100 92 85 77 110 102 94 86 78 95 89 82 76 69 96 90 83 76 70 75 71 67 62 57 75 71 66 62 57 55 53 50 47 44 55 53 50 47 44 26 28 30 32 34 106 92 80 70 62 107 92 80 70 62 93 80 70 61 54 93 80 70 61 54 82 72 62 55 49 83 72 62 55 49 69 62 54 48 42 70 62 54 48 42 63 56 50 44 39 63 57 50 44 39 53 48 44 39 35 53 48 44 39 35 41 38 35 32 29 41 38 35 32 29 36 38 39 40 41 56 50 47 45 56 50 47 45 49 44 41 39 49 44 41 39 43 39 37 43 39 37 38 34 32 38 34 32 35 31 30 28 35 31 30 28 31 28 27 25 31 28 27 25 27 24 23 22 21 27 24 23 22 21 0 256 336 223 259 184 205 141 145 122 124 93 93 66 66 6 8 10 12 14 216 200 181 160 138 268 243 214 182 151 185 171 155 137 119 207 190 170 148 125 153 143 130 116 101 167 155 140 123 106 116 110 102 92 82 119 112 104 94 84 95 90 84 76 68 97 91 85 77 69 70 65 58 50 42 70 64 57 50 42 47 44 40 35 30 47 44 40 35 30 16 18 20 22 116 96 78 65 120 96 78 65 100 83 67 56 103 83 67 56 87 72 59 49 89 72 59 49 72 62 52 43 73 62 52 43 60 51 43 36 60 51 43 36 34 27 34 27 25 21 25 21 24 25 26 54 50 46 54 50 46 47 43 40 47 43 40 41 38 35 41 38 35 36 34 31 36 34 31 30 28 30 28 Properties A (in2) rx (in.) ry (in.) 8.38 2.41 1.60 7.37 2.40 1.59 6.63 2.39 1.57 5.89 2.37 1.57 5.28 2.41 1.52 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4.56 2.45 1.17 3.84 2.47 1.12 3 - 96 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 7 66 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 60 54.5 49.5 45 36 50 36 50 36 50 36 50 36 50 0 594 825 542 752 490 680 447 621 404 561 2 4 6 8 10 588 570 542 505 461 813 779 726 658 580 536 520 493 459 418 741 710 661 597 525 484 469 444 412 374 670 641 595 536 468 442 428 405 375 340 611 584 542 487 425 399 387 366 339 307 552 528 489 439 383 12 14 16 18 20 412 361 310 261 215 497 414 335 266 215 373 326 279 234 192 448 371 299 237 192 333 289 246 205 167 397 327 261 207 167 302 262 223 185 151 360 296 236 186 151 272 236 200 166 135 324 265 211 166 135 22 24 26 27 28 178 149 127 118 110 178 149 127 118 110 158 133 113 105 98 158 133 113 105 98 138 116 99 92 85 138 116 99 92 85 125 105 89 83 125 105 89 83 111 94 80 74 111 94 80 74 0 594 825 542 752 490 680 447 621 404 561 6 8 10 12 14 578 570 559 546 531 794 778 758 734 706 526 519 509 497 483 722 708 689 667 642 475 468 459 448 436 651 638 621 601 578 432 426 418 408 396 591 579 564 546 525 389 384 376 367 357 531 520 506 490 472 16 18 20 22 24 514 496 476 455 434 675 642 607 571 533 468 451 433 414 394 614 584 551 518 484 422 407 391 373 355 553 526 497 467 436 384 370 355 339 322 502 477 451 423 395 346 333 320 305 290 451 429 405 381 355 26 28 30 32 34 411 388 365 341 318 495 457 420 383 347 373 352 331 309 288 449 414 380 346 314 337 317 298 279 260 404 373 342 311 282 305 288 270 253 235 366 337 309 281 255 275 259 243 227 211 329 303 278 253 229 36 38 40 295 273 251 312 281 253 267 247 227 282 253 229 241 222 204 253 227 205 218 201 184 228 205 185 196 180 166 205 184 166 Properties A (in2) rx (in.) ry (in.) 19.4 1.73 3.76 17.7 1.71 3.74 16.0 1.68 3.73 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 14.6 1.67 3.71 13.2 1.66 3.70 DESIGN STRENGTH OF COLUMNS 3 - 97 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation WT 7 41 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy Y 37 34 30.5 26.5 24 21.5 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 367 510 334 463 306 425 274 370 239 318 216 265 183 208 4 6 8 10 12 354 339 319 294 267 486 457 419 375 327 322 307 288 265 240 440 413 378 337 293 295 281 264 243 219 403 378 346 308 267 264 252 236 217 196 352 330 302 270 235 231 221 208 193 175 303 287 265 239 211 209 200 188 174 158 254 241 224 203 181 177 170 160 149 136 200 191 179 164 148 14 16 18 20 22 238 208 179 151 126 279 232 188 152 126 213 186 159 134 111 248 205 165 134 111 194 169 144 121 100 226 186 150 121 100 173 151 128 108 89 199 165 133 108 89 157 138 119 101 85 182 153 126 102 85 141 124 107 91 76 158 134 112 92 76 122 108 93 80 67 131 114 97 81 67 24 26 28 30 31 106 90 78 68 106 90 78 68 93 79 68 59 93 79 68 59 84 72 62 54 84 72 62 54 75 64 55 48 75 64 55 48 71 61 52 45 43 71 61 52 45 43 64 54 47 41 38 64 54 47 41 38 56 48 41 36 34 56 48 41 36 34 0 367 510 334 463 306 425 274 370 239 318 216 265 183 208 8 10 12 14 16 334 320 303 285 265 447 421 391 359 324 303 290 275 258 240 405 382 355 325 294 276 265 251 235 218 369 347 322 295 267 246 236 223 210 195 320 302 281 258 233 203 189 173 156 139 256 233 208 181 154 183 170 156 140 124 215 197 177 156 135 154 144 132 119 106 171 158 144 128 112 18 20 22 24 26 244 222 201 179 159 289 254 221 188 161 221 202 182 163 144 262 231 200 171 146 201 183 165 147 130 238 209 181 154 131 179 163 147 131 116 209 184 160 137 117 121 104 87 73 63 129 105 87 73 63 108 93 78 66 56 114 94 78 66 56 93 80 68 57 49 97 82 68 57 49 28 30 31 32 34 139 121 113 106 94 139 121 113 106 94 126 110 103 97 86 126 110 103 97 86 113 99 93 87 77 113 99 93 87 77 101 88 82 77 69 101 88 82 77 69 54 47 44 41 54 47 44 41 48 42 40 48 42 40 42 37 34 42 37 34 36 40 41 84 68 65 84 68 65 76 62 59 76 62 59 69 56 53 69 56 53 61 50 61 50 Properties A (in2) rx (in.) ry (in.) 12.0 1.85 2.48 10.9 1.82 2.48 9.99 1.81 2.46 8.96 1.80 2.45 7.81 1.88 1.92 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 7.07 1.87 1.91 6.31 1.86 1.89 3 - 98 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 7 19 Wt./ft X-X AXIS Y-Y AXIS Effective length KL (ft) with respect to indicated axis Fy 17 15 13 11 36 50 36 50 36 50 36 50 36 50 0 159 180 131 142 109 114 87 88 62 62 2 4 6 8 10 158 155 150 143 134 178 174 168 159 148 130 128 124 119 112 141 138 134 127 120 109 107 104 100 95 114 112 108 104 98 87 85 83 80 77 88 86 84 81 78 62 61 60 58 56 62 61 60 58 56 12 14 16 18 20 125 114 103 92 81 136 123 110 97 83 105 96 88 79 70 111 102 92 82 72 89 83 76 69 62 92 85 78 70 63 73 68 63 58 53 73 69 64 58 53 53 51 48 44 41 53 51 48 44 41 22 24 26 28 30 70 60 51 44 38 71 60 51 44 38 62 53 46 39 34 63 54 46 39 34 55 48 42 36 31 55 48 42 36 31 48 42 37 33 28 48 43 38 33 28 38 34 31 28 24 38 34 31 28 24 32 34 35 34 30 34 30 30 27 30 27 27 24 27 24 25 22 21 25 22 21 22 19 18 22 19 18 0 159 180 131 142 109 114 87 88 62 62 6 8 10 12 14 132 123 111 99 86 146 134 120 105 89 108 101 92 82 72 115 107 97 86 74 86 81 74 67 59 89 83 76 68 60 65 58 50 41 32 66 58 50 41 32 45 41 35 30 24 45 41 35 30 24 16 17 18 20 22 72 66 60 49 40 74 66 60 49 40 61 56 51 42 35 63 57 52 42 35 50 46 42 35 29 51 47 42 35 29 25 22 20 25 22 20 19 17 19 17 24 25 34 31 34 31 30 27 30 27 25 25 Properties A (in2) rx (in.) ry (in.) 5.58 2.04 1.55 5.00 2.04 1.53 4.42 2.07 1.49 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.85 2.12 1.08 3.25 2.14 1.04 DESIGN STRENGTH OF COLUMNS 3 - 99 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Designation X-X AXIS Y-Y AXIS Effective length KL (ft) with respect to indicated axis Y WT 6 29 Wt./ft Fy X 26.6 25 22.5 20 36 50 36 50 36 50 36 50 36 50 0 261 362 238 331 225 312 202 280 180 221 2 4 6 8 10 257 247 231 210 186 355 336 306 268 227 235 226 211 192 171 325 307 280 246 208 222 214 202 186 167 307 292 269 240 207 200 193 181 167 149 276 262 241 214 184 178 172 161 148 133 218 208 193 174 152 12 14 16 18 20 160 135 110 88 71 185 145 111 88 71 147 124 102 81 66 170 134 103 81 66 147 126 105 86 70 173 139 109 86 70 131 112 93 75 61 153 123 96 75 61 116 99 82 66 54 129 106 84 66 54 22 24 25 26 59 49 45 59 49 45 54 46 42 54 46 42 58 48 45 41 58 48 45 41 51 42 39 36 51 42 39 36 44 37 34 32 44 37 34 32 0 261 362 238 331 225 312 202 280 180 221 6 8 10 12 14 246 238 228 216 203 333 318 300 279 257 223 216 206 196 184 301 287 271 252 231 205 194 181 166 150 274 255 232 206 179 183 174 162 148 134 244 227 206 183 159 162 154 143 131 118 194 182 167 150 132 16 18 20 22 24 189 175 160 144 129 233 208 184 160 137 171 157 144 130 116 209 187 164 143 122 134 117 101 86 72 152 127 103 86 72 119 104 89 75 63 135 112 91 75 63 105 92 79 66 56 114 97 80 66 56 26 28 30 32 34 115 101 88 77 69 117 101 88 77 69 103 90 78 69 61 104 90 78 69 61 61 53 46 41 61 53 46 41 54 47 41 36 54 47 41 36 48 41 36 32 48 41 36 32 36 38 41 61 55 47 61 55 47 54 49 42 54 49 42 Properties A (in2) rx (in.) ry (in.) 8.52 1.50 2.51 7.78 1.51 2.48 7.34 1.60 1.96 6.61 1.58 1.94 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5.89 1.57 1.93 3 - 100 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation 17.5 Wt./ft X-X AXIS Fy 15 13 11 9.5 8 7 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 158 188 120 132 90 92 88 98 68 71 53 54 40 40 2 4 6 8 10 157 152 145 135 124 186 179 169 156 140 119 116 111 104 96 131 127 121 113 104 89 87 84 80 74 91 89 86 81 76 88 86 83 78 73 97 95 91 86 80 68 66 64 61 58 70 69 67 63 60 53 52 51 48 46 54 53 51 49 46 40 39 38 37 35 40 39 38 37 35 12 14 16 18 20 111 98 85 72 59 124 106 89 73 59 87 78 68 59 50 93 82 71 60 50 68 62 55 48 42 70 63 56 49 42 68 61 55 48 42 73 65 58 50 43 54 49 44 40 35 55 50 45 40 35 43 40 36 33 29 43 40 36 33 29 33 31 29 26 24 33 31 29 26 24 22 24 26 28 29 49 41 35 30 28 49 41 35 30 28 41 35 30 25 24 41 35 30 25 24 36 30 26 22 21 36 30 26 22 21 36 30 26 22 21 36 30 26 22 21 30 26 22 19 18 30 26 22 19 18 26 22 19 16 15 26 22 19 16 15 21 19 17 14 14 21 19 17 14 14 19 18 19 18 17 16 17 16 14 13 13 14 13 13 13 12 11 13 12 11 30 31 32 Y-Y AXIS Effective length KL (ft) with respect to indicated axis WT 6 0 158 188 120 132 90 92 88 98 68 71 53 54 40 40 2 4 6 8 10 147 142 134 123 110 172 165 154 139 123 109 106 101 93 85 119 115 109 100 90 81 79 75 71 65 83 80 77 72 66 73 67 57 45 33 80 72 60 46 33 54 49 43 34 26 55 51 44 35 26 37 34 30 24 18 37 34 30 25 18 26 25 22 19 15 26 25 22 19 15 12 13 14 16 18 96 89 82 68 55 105 95 87 69 55 75 70 65 55 45 79 73 67 56 45 59 55 52 45 38 59 56 52 45 38 23 20 17 23 20 17 18 16 18 16 13 13 11 11 20 22 24 25 45 37 31 29 45 37 31 29 37 31 26 24 37 31 26 24 31 26 22 20 31 26 22 20 Properties A (in2) rx (in.) ry (in.) 5.17 1.76 1.54 4.40 1.75 1.52 3.82 1.75 1.51 3.24 1.90 0.847 2.79 1.90 0.822 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.36 1.92 0.773 2.08 1.92 0.753 DESIGN STRENGTH OF COLUMNS 3 - 101 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation WT 5 22.5 Wt./ft 19.5 16.5 15 13 11 36 50 36 50 36 50 36 50 36 50 36 50 0 203 282 175 244 148 206 135 188 117 146 99 115 2 4 6 8 10 199 187 170 148 124 274 253 220 182 142 172 162 147 128 107 237 218 190 157 123 146 137 125 109 92 201 185 162 135 106 133 128 119 107 94 184 173 157 136 114 115 110 102 92 81 144 136 124 109 92 98 94 87 79 69 113 108 99 88 76 12 14 16 18 20 100 77 59 47 38 105 77 59 47 38 86 67 51 40 33 91 67 51 40 33 75 58 45 35 29 79 58 45 35 29 80 67 54 42 34 91 70 54 42 34 69 57 46 36 29 76 60 46 36 29 59 49 40 32 26 64 51 40 32 26 26 26 31 28 24 31 28 24 27 24 20 27 24 20 23 21 18 23 21 18 21 22 24 Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy Y 0 203 282 175 244 148 206 135 188 117 146 99 115 2 4 6 8 10 199 195 188 178 167 274 266 253 235 214 171 167 161 153 143 235 227 216 201 183 143 140 134 127 119 194 188 179 166 151 128 122 113 101 88 174 163 147 126 104 109 104 96 86 75 134 126 115 100 84 89 85 78 70 61 101 96 88 78 66 12 14 16 18 20 153 139 125 110 95 191 167 143 120 99 131 119 106 93 80 163 142 121 101 83 109 98 87 76 66 134 116 99 82 67 74 60 47 38 30 82 62 47 38 30 63 51 40 32 26 68 52 40 32 26 51 41 32 26 21 54 42 32 26 21 22 24 26 28 30 81 69 59 50 44 82 69 59 50 44 68 57 49 42 37 68 57 49 42 37 55 47 40 34 30 55 47 40 34 30 25 25 21 21 17 17 32 33 39 36 39 36 32 30 32 30 26 26 Properties A (in2) rx (in.) ry (in.) 6.63 1.24 2.01 5.73 1.24 1.98 4.85 1.26 1.94 4.42 1.45 1.37 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3.81 1.44 1.36 3.24 1.46 1.33 3 - 102 COLUMN DESIGN Fy = 36 ksi Y Fy = 50 ksi X COLUMNS Structural tees cut from W shapes X Design axial strength in kips (φ = 0.85) Y Designation WT 5 9.5 Wt./ft Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy 8.5 7.5 6 36 50 36 50 36 50 36 50 0 86 104 77 90 66 76 43 45 2 4 6 8 10 85 82 77 70 62 103 98 91 81 71 76 73 68 63 56 88 85 79 71 62 65 63 59 54 49 75 72 67 61 54 43 41 39 37 34 44 43 41 38 35 12 14 16 18 20 54 46 38 30 25 60 49 39 30 25 49 42 34 28 23 53 44 35 28 23 43 37 31 25 20 46 39 31 25 20 30 27 23 19 16 31 27 23 20 16 22 24 25 26 20 17 16 20 17 16 19 16 14 13 19 16 14 13 17 14 13 12 17 14 13 12 13 11 10 10 13 11 10 10 0 86 104 77 90 66 76 43 45 2 4 6 8 10 74 67 56 43 31 87 77 62 46 31 62 56 47 36 25 70 62 51 37 25 49 45 37 29 20 54 48 40 29 20 30 28 24 19 14 30 28 24 20 14 12 13 14 22 18 16 22 18 16 18 15 13 18 15 13 14 12 14 12 10 9 10 9 Properties A (in2) rx (in.) ry (in.) 2.81 1.54 0.874 2.50 1.56 0.844 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.21 1.57 0.810 1.77 1.57 0.785 DESIGN STRENGTH OF COLUMNS 3 - 103 Fy = 36 ksi Y Fy = 50 ksi COLUMNS Structural tees cut from W shapes X X Design axial strength in kips (φ = 0.85) Designation WT 4 14 Wt./ft 12 10.5 9 7.5 6.5 5 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 126 175 108 150 94 131 80 112 68 94 59 82 41 46 2 3 4 5 6 122 118 112 105 96 168 160 148 135 121 105 101 96 90 82 144 137 127 116 103 92 89 86 81 76 127 121 114 106 97 79 76 73 70 65 108 104 98 91 83 67 65 63 60 57 92 89 84 79 73 58 56 54 52 49 79 77 73 69 64 41 40 38 37 35 45 44 42 40 38 8 10 12 14 16 78 60 43 32 24 90 62 43 32 24 67 51 36 27 20 77 52 36 27 20 64 52 39 29 22 76 57 40 29 22 55 45 35 26 20 67 50 35 26 20 49 41 33 25 19 60 47 34 25 19 43 36 29 22 17 52 41 30 22 17 30 26 21 16 12 33 27 21 16 12 18 18 16 14 16 14 15 14 12 15 14 12 13 12 11 13 12 11 10 9 8 10 9 8 18 19 20 Y-Y AXIS Effective length KL (ft) with respect to indicated axis X-X AXIS Fy Y 0 126 175 108 150 94 131 80 112 68 94 59 82 41 46 2 4 6 8 10 123 119 112 104 93 169 161 149 133 116 105 101 96 88 80 143 137 127 113 98 89 85 77 68 57 121 113 99 83 66 75 70 64 56 47 100 93 82 68 54 60 54 45 35 25 79 68 53 37 25 49 44 36 28 19 63 55 43 29 19 33 30 25 20 15 35 32 27 21 15 12 14 16 18 20 82 71 60 49 40 97 79 62 49 40 70 60 51 42 34 83 67 53 42 34 47 37 28 22 18 49 37 28 22 18 38 30 23 18 15 40 30 23 18 15 17 13 17 13 14 10 14 10 10 8 10 8 21 22 24 26 27 36 33 28 24 22 36 33 28 24 22 31 28 24 20 31 28 24 20 16 16 Properties A (in2) rx (in.) ry (in.) 4.12 1.01 1.62 3.54 .999 1.61 3.08 1.12 1.26 2.63 1.14 1.23 2.22 1.22 0.876 Note: Heavy line indicates Kl / r of 200. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.92 1.23 0.843 1.48 1.20 0.841 3 - 104 COLUMN DESIGN Single-Angle Struts Design strengths of single-angle struts were formerly not tabulated in this Manual because of the difficulty in loading such struts concentrically. Concentric loading can be accomplished by milling the ends of an angle and loading it through bearing plates. However, in common practice, the eccentricity of loading is relatively large, and its neglect in design may lead to an under-designed member. The design of single-angle struts is governed by the AISC Specification for Load and Resistance Factor Design of Single-Angle Members, which is reproduced in Part 6 of this Manual. The following example illustrates the design procedure for an equal-leg angle loaded eccentrically. The design strengths for concentric loading, tabulated below, are useful in solving the interaction equations for combined axial force and bending. The tables below are based on Zureick (1993), revised to conform with the AISC Single-Angle Specification (LRFD). EXAMPLE 3-8 An angle 2×2×1⁄4 is loaded by a gusset plate attached to one leg with an eccentricity of 0.8 in. from the centroid, as shown in Figure 3-3. Determine the factored compressive load Pu which may be applied. The effective length KL is 4.0 ft. Given: A = 0.938 in.2 rz = 0.391 in. Ix = Iy = 0.348 in.4 3 84 ′ 7′ ′′ 7 .2 0 0. Z Pn W 0.8′′ 0.592 ′′ 37 ′′ α 8 0. W Z ′ 4′ 41 1. Fig. 3-3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 105 α = 45° Fy = 50 ksi Solution: Determine the properties for the principal axes Z-Z and W-W as follows: Iz = Arz2 = 0.938(0.391)2 = 0.143 in.2 Iw + Iz = Ix + Iy Iw = 0.348 + 0.348 − 0.143 = 0.552 in.4 rw = √ √ Iw = A 0.552 = 0.767 in. 0.938 From the tables which follow, the design compressive strength φcPn = 14 kips for KL = 4 ft. For combined axial compression and bending, the latter is taken about the principal axes in accordance with the Single-Angle LRFD Specification (Section 6). For equal leg angles— Major principal axis (W-W) bending (Section 5.3.1): 0.46Eb2t 2 l 0.46(29,000 ksi)(2 in.)2(0.25 in.)2 = 1.0 × 48 in. = 69.5 k-in. Iw 0.552 in.4 My = Fy Sw = Fy = 50 ksi × cw 1.414 in. = 19.5 k-in. Mob = Cb Since Mob > My (Section 5.1.3), Mnw = [1.58 − 0.83 √ My / Mob ] My ≤ 1.25My = [1.58 − 0.83 √ 19.5 / 69.5 ] My = 1.14My = 1.14 × 19.5 k-in. = 22 k-in. According to Section 5.1.1, (= 2 in. / 0.25 in. = 8) < 0.382 √ E /Fy (= 0.382 √ 29,000 / 50 = 9.2), Mnw ≤ 1.25Fy Sc = 1.25Fy Sw = 1.25My for b / t This is satisfied since Mnw = 1.14My. Minor principal axis (Z-Z) bending (Section 5.3.1): With the leg tips of the angle in tension and the angle corner in compression AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 106 COLUMN DESIGN Mnz = 1.25My = 1.25Fy Sz = 1.25Fy = 1.25 × 50 ksi × Iz cz 0.143 in.4 0.837 in. = 11 k-in. Assuming Pu ≥ 0.2, Interaction Equation 6-1a governs. φcPn Muz Pu 8 Muw φ P + 9 φ M + φ M ≤ 1.0 b nz b nw c n According to Section 6.1.1, for flexural compression Mu shall be multiplied by B1 (Equation 6-2). Major principal axis (W-W) bending: Kl / rw = 1.0 × 48 / 0.767 = 62.2 From LRFD Specification Table 8, Pe / Ag = 73.1 Pe1w = 73.1(0.938) = 68.6 kips B1w = Cm 0.85 = < 1. Use B1w = 1.0. 1 − Pu / Pe1w 1 − Pu / 68.6 Minor principal axis (Z-Z) bending: Kl / rw = 1.0 × 48 / 0.391 = 122.8 From LRFD Specification Table 8, Pe / Ag = 19.0 Pe1z = 19.0(0.938) = 17.8 kips B1z = Cm 0.85 = 1 − Pu / Pe1z 1 − Pu / 17.8 Conservatively adding the maximum axial and flexural terms, Equation 6-1a becomes Pu ×0.277 in. Pu 8 Pu ×0.843 in. × 1.0 0.85 + + ≤ 1.0 14 kips 9 0.9×22 kip−in. 0.9×11 kip−in. 1−Pu / 17.8 Pu = 7 kips Checking Pu 7 kips = = 0.5 > 0.2 o.k. 14 kips φcPn A less conservative approach would have involved applying the interaction equation separately at the corner and the two leg tips of the angle, with the proper signs (+ or −) for compression and tension. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 107 Fy = 36 ksi z Y Fy = 50 ksi COLUMNS Single angles w x Design axial strength in kips (φ = 0.90) x w Y z 8× ×6 Size Thickness 1 7⁄ 8 3⁄ 4 5⁄ 8 9⁄ 16 1⁄ 2 7⁄ 16 Wt./ft 44.2 39.1 33.8 28.5 25.7 23.0 20.2 Effective length KL (ft) Fy 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 421 585 373 518 322 447 270 352 235 303 199 253 163 203 1 2 3 4 5 406 398 393 384 371 555 541 531 515 490 355 347 342 336 325 484 468 460 448 429 301 292 288 284 277 408 391 383 375 363 246 235 231 228 224 311 294 287 282 276 210 199 195 193 190 262 245 239 235 230 174 163 160 158 156 213 197 192 188 185 138 128 125 123 122 166 151 146 144 141 6 7 8 9 10 353 333 311 287 263 458 422 383 344 305 311 293 274 253 232 402 371 338 303 268 266 252 236 219 201 343 319 291 262 233 217 208 195 182 167 265 250 231 210 189 186 179 170 159 148 224 214 200 184 167 153 149 143 135 126 181 175 166 155 142 120 118 115 110 104 139 136 131 124 116 11 12 13 14 15 239 215 192 169 147 266 230 196 169 147 211 190 169 149 130 235 203 173 149 130 183 165 147 130 114 204 177 151 130 114 152 137 123 109 95 167 146 125 109 95 135 123 111 99 87 149 131 114 99 87 117 107 96 87 77 128 114 101 88 77 97 90 82 75 67 107 97 87 77 67 16 17 18 19 20 130 115 103 92 83 130 115 103 92 83 115 102 91 81 74 115 102 91 81 74 100 89 79 71 64 100 89 79 71 64 84 74 66 60 54 84 74 66 60 54 77 68 61 55 49 77 68 61 55 49 68 60 54 49 44 68 60 54 49 44 60 53 48 43 39 60 53 48 43 39 21 76 76 67 67 58 58 49 49 45 45 40 40 35 35 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 108 COLUMN DESIGN z Fy = 36 ksi Y Fy = 50 ksi COLUMNS Single angles w x x Design axial strength in kips (φ = 0.90) w Y z 8× ×4 Size Thickness Wt./ft 37.4 Fy Effective length KL (ft) 7⁄ 8 1 3⁄ 4 33.1 5⁄ 8 28.7 24.2 1⁄ 2 21.9 7⁄ 16 19.6 17.2 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 356 495 315 438 273 380 230 299 200 258 170 216 139 174 1 2 3 4 5 342 331 315 293 267 468 446 417 378 332 300 289 275 257 234 408 387 363 330 290 256 245 235 220 201 346 326 307 280 248 209 198 190 179 165 264 246 233 216 194 179 169 162 154 142 223 207 197 184 167 149 139 134 128 119 182 168 160 150 138 118 109 105 101 95 142 128 122 116 108 6 7 8 9 10 238 208 177 148 121 283 234 187 149 121 209 183 156 131 107 248 205 164 131 107 180 157 135 113 92 212 176 141 113 92 148 130 112 94 77 169 142 117 94 77 129 114 99 84 70 146 125 104 84 70 109 98 86 73 61 123 107 90 74 61 88 80 71 62 53 98 87 75 63 53 11 12 13 14 100 85 72 62 100 85 72 62 89 75 64 55 89 75 64 55 77 65 56 48 77 65 56 48 65 55 47 41 65 55 47 41 58 49 42 37 58 49 42 37 52 44 38 33 52 44 38 33 45 38 33 29 45 38 33 29 7× ×4 Size 3⁄ 4 Thickness Wt./ft 5⁄ 8 26.2 Fy Effective length KL (ft) 9⁄ 16 1⁄ 2 22.1 7⁄ 16 17.9 3⁄ 8 15.7 13.6 36 50 36 50 36 50 36 50 36 50 0 249 346 210 288 164 212 136 173 108 134 1 2 3 4 5 236 228 219 205 188 320 306 289 264 233 194 187 180 170 156 258 245 233 215 191 146 139 134 128 119 182 171 164 154 140 118 111 107 103 97 144 133 128 122 113 90 85 82 79 76 107 99 95 91 86 6 7 8 9 10 168 147 126 106 87 200 166 134 107 87 140 123 106 89 73 165 138 113 90 73 108 96 84 71 59 124 106 89 72 59 89 80 71 61 51 101 88 75 62 51 70 64 57 50 43 79 70 61 52 43 11 12 13 14 72 61 52 45 72 61 52 45 61 52 44 38 61 52 44 38 49 42 36 31 49 42 36 31 43 37 31 27 43 37 31 27 37 31 27 23 37 31 27 23 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 109 Fy = 36 ksi z Y Fy = 50 ksi COLUMNS Single angles w x Design axial strength in kips (φ = 0.90) Wt./ft 7⁄ 8 3⁄ 4 27.2 Fy Effective length KL (ft) Y z 6× ×4 Size Thickness 36 5⁄ 8 23.6 50 36 9⁄ 16 20.0 50 36 1⁄ 2 18.1 50 36 7⁄ 16 16.2 50 36 3⁄ 8 14.3 50 36 5⁄ 16 10.3 12.3 50 36 50 36 50 0 259 359 225 312 190 264 172 239 154 205 132 171 107 136 81 100 1 2 3 4 5 250 244 233 217 198 343 331 310 282 248 91 111 87 105 85 102 82 97 78 91 66 63 61 59 57 78 73 70 68 65 6 7 8 9 10 177 155 133 111 91 212 154 184 129 155 117 139 104 121 176 135 153 113 129 102 116 91 102 142 115 124 98 105 88 94 79 84 112 97 98 82 83 74 75 67 67 91 80 80 67 67 61 61 55 55 89 102 79 87 68 73 58 59 48 48 72 65 57 49 41 82 72 61 50 41 54 50 45 39 34 61 55 48 41 34 11 12 13 14 75 63 54 47 40 34 29 25 34 29 25 22 34 29 25 22 29 24 21 18 29 24 21 18 75 63 54 47 215 210 201 188 172 293 284 268 244 215 66 55 47 41 66 55 47 41 178 174 168 157 144 56 47 40 35 241 233 222 203 180 56 47 40 35 159 155 150 141 130 51 43 37 32 214 206 197 182 162 139 135 131 125 115 51 43 37 32 46 38 33 28 180 172 166 155 139 46 38 33 28 116 112 109 105 98 145 138 133 126 116 40 34 29 25 6× ×31⁄2 Size 1⁄ 2 Thickness Wt./ft 3⁄ 8 15.3 Fy Effective length KL (ft) x w 5⁄ 16 11.7 9.8 36 50 36 50 36 50 0 146 195 101 128 77 95 1 2 3 4 5 132 127 121 112 100 171 162 152 137 118 86 82 79 75 69 105 99 94 88 79 63 59 57 55 51 74 69 66 63 58 6 7 8 9 10 87 74 60 48 39 98 78 61 48 39 61 53 44 36 30 68 56 45 36 30 47 41 36 30 25 51 44 37 30 25 11 12 33 28 33 28 25 21 25 21 21 18 21 18 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 110 COLUMN DESIGN z Fy = 36 ksi Y Fy = 50 ksi COLUMNS Single angles w x x Design axial strength in kips (φ = 0.90) w Y z 5× ×31⁄2 Size 3⁄ 4 Thickness Wt./ft 19.8 Fy Effective length KL (ft) 5⁄ 8 1⁄ 2 16.8 3⁄ 8 13.6 10.4 1⁄ 4 8.7 7.0 36 50 36 50 36 50 36 50 36 50 36 50 0 188 261 159 221 130 180 97 126 76 96 54 66 1 2 3 4 5 182 176 165 150 133 249 238 218 192 162 152 148 139 127 113 207 199 183 162 137 120 117 112 103 91 162 156 146 130 111 85 82 80 75 68 107 102 98 90 79 64 61 60 57 53 77 74 71 67 61 43 41 40 38 36 49 47 45 44 41 6 7 8 9 10 115 96 79 63 51 132 103 79 63 51 97 82 67 53 43 112 88 67 53 43 79 67 55 44 35 90 71 55 44 35 59 50 42 33 27 66 54 42 33 27 47 41 34 28 23 52 44 35 28 23 34 30 26 22 18 37 32 27 22 18 11 12 42 35 42 35 36 30 36 30 29 25 29 25 23 19 23 19 19 16 19 16 15 13 15 13 5× ×3 Size 1⁄ 2 Thickness Wt./ft 7⁄ 16 12.8 Fy Effective length KL (ft) 5⁄ 16 3⁄ 8 11.3 5⁄ 16 9.8 1⁄ 4 8.2 6.6 36 50 36 50 36 50 36 50 36 50 0 122 169 107 146 91 118 71 90 51 62 1 2 3 4 5 112 108 100 88 75 151 143 128 108 87 97 93 87 77 66 127 120 109 93 76 80 76 72 65 56 100 94 87 76 63 60 57 54 50 44 72 68 64 58 49 40 38 36 34 31 46 44 42 39 34 6 7 8 9 10 62 49 38 30 24 66 49 38 30 24 54 43 33 27 22 58 43 33 27 22 46 37 29 23 19 49 37 29 23 19 37 30 24 19 16 40 31 24 19 16 27 23 19 15 13 29 24 19 15 13 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 111 Fy = 36 ksi z Y Fy = 50 ksi COLUMNS Single angles w x Design axial strength in kips (φ = 0.90) 1⁄ Thickness Wt./ft 3⁄ 8 2 11.9 Fy Effective length KL (ft) Y z 4× ×31⁄2 Size 5⁄ 16 9.1 1⁄ 4 7.7 6.2 36 50 36 50 36 50 36 50 0 113 158 87 120 73 95 53 68 1 2 3 4 5 107 105 99 90 79 146 142 131 114 95 78 77 75 68 60 104 102 98 87 73 63 61 60 57 51 79 76 74 69 59 43 42 42 41 38 52 50 49 48 44 6 7 8 9 10 67 56 45 35 29 76 58 45 35 29 51 43 35 27 22 58 45 34 27 22 43 36 29 23 19 48 38 29 23 19 33 28 23 19 15 37 30 24 19 15 11 12 24 20 24 20 18 15 18 15 15 13 15 13 13 11 13 11 4× ×3 Size 5⁄ 8 Thickness Wt./ft 1⁄ 2 13.6 Fy Effective length KL (ft) x w 7⁄ 16 11.1 3⁄ 8 9.8 5⁄ 16 8.5 1⁄ 4 7.2 5.8 36 50 36 50 36 50 36 50 36 50 36 50 0 129 179 105 146 93 129 80 112 67 88 50 63 1 2 3 4 5 124 119 108 95 81 170 160 141 118 93 100 96 88 78 66 136 129 114 96 76 87 84 78 68 58 117 112 101 84 67 73 71 66 59 50 98 94 86 73 58 59 57 55 49 42 74 71 67 58 47 41 40 39 36 32 50 48 46 42 36 6 7 8 9 10 66 52 39 31 25 70 51 39 31 25 54 42 32 26 21 57 42 32 26 21 47 37 29 23 18 51 37 29 23 18 41 32 25 20 16 44 32 25 20 16 35 27 21 17 14 37 27 21 17 14 27 22 17 14 11 29 22 17 14 11 31⁄2×3 Size Thickness 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 Wt./ft 10.2 7.9 6.6 5.4 Effective length KL (ft) Fy 36 50 36 50 36 50 36 0 97 135 75 104 63 86 49 63 1 2 3 4 5 93 89 81 71 59 127 120 105 87 68 69 67 62 54 46 93 90 81 67 53 56 55 52 46 38 73 71 66 56 44 41 40 39 36 30 51 49 48 42 34 6 7 8 9 10 48 37 28 22 18 50 37 28 22 18 37 29 22 17 14 39 29 22 17 14 31 24 19 15 12 33 24 19 15 12 25 20 15 12 10 27 20 15 12 10 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 50 3 - 112 COLUMN DESIGN z Fy = 36 ksi Y Fy = 50 ksi COLUMNS Single angles w x x Design axial strength in kips (φ = 0.90) w Y z 31⁄2×21⁄2 Size 1⁄ 2 Thickness 3⁄ 8 9.4 Wt./ft Effective length KL (ft) Fy 1⁄ 4 7.2 4.9 36 50 36 50 36 50 0 89 124 68 95 45 58 1 2 3 4 5 6 7 8 9 85 79 70 58 46 116 105 88 68 49 34 25 19 63 60 53 44 35 26 19 15 85 79 67 52 38 26 19 15 38 37 34 29 24 18 13 10 8 47 45 41 33 25 18 13 10 8 34 25 19 3× ×21⁄2 Size Thickness 1⁄ 2 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 Wt./ft 8.5 6.6 5.6 4.5 3.39 Effective length KL (ft) Fy 36 50 36 50 36 50 36 50 36 50 0 81 113 62 86 52 73 42 57 29 37 1 2 3 4 5 78 72 63 52 40 107 96 79 60 42 58 55 48 40 31 79 73 61 46 33 48 46 41 34 26 65 61 51 39 28 37 36 33 27 21 48 46 40 31 23 24 23 22 19 16 29 28 26 22 17 6 7 8 29 22 17 29 22 17 23 17 13 23 17 13 19 14 11 19 14 11 16 12 9 16 12 9 12 9 7 12 9 7 3× ×2 Size 1⁄ 2 Thickness 7.7 Wt./ft Fy Effective length KL (ft) 3⁄ 8 5⁄ 16 5.9 5.0 3⁄ 16 4.1 3.07 36 50 36 50 36 50 36 50 36 50 0 1 2 3 4 5 73 69 61 50 37 26 101 94 80 60 40 26 56 52 47 38 29 20 78 71 61 46 31 20 47 43 39 32 24 17 66 58 51 39 26 17 39 34 31 26 20 14 51 43 39 30 21 14 27 22 21 18 14 10 34 27 25 21 15 10 6 7 18 13 18 13 14 10 14 10 12 9 12 9 10 7 10 7 7 5 7 5 21⁄2×2 Size 3⁄ 8 Thickness 5⁄ 16 5.3 Wt./ft Fy Effective length KL (ft) 1⁄ 4 0 1 2 3 4 5 6 7 1⁄ 4 4.5 3⁄ 16 3.62 2.75 36 50 36 50 36 50 36 50 50 48 42 34 25 17 12 9 70 65 55 41 27 17 12 9 42 40 36 29 21 15 10 7 59 54 46 34 23 15 10 7 34 31 29 23 17 12 8 6 48 42 37 28 18 12 8 6 26 22 21 17 13 9 6 5 33 27 25 20 14 9 6 5 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 113 Fy = 36 ksi z Y Fy = 50 ksi COLUMNS Single angles w x Design axial strength in kips (φ = 0.90) Y z 8× ×8 Size 11⁄8 Thickness Wt./ft 7⁄ 8 1 56.9 Fy Effective length KL (ft) x w 51.0 3⁄ 4 45.0 5⁄ 8 38.9 9⁄ 16 32.7 1⁄ 2 29.6 26.4 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 541 752 486 675 428 594 369 513 310 405 270 348 229 291 6 7 8 9 10 484 465 444 421 397 643 608 570 530 488 435 417 398 378 356 578 546 512 476 438 383 368 351 334 315 510 482 452 421 388 320 318 304 289 273 420 417 392 365 337 254 252 251 243 230 311 309 306 294 273 213 212 210 209 202 256 255 253 250 240 173 172 171 170 168 203 202 201 199 197 11 12 13 14 15 372 346 320 294 269 446 404 363 323 283 334 311 288 264 242 401 363 326 290 255 295 275 255 234 215 355 322 289 258 227 256 239 221 204 187 308 280 252 225 198 215 201 186 172 157 251 230 208 187 167 191 178 166 154 141 222 204 186 169 151 165 155 144 134 124 191 177 162 148 133 16 17 18 19 20 244 221 197 177 159 249 221 197 177 159 219 198 177 159 143 224 198 177 159 143 195 176 158 141 128 199 177 158 141 128 170 154 138 124 112 174 154 138 124 112 143 130 116 104 94 147 130 116 104 94 129 118 107 95 86 134 119 106 95 86 114 104 95 85 77 120 106 95 85 77 21 22 23 24 25 145 132 121 111 102 145 132 121 111 102 130 118 108 99 92 130 118 108 99 92 116 105 96 89 82 116 105 96 89 82 101 92 84 78 71 101 92 84 78 71 85 78 71 65 60 85 78 71 65 60 78 71 65 60 55 78 71 65 60 55 70 64 58 53 49 70 64 58 53 49 26 94 94 85 85 76 76 66 66 56 56 51 51 45 45 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 114 COLUMN DESIGN z Fy = 36 ksi Y Fy = 50 ksi COLUMNS Single angles w x x Design axial strength in kips (φ = 0.90) w Y z 6× ×6 Size Thickness Wt./ft 7⁄ 8 1 37.4 Fy 36 3⁄ 4 33.1 50 36 5⁄ 8 28.7 50 36 9⁄ 16 24.2 50 36 50 1⁄ 2 21.9 36 7⁄ 16 19.6 50 36 3⁄ 8 17.2 50 36 5⁄ 16 14.9 50 36 12.4 50 36 50 Effective length KL (ft) 0 356 495 315 438 273 380 230 320 208 289 186 249 159 206 129 164 98 120 1 2 3 4 5 346 343 339 326 310 476 469 462 438 409 304 300 298 289 275 416 408 404 387 361 260 255 253 250 238 354 345 342 336 314 214 209 207 205 201 289 279 275 273 265 190 184 182 181 180 255 244 241 238 236 166 160 158 157 155 213 202 199 197 195 137 131 129 128 127 170 107 129 77 160 100 119 71 157 99 117 69 156 98 115 69 154 97 114 68 89 81 79 78 77 6 7 8 9 10 292 272 250 228 205 376 340 303 266 230 258 241 221 202 181 332 301 268 235 203 224 209 192 175 157 288 261 232 204 176 189 177 163 148 134 244 221 197 174 151 171 160 147 134 121 221 200 179 157 136 153 143 132 120 108 192 174 156 138 120 126 124 114 105 95 152 149 134 120 105 96 113 68 95 112 67 94 110 66 87 99 66 79 88 63 76 76 75 74 71 11 12 13 14 15 183 161 140 121 105 196 164 140 121 105 162 142 124 107 93 173 140 150 119 128 108 116 145 123 126 105 108 95 98 124 108 107 92 92 83 83 107 92 92 79 79 72 72 93 81 81 69 69 62 62 97 103 85 87 74 74 64 64 56 56 85 75 66 57 50 92 78 67 57 50 71 64 57 49 43 77 67 57 49 43 58 52 47 42 37 63 56 49 42 37 16 17 18 19 92 82 73 65 92 82 73 65 82 72 64 58 49 43 39 35 44 39 35 31 44 39 35 31 38 34 30 27 38 34 30 27 32 29 25 23 32 29 25 23 82 72 64 58 71 63 56 50 71 63 56 50 61 54 48 43 61 54 48 43 55 49 43 39 49 43 39 35 5× ×5 Size 7⁄ 8 Thickness Wt./ft 3⁄ 4 27.2 Fy Effective length KL (ft) 55 49 43 39 5⁄ 8 23.6 1⁄ 2 20.0 7⁄ 16 16.2 3⁄ 8 14.3 5⁄ 16 12.3 10.3 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 259 359 225 312 190 264 154 214 135 184 115 149 89 114 1 2 3 4 5 251 249 241 228 212 345 341 325 301 272 216 214 209 198 184 296 291 283 262 237 179 177 176 167 156 244 239 236 221 200 141 138 137 135 127 189 183 181 179 163 121 117 116 115 112 157 152 150 148 141 99 95 94 93 92 122 117 115 114 112 73 70 69 68 67 88 83 81 80 79 6 7 8 9 10 194 175 155 135 116 241 209 177 146 119 169 152 135 118 102 210 182 154 128 104 143 129 114 100 86 178 154 131 108 88 116 105 93 82 70 145 126 107 89 72 102 93 82 72 62 126 110 94 78 64 87 79 71 62 54 105 92 80 67 56 67 64 57 51 45 78 74 65 55 47 11 12 13 14 15 98 82 70 60 53 98 82 70 60 53 86 72 61 53 46 86 72 61 53 46 73 61 52 45 39 73 61 52 45 39 60 50 43 37 32 60 50 43 37 32 53 44 38 33 28 53 44 38 33 28 46 39 33 28 25 46 39 33 28 25 38 33 28 24 21 39 33 28 24 21 16 46 46 40 40 34 34 28 28 25 25 22 22 18 18 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF COLUMNS 3 - 115 Fy = 36 ksi z Y Fy = 50 ksi COLUMNS Single angles w x Design axial strength in kips (φ = 0.90) Wt./ft 3⁄ 4 Effective length KL (ft) 5⁄ 8 18.5 Fy 1⁄ 2 15.7 7⁄ 16 12.8 3⁄ 8 11.3 5⁄ 16 9.8 1⁄ 4 8.2 6.6 36 50 36 50 36 50 36 50 36 50 36 50 36 50 0 176 245 149 207 122 169 107 149 93 129 78 101 57 73 1 2 3 4 5 171 168 158 144 129 236 228 209 185 159 144 142 134 122 109 196 194 178 157 135 114 113 109 100 89 155 152 145 128 110 99 97 96 88 79 133 130 128 113 97 83 81 80 76 68 110 107 106 98 84 66 64 64 63 57 82 79 78 77 68 46 44 44 43 43 55 52 51 51 50 6 7 8 9 10 112 96 79 64 52 131 105 81 64 52 95 81 67 54 44 111 89 69 54 44 78 66 55 44 36 91 73 56 44 36 69 59 49 40 32 81 65 50 40 32 60 51 43 34 28 70 56 44 34 28 50 43 36 29 24 57 47 37 29 24 39 34 29 24 19 44 37 30 24 19 11 12 13 43 36 43 36 36 30 36 30 30 25 21 30 25 21 26 22 19 26 22 19 23 19 16 23 19 16 19 16 14 19 16 14 16 13 11 16 13 11 31⁄2×31⁄2 Size 1⁄ 2 Thickness Wt./ft 7⁄ 16 11.1 Fy Effective length KL (ft) Y z 4× ×4 Size Thickness 3⁄ 8 9.8 5⁄ 16 8.5 1⁄ 4 7.2 5.8 36 50 36 50 36 50 36 50 36 50 0 105 146 93 129 80 112 68 93 53 68 1 2 3 4 5 100 99 91 81 70 137 134 119 102 83 87 86 80 72 62 118 116 106 90 74 74 73 70 62 54 99 97 91 78 64 60 59 58 53 46 78 76 75 65 54 44 43 42 41 36 53 52 51 50 42 6 7 8 9 10 59 48 37 29 24 65 49 37 29 24 52 42 33 26 21 58 43 33 26 21 45 37 29 23 18 50 37 29 23 18 38 31 24 19 16 42 32 24 19 16 31 25 20 16 13 34 26 20 16 13 11 20 20 17 17 15 15 13 13 11 11 3× ×3 Size 1⁄ 2 Thickness Wt./ft 7⁄ 16 9.4 Fy Effective length KL (ft) x w 3⁄ 8 8.3 5⁄ 16 7.2 1⁄ 4 6.1 3⁄ 16 4.9 3.71 36 50 36 50 36 50 36 50 36 50 36 50 0 89 124 79 109 68 95 58 80 47 62 32 41 1 2 3 4 5 86 82 73 62 51 117 109 94 76 57 75 72 65 55 45 102 97 83 67 51 64 63 56 48 40 86 84 72 58 44 52 52 47 41 33 70 69 61 49 38 40 39 38 33 27 51 50 48 39 30 25 25 24 24 20 30 29 29 28 22 6 7 8 9 40 30 23 18 41 30 23 18 36 27 20 16 36 27 20 16 31 23 18 14 32 23 18 14 26 20 15 12 27 20 15 12 21 16 12 10 22 16 12 10 16 12 9 7 17 12 9 7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 3 - 116 COLUMN DESIGN z Fy = 36 ksi Y Fy = 50 ksi COLUMNS Single angles w x x Design axial strength in kips (φ = 0.90) w Y z 21⁄2×21⁄2 Size 1⁄ 2 Thickness Wt./ft 7.7 Fy Effective length KL (ft) 3⁄ 8 5⁄ 16 5.9 1⁄ 4 5.0 3⁄ 16 4.1 3.07 36 50 36 50 36 50 36 50 36 50 0 73 101 56 78 47 66 39 54 29 37 1 2 3 4 5 71 64 55 44 33 97 85 68 50 33 53 49 42 34 25 73 65 52 38 26 44 42 36 29 21 59 55 44 33 22 34 34 29 23 18 46 45 36 27 18 24 23 22 18 13 29 28 26 20 14 6 7 8 23 17 13 23 17 13 18 13 10 18 13 10 15 11 9 15 11 9 13 9 7 13 9 7 10 7 5 10 7 5 2× ×2 Size Thickness 3⁄ 8 5⁄ 16 1⁄ 4 3⁄ 16 1⁄ 8 Wt./ft 4.7 3.92 3.19 2.44 1.65 Fy 50 36 50 36 50 36 50 36 50 44 61 37 52 30 42 23 32 14 18 1 2 3 4 5 42 36 28 20 13 57 46 33 20 13 35 31 24 17 11 48 39 28 17 11 28 25 19 14 9 38 32 23 14 9 20 19 15 11 7 27 25 18 11 7 11 11 10 7 5 13 13 11 8 5 6 9 9 8 8 6 6 5 5 3 3 Effective length KL (ft) 36 0 AMERICAN INSTITUTE OF STEEL CONSTRUCTION REFERENCES 3 - 117 COLUMN BASE PLATES The design of column base plates is covered in Part 11 (Volume II) of this LRFD Manual. REFERENCES Galambos, T. V. (ed.), 1988, Guide to Stability Design Criteria for Metal Structures, Fourth Edition, Structural Stability Research Council, John Wiley & Sons, New York, NY. Geschwindner, L., 1993, “The ‘Leaning’ Column in ASD and LRFD,” Proceedings of the 1993 National Steel Construction Conference, AISC, Chicago, IL. Uang, C. M., S. W. Wattar, and K. M. Leet, 1990, “Proposed Revision of the Equivalent Axial Load Method for LRFD Steel and Composite Beam-Column Design,” Engineering Journal, 1st Qtr., AISC, Chicago. Zureick, A., 1993, “Design Strength of Concentrically Loaded Single-Angle Struts,” Engineering Journal, 4th Qtr., AISC, Chicago. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4-1 PART 4 BEAM AND GIRDER DESIGN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 DESIGN STRENGTH OF BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Design Strength If Elastic Analysis Is Used . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Flexural Design Strength for Cb = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Flexural Design Strength for Cb > 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 Design Strength If Plastic Analysis Is Used . . . . . . . . . . . . . . . . . . . . . . . . 4-10 LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS . . . 4-11 Use of the Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES . . . . . . . . 4-23 FACTORED UNIFORM LOAD TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 Use of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 Reference Notes on Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 Tables, Fy = 36 ksi: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35 Tables, Fy = 36 ksi: S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-61 Tables, Fy = 36 ksi: Channels (C, MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-64 Tables, Fy = 50 ksi: W Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-72 Tables, Fy = 50 ksi: S Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-98 Tables, Fy = 50 ksi: Channels (C, MC)) . . . . . . . . . . . . . . . . . . . . . . . . . . 4-101 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH GREATER THAN Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-109 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-109 Charts (Fy = 36 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-113 Charts (Fy = 50 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-139 PLATE GIRDER DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 Flexure and Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167 Table of Dimensions and Properties of Built-up Wide-Flange Section . . . . . . . . . . 4-167 Design Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-168 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4-2 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Frequently Used Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-188 Table of Concentrated Load Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . 4-189 Static Loading Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-190 Design Properties of Cantilevered Beams . . . . . . . . . . . . . . . . . . . . . . . . 4-205 FLOOR DEFLECTIONS AND VIBRATIONS . . . . . . . . . . . . . . . . . . . . . . . 4-207 Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 Deflections and Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-208 BEAMS: OTHER SUBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-211 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-213 AMERICAN INSTITUTE OF STEEL CONSTRUCTION OVERVIEW 4-3 OVERVIEW Beam tables are located as follows: Load Factor Design Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 Moment of Inertia Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 Factored Uniform Load Tables, Fy = 36 ksi, begin on . . . . . . . . . . . . . . . . . . . 4-35 Factored Uniform Load Tables, Fy = 50 ksi, begin on . . . . . . . . . . . . . . . . . . . 4-72 Beam charts are located as follows: Beam Design Moments, Fy = 36 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . 4-113 Beam Design Moments, Fy = 50 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . 4-139 Plate Girder Design Tables are on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-183 Beam Diagrams and Formulas begin on . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-187 Additional information related to beam design is provided as follows: Floor deflections and vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-207 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4-4 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF BEAMS 4-5 DESIGN STRENGTH OF BEAMS General Beams are proportioned so that no applicable strength limit state is exceeded when subjected to factored load combinations and that no serviceability limit state is exceeded when subjected to service loads. Strength limit states for beams include local buckling, lateral torsional buckling, and yielding. Serviceability limit states may include, but are not limited to, deflection and vibration. The flexural design strength for beams must equal or exceed the required strength based on the factored loads. The design strength φbMn for each applicable limit state shall equal or exceed the maximum moment Mu as determined from the applicable factored load combinations given in Section A4 of the LRFD Specification. Values of φbMn are tabulated in the pages to follow. These values are based on beam behavior as shown in Figure 4-1 and explained in the following discussion. It should be noted that the LRFD Specification expresses values for moments and lengths in kip-in. and inches. In this and other parts of the LRFD Manual, these values are tabulated in kip-ft and feet. The required strength can be determined by either elastic or plastic analysis. Design Strength If Elastic Analysis Is Used The flexural design strength of rolled I and C shape beams designed using elastic analysis, according to LRFD Specification Section F1 is: φbMn where φb = 0.90 Mp M n′ Mn Mr (CbMn – Mn) CbMn Mn Lp L ′p Lm Lm′ Lr Lb Fig. 4-1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4-6 BEAM AND GIRDER DESIGN Mn = nominal flexural strength as determined by the limit state of yielding, lateraltorsional buckling, or local buckling Flexural Design Strength for Cb = 1.0 Compact Sections (Cb = 1.0) When Lb ≤ Lp The flexural design strength of compact (flange and web local buckling λ ≤ λp) I-shaped and C-shaped rolled beams (as defined in Section B5 of the LRFD Specification) bent about the major or minor axis is: φbMn = φbMp = φbZFy / 12 In minor axis flexure this is true for all unbraced lengths, but for bending about the major axis the distance Lb between points braced against lateral movement of the compression flange or between points braced to prevent twist of the cross-section shall not exceed the value Lp (see Figure 4-1). Lp = 300ry Fy √ (F1-4) When Lp < Lb ≤ Lr The flexural design strength of compact I or C rolled shapes bent about the major axis, from LRFD Specification Section F1.2, is: Lb − Lp φbMn = φbMp − φb(Mp − Mr) ≤ φbMp Lr − Lp where the limiting length Lr and the corresponding buckling moment Mr (see Figure 4-1) are determined as follows: Lr = ryX1 (Fy − Fr ) √ 1+√ 1 + X2(Fy − Fr)2 (F1-6) where X1 = π Sx √ 4Cw X2 = Iy EGJA 2 Sx GJ (F1-8) 2 φbMr = φbSx(Fy − Fr ) / 12 kip-ft Sx = section modulus about major axis, in.3 E = modulus of elasticity of steel, 29,000 ksi G = shear modulus of steel, 11,200 ksi J = torsional constant, in.4 A = cross-sectional area of beam, in.2 Cw = warping constant, in.6 AMERICAN INSTITUTE OF STEEL CONSTRUCTION (F1-9) DESIGN STRENGTH OF BEAMS 4-7 Fr = compressive residual stress in flange: for rolled shapes Fr = 10 ksi; for welded shapes Fr = 16.5 ksi Values of J and Cw are tabulated for some shapes in Part 1 of the LRFD Manual. For values not shown, see Torsional Analysis of Steel Members (AISC, 1983). Compact and Noncompact Sections (Cb = 1.0) When Lb > Lr According to LRFD Specification Section F1.2b, the flexural design strength of compact and noncompact I or C rolled shapes bent about the major axis is: π φbMn = φbMcr = φb Lb √ 2 πE EIyGJ + IyCw Lb SxX1√ 2 = φb (Lb / ry) √ 1+ X21X2 ≤ φbMr 2(Lb / ry)2 Noncompact Sections (Cb = 1.0) When Lb ≤ Lp′ All rolled W shapes are compact except the W40×174, W14×99, W14×90, W12×65, W10×12, W8×10, and W6×15 for 50 ksi and the W6×15 for 36 ksi. The flexural design strength φbMn′ (see Figure 4-1) for noncompact (flange or web local buckling λp < λ ≤ λr) I and C rolled shapes bent about the major or minor axis is the smaller value for either local flange buckling or local web buckling as determined by: λ − λp φbMn′ = φbMp − φb(Mp − Mr) λr − λp For local flange buckling: λ = bf / 2tf for I-shaped members λ = bf / tf for C-shaped members Fy λp = 65 / √ λr = 141 / √ Fy − 10 For local web buckling: λ = h / tw λp = 640 / √ Fy Fy λr = 970 / √ Mp − Mn′ Lp′ = Lp + (Lr − Lp) Mp − Mr Sections with a width-to-thickness ratio exceeding the specified values for λr are slender shapes and must be analyzed using LRFD Specification Appendix B5.3. When Lp′ < Lb ≤ Lr AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4-8 BEAM AND GIRDER DESIGN The flexural design strength of noncompact I or C rolled shapes bent about the major axis is determined by: Lb − Lp φbMn = φbMp − φb(Mp − Mr) ≤ φbMn′ Lr − Lp In the Load Factor Design Selection Table, in the case of the noncompact shapes, the values of φbMn′ and Lp′ are tabulated as φbMp and Lp. The formula above may be used with the tabulated values. Flexural Design Strength for Cb > 1.0 Cb is a factor which varies with the moment gradient between bracing points (Lb). For Cb greater than 1.0, the design flexural strength is equal to the tabulated value of the design flexural strength (with Cb = 1.0) multiplied by the calculated Cb value. The maximum value is φbMp for compact shapes or φbMn′ for noncompact shapes. The maximum unbraced lengths associated with the maximum flexural design strengths φbMp and φbMn′ are Lm and Lm′ (see Figure 4-1). A new expression for Cb is given in the LRFD Specification. (It is more accurate than the one previously shown.) Cb = 12.5Mmax 2.5Mmax + 3MA + 4MB + 3Mc (F1-3) where M is the absolute value of a moment in the unbraced beam segment as follows: Mmax , the maximum MA , at the quarter point MB , at the centerline Mc , at the three-quarter point Values for Cb for some typical loading conditions are given in Table 4-1. Compact Sections (Cb > 1.0) When Lb ≤ Lm The flexural design strength for rolled I and C shapes is: φbMn = φbMp When Lb > Lm The flexural design strength is: φbMn = Cb[φbMn (for Cb = 1.0)] ≤ φbMp For Lm ≤ Lr Lm = Lp + (CbMp − Mp)(Lr − Lp) Cb(Mp − Mr) AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN STRENGTH OF BEAMS 4-9 Table 4-1. Values of Cb for Simply Supported Beams Lateral Bracing Along Span Load Cb None 1.32 At load points 1.67 1.67 None 1.14 At load points 1.67 1.00 1.67 None 1.14 At load points 1.67 1.11 None At centerline Cbπ Mp 1.30 √ √ √ EIyGJ 2 1+ 1+ 4CwM2p IyC2bG2J2 The value of Cb for which Lm or Lm′ equals Lr for any rolled shape is: Cb = Fy Zx (Fy − 10)Sx Noncompact Sections (Cb > 1.0) When Lb ≤ Lm′ The flexural design strength for rolled I and C shapes is: φbMn = φbMn′ < φbMp When Lb > Lm′ The flexural design strength is: φbMn = Cb[φbMn (for Cb = 1.0)] ≤ φbMn′ AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.67 1.14 For Lm > Lr Lm = 1.11 1.30 4 - 10 BEAM AND GIRDER DESIGN For Lm′ ≤ Lr Lm′ = Lp′ + (CbMn′ − Mn′)(Lr − Lp) Cb(Mp − Mr) For Lm′ > Lr Lm = Cbπ Mp √ √ √ EIyGJ 2 1+ 1+ 4CwM2p IyC2bG2J2 Design Strength If Plastic Analysis Is Used The design flexural strength for plastic analysis is: φbMn = φbMp where φb = 0.90 Mp = ZxFy / 12 kip-ft The yield strength of material that may be used with plastic analysis is limited to 65 ksi. Plastic analysis is limited to compact shapes as defined in Table B5.1 of the LRFD Specification as: λp = bf / 2tf ≤ 65 / √ Fy for the flanges of I shapes in flexure Fy for the flanges of C shapes in flexure λp = bf / tf ≤ 65 / √ and λp = h / tw ≤ 640 / √ Fy for beam webs in flexural compression where . λp = limiting slenderness parameter for compact element bf = width of flange for I and C shapes, in. tf = flange thickness, in. h = clear distance between flanges less the fillet at each flange, in. tw = beam web thickness, in In addition, LRFD Specification Section F1.2d states: for a section bent about the major axis, the laterally unbraced length of the compression flange at plastic hinge locations associated with the failure mechanism shall not exceed: Lpd = 3,600 + 2,220(M1 / M2) ry Fy where Fy M1 M2 ry (M1 / M2) = specified yield strength of compression flange, ksi = smaller moment at end of unbraced length of beam, kip-in. = larger moment at end of unbraced length of beam, kip-in. = radius of gyration about minor axis, in. is positive when the moments cause reverse curvature AMERICAN INSTITUTE OF STEEL CONSTRUCTION (F1-17) LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 11 LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS This table facilitates the selection of beams designed on the basis of flexural strength in accordance with Section F of the LRFD Specification. It includes only W and M shapes designed as beams. A laterally supported beam can be selected by entering the table with the required plastic section modulus or factored bending moment, and comparing it with tabulated values of Zx or φbMp respectively. The table is applicable to adequately braced beams with unbraced lengths not exceeding Lr, i.e., Lb ≤ Lr. For beams with unbraced lengths greater than Lp, it may be convenient to use the unbraced beam charts. For most loading conditions, it is convenient to use this selection table. However, for adequately braced, simply supported beams with a uniform load over the entire length, or equivalent symmetrical loading, the tables of Factored Uniform Loads can also be used. In this table, shapes are listed in groups by descending order plastic section modulus Zx. Included also for steel of Fy = 36 ksi and 50 ksi are values for the maximum flexural design strength φbMp; the limiting buckling moment φbMr; the limiting laterally unbraced compression flange length for full plastic moment capacity and uniform moment (Cb = 1.0) Lp; limiting laterally unbraced length for inelastic lateral-torsional buckling Lr; and BF, a factor that can be used to calculate the resisting moment φbMn for beams with unbraced lengths between the limiting bracing lengths Lp and Lr. For noncompact shapes, as determined by Section B5 of the LRFD Specification, the maximum flexural design strength φbMn, max as determined by LRFD Specification Formula A-F1-3 is tabulated as φbMp. The associated maximum unbraced length is tabulated as Lp. (See the previous discussion under Design Strength of Beams for further explanation.) The symbols used in this table are: Zx = plastic section modulus, X-X axis, in.3 φbMp = design plastic bending moment, kip-ft = φbZxFy / 12 if shape is compact λ − λp = φbM′n = φbMp − φb(Mp − Mr) if shape is noncompact λr − λp φbMr = limiting design buckling moment, kip-ft = φbSx(Fy − Fr ) / 12 where Fr = 10 ksi for rolled shapes Lp = limiting laterally unbraced length for inelastic LTB, ft, uniform moment case (Cb = 1) Lr = limiting laterally unbraced length for elastic lateral-torsional buckling, ft BF = a factor that can be used to calculate the design flexural strength for unbraced lengths Lb, between Lp and Lr, kip-ft φb(Mp − Mr) = Lr − Lp where φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φbMp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 12 BEAM AND GIRDER DESIGN Use of the Table Determine the required plastic section modulus Zx from the maximum factored moment Mu (kip-ft) using the desired steel yield strength. Zx = 12Mu φbFy Enter the column headed Zx and find a value equal to or greater than the plastic section modulus required. Alternatively, enter the φbMp column and find a value of φbMp equal to or greater than the required factored load moment. The beam opposite these values (Zx or φbMp) in the shapes column, and all beams above it, have sufficient flexural strength based only on these parameters. The first beam appearing in boldface type adjacent to or above the required Zx or φbMp is the lightest section that will serve for the steel yield stress used in the calculations. If the beam must not exceed a certain depth, proceed up the column headed “Shape” until a beam within the required depth is reached. After a shape has been selected, the following checks should be made. If the lateral bracing of the compressive flange exceeds Lp, but is less than Lr, the design flexural strength may be calculated as follows: φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φbMp If the bracing length Lb is substantially greater than Lp, i.e., Lb > Lr, it is recommended the unbraced beam charts be used. A check should be made of the beam web shear strength by referring to the Factored Uniform Load Tables or by use of the formula: φvVn = φv0.6FywAw (from LRFD Specification Section F2) where φv = 0.90 If a deflection limitation also exists, the adequacy of the selected beam should be checked accordingly. EXAMPLE 4-1 Given: Solution (Zx method): Select a beam of Fy = 50 ksi steel subjected to a factored uniform bending moment of 256 kip-ft, having its compression flange braced at 5.0 ft intervals. Assume Cb = 1.0. Zx (req’d) = Mu(12) 256(12) = = 68.3 in.3 φbFy 0.9(50) Enter the Load Factor Design Selection Table and find the nearest higher tabulated value of Zx is 69.6 in., which corresponds to a W14×43. This beam, however, is not in boldface type. Proceed up the shape column and locate the first beam in boldface, W16×40. Note the values tabulated for φbMp and Lp are 273 kip-ft and 5.6 ft, respectively. Use W16x40 AMERICAN INSTITUTE OF STEEL CONSTRUCTION LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 13 Alternatively, proceed up the shape column and select a W18×40. The tabulated values for φbMp and Lp are 294 kip-ft and 4.5 ft, respectively. Since the bracing length Lb is larger than Lp and smaller than Lr, the maximum resisting moment may be calculated as follows: φbMn = Cb[φbMp − BF(Lb − Lp)] = 1.0[294 − (11.7)(5.0 − 4.5)] = 288 kip-ft > 256 kip-ft req’d o.k. A W18×40 is satisfactory. Alternate solution (Mp method): Enter the column of φbMp values and note the tabulated value nearest and higher than the required factored moment (Mu) is 261 kip-ft, which corresponds to a W14×43. Scanning the φbMp values for shapes listed higher in the column, a W16×40 is found to be the lightest suitable shape with Lb < Lp. Use W16×40 EXAMPLE 4-2 Given: Determine the design flexural strength of a W16×40 of Fy = 36 ksi and Fy = 50 ksi steel with the compression flange braced at intervals of 9.0 ft. Assume Cb = 1.1. Solution: Enter the Load Factor Design Table and note that for a W16×40, Fy = 36 ksi: φbMp = 197 kip-ft Lp = 6.5 ft Lr = 19.3 ft BF = 5.54 kips φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φb Mp = 1.1[197 − 5.54(9 − 6.5)] ≤ 197 kip-ft = 197 kip-ft Enter the Load Factor Design Selection Table and note that for a W16×40, Fy = 50 ksi: φbMp = 273 kip-ft Lp = 5.6 ft Lr = 14.7 ft BF = 8.67 kips φbMn = Cb[φbMp − BF(Lb − Lp)] ≤ φb Mp = 1.1[273 − 8.67(9 − 5.6)] ≤ 273 kip-ft = 268 kip-ft AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 14 BEAM AND GIRDER DESIGN EXAMPLE 4-3 Given: Select a beam of Fy = 50 ksi steel subjected to a factored uniform bending moment of 30 kip-ft having its compression flange braced at 4.0-ft intervals and a depth of eight inches or less. Assume Cb = 1.0. Solution (Zx method): Assume shape is compact and Lb ≤ Lp. Zx req’d = 12Mu 12(30) = = 8.0 in.3 φbFy 0.9(50) Enter the Load Factor Design Selection Table and note that for a W8×10, Fy = 50 ksi, the shape is noncompact, however, the maximum resisting moment φbMn listed in the φbMp column is adequate. Further note: φbMn = 33.0 kip-ft Lp = 3.1 ft Lr = 7.8 ft BF = 2.03 kips Since Lp < Lb ≤ Lr φbMn = Cb[φbMn − BF(Lb − Lp)] = 1.0[33.0 − 2.03(4.0 − 3.1)] = 33.0 − 1.8 = 31.2 kip-ft > 30 kip-ft req’d o.k. Use: W8×10 Alternate Solution (Mp method): Enter the Selection Table and note that in the column of φbMp values for W8×10, Fy = 50 ksi, the value of φbMp is 33.0 kip-ft, which is adequate. Also note, however, Lp = 3.1 ft is less than the bracing interval Lb = 4.0 ft, and that BF is equal to 2.03 kips. Therefore: φbMn = 1.0[33.0 − 2.03(4 − 3.1)] = 31.2 kip-ft > 30 kip-ft req’d o.k. Use: W8×10 AMERICAN INSTITUTE OF STEEL CONSTRUCTION LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 15 LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi Zx Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 34.5 138.2 17.8 6180 10300 3830 W36×848a 14400 9510 15.1 90.5 64.3 34.1 130.1 17.7 5810 9639 3570 W36×798a 13400 8940 15.0 85.3 63.2 33.2 105.9 17.2 4720 7668 2840 W36×650a 10700 7260 14.6 70.0 61.1 41.9 84.8 15.9 4560 7450 2760 W40×593a 10400 7020 13.5 56.8 76.7 41.2 33.2 72.5 86.8 15.5 16.8 3860 3800 6210 6129 2300 2270 W40×503a W36× 527a 8630 8510 5940 5850 13.2 14.2 49.5 58.3 73.9 60.4 46.9 58.2 11.3 3330 5540 2050 W40×466a 7690 5130 9.6 39.4 85.9 41.0 19.3 32.7 23.7 63.3 119.4 73.5 93.6 15.2 15.3 16.5 15.6 3300 3060 3160 2980 5270 5080 5022 4830 1950 1880 1860 1790 W40×431 W27× 539a W36× 439a W30× 477a 7310 7050 6980 6710 5070 4710 4860 4590 12.9 12.9 14.0 13.3 44.1 78.2 50.3 62.0 72.0 35.9 58.2 43.5 46.6 49.8 11.0 2810 4620 1710 W40×392a 6410 4320 9.3 34.3 83.7 39.9 32.5 56.6 67.2 15.0 16.3 2850 2830 4510 4482 1670 1660 W40×372 W36× 393a 6260 6230 4380 4350 12.7 13.8 40.3 46.7 68.4 57.0 48.6 15.3 18.9 32.5 48.0 123.3 99.2 62.4 14.6 14.2 14.9 16.1 2750 2520 2540 2570 4370 4190 4130 4077 1620 1550 1530 1510 W44×335 W24× 492a W27× 448a W36× 359a 6080 5810 5740 5660 4230 3870 3900 3960 12.4 12.1 12.6 13.7 35.5 80.5 65.3 44.0 79.7 28.4 34.9 56.2 46.2 22.9 29.4 43.2 77.5 64.4 10.7 15.3 15.6 2360 2440 2400 3860 3860 3830 1430 1430 1420 W40×331 W30× 391a W33× 354a 5360 5360 5330 3630 3750 3690 9.1 13.0 13.2 30.5 52.1 44.7 80.9 41.2 51.9 46.1 38.4 32.2 38.4 45.3 51.2 58.5 48.9 14.6 14.8 16.0 14.8 2420 2440 2360 2280 3830 3830 3726 3590 1420 1420 1380 1330 W44×290 W40× 321 W36× 328a W40× 297 5330 5330 5180 4990 3720 3750 3630 3510 12.4 12.6 13.6 12.5 34.0 37.2 41.7 35.9 74.1 63.9 54.9 63.2 43.4 28.9 31.6 14.7 37.3 19.0 44.2 23.4 31.0 28.2 43.7 43.1 59.3 55.1 103.0 47.9 82.0 38.2 66.6 53.0 55.7 37.0 14.4 15.5 16.0 13.9 14.9 14.5 10.5 15.0 15.9 15.4 10.5 2180 2160 2160 2070 2150 2070 1990 2010 2010 1970 1890 3430 3430 3402 3380 3380 3350 3210 3210 3159 3110 3050 1270 1270 1260 1250 1250 1240 1190 1190 1170 1150 1130 W44×262 W33× 318a W36× 300 W24× 408a W40× 277 W27× 368a W40× 278 W30× 326a W36× 280 W33× 291a W40× 264 4760 4760 4730 4690 4690 4650 4460 4460 4390 4310 4240 3360 3330 3330 3180 3300 3180 3060 3090 3090 3030 2910 12.2 13.1 13.5 11.8 12.7 12.3 8.9 12.8 13.5 13.0 8.9 32.8 41.8 39.9 67.5 35.5 54.6 27.6 45.7 38.8 39.8 27.0 68.2 49.9 52.9 27.0 60.8 34.8 74.9 41.7 51.3 48.0 73.3 35.6 45.4 14.8 1930 3020 1120 W40×249 4200 2980 12.6 34.1 56.9 Shape φbMp aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 16 BEAM AND GIRDER DESIGN LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Zx Fy = 36 ksi Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft φbMp Ft Ft Kips 40.1 30.3 23.1 37.0 27.7 15.0 18.7 41.8 29.6 41.2 50.6 60.5 39.7 52.0 84.5 69.4 35.1 48.8 14.3 15.8 14.9 11.0 15.3 13.5 14.3 10.6 15.6 1890 1860 1810 1750 1790 1680 1720 1700 1750 2970 2916 2860 2810 2810 2750 2750 2730 2727 1100 1080 1060 1040 1040 1020 1020 1010 1010 W44×230 W36×260 W30× 292a W36×256 W33× 263a W24× 335a W27× 307a W40×235 W36×245 4130 4050 3980 3900 3900 3830 3830 3790 3790 2910 2860 2780 2690 2750 2590 2650 2620 2690 12.1 13.4 12.7 9.4 12.9 11.4 12.1 9.0 13.3 31.7 37.5 42.1 28.8 37.8 55.8 46.9 26.0 36.4 62.0 49.4 40.4 62.7 46.3 27.8 33.7 68.6 47.7 33.1 28.7 22.8 27.0 36.1 42.7 47.3 55.4 49.2 37.2 14.8 15.5 14.8 15.1 10.9 1670 1630 1610 1620 1580 2600 2550 2540 2540 2530 963 943 941 939 936 W40×215 W36×230 W30×261 W33×241 W36×232 3610 3540 3530 3520 3510 2570 2510 2480 2490 2430 12.5 13.2 12.5 12.8 9.3 32.6 35.6 39.2 36.2 27.3 51.6 45.8 39.2 44.2 59.9 40.2 33.2 10.5 1530 2440 905 W40×211 3390 2360 8.9 24.9 64.7 31.6 26.0 18.6 22.4 14.7 34.9 41.1 46.9 59.6 51.6 71.2 35.0 14.4 15.0 14.0 14.7 13.2 10.8 1500 1480 1450 1450 1400 1400 2340 2310 2300 2280 2250 2250 868 855 850 845 835 833 W40×199 W33×221 W27×258 W30×235 W24× 279a W36×210 3260 3210 3190 3170 3130 3120 2310 2270 2230 2240 2150 2160 12.2 12.7 11.9 12.4 11.2 9.1 31.6 35.0 41.1 37.1 47.6 26.1 48.8 41.9 32.9 37.7 26.9 56.8 37.4 25.0 18.5 34.0 8.40 21.8 14.7 31.2 44.8 55.0 33.5 109.5 47.9 64.3 10.4 14.8 13.9 10.7 12.3 14.5 13.1 1330 1330 1310 1290 1220 1290 1260 2110 2080 2080 2070 2030 2020 2010 781 772 769 767 753 749 744 W40×183 W33×201 W27×235 W36×194 W18× 311a W30×211 W24× 250a 2930 2900 2880 2880 2820 2810 2790 2050 2050 2020 1990 1870 1990 1930 8.8 12.6 11.8 9.1 10.4 12.3 11.1 23.8 33.8 38.5 25.2 71.5 35.1 43.4 59.0 39.7 32.3 54.6 15.6 36.0 26.6 32.7 32.8 10.6 1210 1940 718 W36×182 2690 1870 9.0 24.9 52.0 b Shape 27.5 18.2 38.4 52.0 13.6 13.8 1250 1220 1930 1910 715 708 W40×174 W27×217 2660 2660 1920 1870 12.0 11.7 29.9 36.8 41.3 31.3 35.6 8.29 14.7 21.0 31.5 28.3 17.8 29.7 99.6 59.3 45.4 31.9 32.6 48.0 10.0 12.1 13.0 14.4 10.5 10.4 13.7 1170 1100 1150 1170 1130 1070 1080 1870 1830 1830 1820 1800 1700 1700 692 676 676 673 668 629 628 W40×167 W18× 283a W24×229 W30×191 W36×170 W33×169 W27×194 2600 2540 2540 2520 2510 2360 2360 1800 1690 1760 1790 1740 1650 1670 8.5 10.3 11.0 12.2 8.9 8.8 11.6 22.8 65.1 40.4 33.7 24.4 24.5 34.6 55.6 15.4 26.2 33.9 49.6 45.4 30.0 30.7 8.21 14.5 20.2 30.9 90.9 54.2 43.2 10.4 12.0 12.8 14.3 1060 1000 1040 1050 1680 1650 1640 1630 624 611 606 605 W36×160 W18× 258a W24×207 W30×173 2340 2290 2270 2270 1630 1540 1590 1620 8.8 10.2 10.9 12.1 23.7 59.5 37.4 32.5 48.0 15.2 25.6 32.0 aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1). bIndicates noncompact shape; F = 50 ksi y AMERICAN INSTITUTE OF STEEL CONSTRUCTION LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 17 LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi Zx Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 32.8 29.4 17.5 26.8 14.3 8.09 11.0 28.2 30.2 45.2 31.2 51.3 82.8 60.8 9.5 10.3 13.6 10.3 12.8 11.9 12.6 998 983 979 950 957 909 899 1610 1570 1530 1510 1510 1480 1430 597 581 567 559 559 549 530 W40×149 W36× 150 W27× 178 W33× 152 W24× 192 W18× 234a W21× 201 2240 2180 2130 2100 2100 2060 1990 1540 1510 1510 1460 1470 1400 1380 8.1 8.7 11.5 8.7 10.9 10.1 10.7 21.9 23.4 33.1 23.7 35.7 54.4 41.1 50.8 45.6 28.8 42.3 25.0 14.9 19.9 25.7 16.9 14.3 30.1 42.8 47.8 10.1 13.5 12.7 874 887 878 1390 1380 1380 514 512 511 W33×141 W27× 161 W24× 176 1930 1920 1920 1340 1370 1350 8.6 11.5 10.7 23.1 31.7 33.8 40.2 27.4 24.6 27.5 23.7 8.00 10.9 14.1 28.8 30.6 75.0 55.8 45.2 9.9 9.5 11.8 12.5 12.7 856 850 817 813 807 1370 1350 1320 1290 1260 509 500 490 476 468 W36×135 W30× 148 W18× 211a W21× 182 W24× 162 1910 1880 1840 1790 1760 1320 1310 1260 1250 1240 8.4 8.1 10.0 10.6 10.8 22.4 22.8 49.5 38.1 32.4 42.2 38.6 14.7 19.4 23.8 24.5 16.2 7.98 22.4 10.8 13.8 29.1 40.7 68.3 29.0 51.7 42.0 10.0 13.4 11.6 9.4 12.4 12.5 792 801 741 741 741 723 1260 1240 1190 1180 1170 1130 467 461 442 437 432 418 W33×130 W27× 146 W18× 192 W30× 132 W21× 166 W24× 146 1750 1730 1660 1640 1620 1570 1220 1230 1140 1140 1140 1110 8.4 11.3 9.9 8.0 10.5 10.6 22.5 30.6 45.3 22.0 35.7 30.6 37.9 25.8 14.6 35.6 19.1 22.8 23.1 21.6 7.95 18.9 27.8 28.2 62.3 30.0 9.7 9.3 11.5 9.2 700 692 671 673 1120 1100 1070 1070 415 408 398 395 W33×118 W30× 124 W18× 175 W27× 129 1560 1530 1490 1480 1080 1070 1030 1040 8.2 7.9 9.8 7.8 21.7 21.5 41.5 22.3 35.5 34.1 14.5 30.9 21.1 10.7 13.3 7.87 27.1 46.4 39.3 56.7 9.1 12.3 12.4 11.4 642 642 642 605 1020 1010 999 961 378 373 370 356 W30×116 W21× 147 W24× 131 W18× 158 1420 1400 1390 1340 987 987 987 930 7.7 10.4 10.5 9.7 20.8 32.8 29.1 38.2 33.0 18.4 21.5 14.2 20.2 18.0 10.5 12.7 7.82 26.3 28.2 43.1 37.1 52.2 9.0 9.1 12.2 12.3 11.3 583 583 575 567 550 934 926 899 883 869 346 343 333 327 322 W30×108 W27× 114 W21× 132 W24× 117 W18× 143 1300 1290 1250 1230 1210 897 897 885 873 846 7.6 7.7 10.4 10.4 9.6 20.3 21.3 30.9 27.9 35.5 31.5 28.7 17.7 20.2 14.0 19.0 10.3 17.0 7.79 12.0 25.5 41.0 26.8 48.0 35.2 8.8 12.2 9.0 11.3 12.1 525 532 521 499 503 842 829 824 786 780 312 307 305 291 289 W30×99 W21× 122 W27× 102 W18× 130 W24× 104 1170 1150 1140 1090 1080 807 819 801 768 774 7.4 10.3 7.6 9.5 10.3 19.8 29.8 20.5 33.0 26.8 29.2 17.1 26.7 13.8 18.8 Shape φbMp aGroup 4 or Group 5 shape. See Notes in Table 1-2 (Part 1). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 18 BEAM AND GIRDER DESIGN LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Zx Fy = 36 ksi Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 17.8 14.8 10.1 16.2 7.72 14.3 9.61 24.8 27.1 38.7 25.9 44.1 25.9 37.1 8.7 8.3 12.1 8.8 11.2 8.3 12.0 478 478 486 474 450 433 443 764 756 753 751 705 686 683 283 280 279 278 261 254 253 W30×90 W24×103 W21×111 W27× 94 W18×119 W24× 94 W21×101 1060 1050 1050 1040 979 953 949 735 735 747 729 693 666 681 7.4 7.0 10.3 7.5 9.5 7.0 10.2 19.4 20.1 28.5 19.9 30.8 19.4 27.6 27.1 24.1 16.4 25.2 13.4 23.0 15.4 15.0 3.87 7.62 24.9 73.6 40.4 8.6 15.7 11.1 415 408 398 659 632 621 244 234 230 W27×84 W14×132 W18×106 915 878 863 639 627 612 7.3 13.3 9.4 19.3 49.6 28.7 23.0 6.89 13.0 13.6 11.8 3.86 7.51 24.5 26.6 67.9 38.1 8.1 7.7 15.6 11.0 382 374 371 367 605 597 572 570 224 221 212 211 W24×84 W21× 93 W14×120 W18× 97 840 829 795 791 588 576 570 564 6.9 6.5 13.2 9.4 18.6 19.4 46.2 27.4 21.5 19.6 6.82 12.6 12.7 6.10 11.3 3.84 2.95 7.27 23.4 42.1 24.9 62.7 75.5 35.5 8.0 10.5 7.6 15.5 13.0 11.0 343 341 333 337 318 324 540 535 529 518 502 502 200 198 196 192 186 186 W24×76 W16×100 W21× 83 W14×109 W12×120 W18× 86 750 743 735 720 698 698 528 525 513 519 489 498 6.8 8.9 6.5 13.2 11.1 9.3 18.0 29.3 18.5 43.2 50.0 26.1 19.8 10.7 18.5 6.70 5.36 11.9 12.1 6.03 3.77 10.7 2.95 6.94 22.4 38.6 58.2 23.5 67.2 33.3 7.8 10.4 15.5 7.5 13.0 10.9 300 302 306 294 283 285 478 473 467 464 443 440 177 175 173 172 164 163 W24×68 W16× 89 W14× 99b W21× 73 W12×106 W18× 76 664 656 647 645 615 611 462 465 471 453 435 438 6.6 8.8 13.4 6.4 11.0 9.2 17.4 27.3 40.6 17.7 44.9 24.8 18.7 10.3 6.46 17.0 5.32 11.1 10.4 3.75 22.8 54.1 7.5 15.4 273 279 432 424 160 157 W21×68 W14× 90b 600 587 420 429 6.4 15.0 17.3 38.4 16.5 6.31 13.8 5.85 2.01 2.91 8.29 17.2 34.9 86.4 61.4 24.4 5.8 10.3 11.2 12.9 7.1 255 261 246 255 248 413 405 397 397 392 153 150 147 147 145 W24×62 W16× 77 W10×112 W12× 96 W18× 71 574 563 551 551 544 393 402 378 393 381 4.9 8.7 9.5 10.9 6.0 13.3 25.2 56.5 41.3 17.8 21.4 9.75 3.68 5.20 13.8 9.84 4.15 21.7 43.0 7.4 10.3 248 240 389 375 144 139 W21×62 W14× 82 540 521 381 369 6.3 8.8 16.6 29.6 15.3 7.31 Shape φbMp bIndicates noncompact shape; F = 50 ksi. y AMERICAN INSTITUTE OF STEEL CONSTRUCTION LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 19 LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi Zx Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 12.7 8.08 2.90 2.00 5.57 11.3 4.10 7.91 2.88 4.05 1.97 16.6 23.2 56.4 77.4 32.3 17.3 40.0 22.4 51.8 37.3 68.4 5.6 7.0 12.8 11.0 10.3 5.6 10.3 7.0 12.7 10.3 11.0 222 228 230 218 228 216 218 211 209 201 192 362 359 356 351 351 348 340 332 321 311 305 134 133 132 130 130 129 126 123 119 115 113 W24×55 W18× 65 W12× 87 W10× 100 W16× 67 W21× 57 W14× 74 W18× 60 W12× 79 W14× 68 W10× 88 503 499 495 488 488 484 473 461 446 431 424 342 351 354 336 351 333 336 324 321 309 296 4.7 6.0 10.9 9.4 8.7 4.8 8.8 6.0 10.8 8.7 9.3 12.9 17.1 38.4 50.8 23.8 13.1 28.0 16.7 35.7 26.4 45.1 19.6 13.3 5.12 3.66 9.02 18.0 7.12 12.8 5.03 6.91 3.58 7.65 21.4 7.0 192 302 112 W18×55 420 295 5.9 16.1 12.2 10.5 2.87 6.43 3.91 16.2 48.2 22.8 34.7 5.4 12.7 6.7 10.2 184 190 180 180 297 292 284 275 110 108 105 102 W21×50 W12× 72 W16× 57 W14× 61 413 405 394 383 284 292 277 277 4.6 10.7 5.7 8.7 12.5 33.6 16.6 24.9 16.4 4.93 10.7 6.51 7.31 1.95 2.80 20.5 60.1 44.7 6.9 10.8 12.6 173 168 171 273 264 261 101 97.6 96.8 W18×50 W10× 77 W12× 65b 379 366 358 267 258 264 5.8 9.2 11.8 15.6 39.9 31.7 11.5 3.53 4.72 9.68 6.18 8.13 4.17 2.91 1.93 5.91 15.4 21.3 16.6 28.0 38.4 53.7 20.2 5.3 6.6 5.4 8.0 10.5 10.8 6.5 159 158 154 152 152 148 142 258 248 245 235 233 230 222 95.4 92.0 90.7 87.1 86.4 85.3 82.3 W21×44 W16× 50 W18× 46 W14× 53 W12× 58 W10× 68 W16× 45 358 345 340 327 324 320 309 245 243 236 233 234 227 218 4.5 5.6 4.6 6.8 8.9 9.2 5.6 12.0 15.8 12.6 20.1 27.0 36.0 15.2 14.9 10.1 13.0 7.02 4.96 3.46 9.43 7.51 4.06 2.85 1.91 15.7 26.3 35.8 48.1 5.3 8.0 10.3 10.7 133 137 138 130 212 212 210 201 78.4 78.4 77.9 74.6 W18×40 W14× 48 W12× 53 W10× 60 294 294 292 280 205 211 212 200 4.5 6.8 8.8 9.1 12.1 19.2 25.6 32.6 11.7 6.70 4.77 3.38 5.54 3.06 1.30 3.91 1.89 19.3 30.8 64.0 24.7 43.9 6.5 8.2 8.8 7.9 10.7 126 126 118 122 117 197 195 190 188 180 72.9 72.4 70.2 69.6 66.6 W16×40 W12× 50 W8× 67 W14× 43 W10× 54 273 272 263 261 250 194 194 181 188 180 5.6 6.9 7.5 6.7 9.1 14.7 21.7 41.9 18.2 30.2 8.67 5.25 2.38 6.32 3.30 6.95 3.01 5.23 4.41 1.88 1.27 2.92 1.96 14.8 28.5 18.3 20.0 40.7 56.0 26.5 35.1 5.1 8.1 6.3 6.5 10.6 8.8 8.0 8.4 112 113 110 106 106 101 101 95.7 180 175 173 166 163 161 155 148 66.5 64.7 64.0 61.5 60.4 59.8 57.5 54.9 W18×35 W12× 45 W16× 36 W14× 38 W10× 49 W8× 58 W12× 40 W10× 45 249 243 240 231 227 224 216 206 173 174 170 164 164 156 156 147 4.3 6.9 5.4 5.5 9.0 7.4 6.8 7.1 11.5 20.3 14.1 14.9 28.3 36.8 19.3 24.1 10.7 5.07 8.08 7.07 3.25 2.32 4.82 3.45 Shape φbMp bIndicates noncompact shape; F = 50 ksi. y AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 20 BEAM AND GIRDER DESIGN LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Zx Fy = 36 ksi Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 4.18 19.0 6.4 94.8 147 54.6 W14×34 205 146 5.4 14.4 6.58 5.70 3.47 1.26 14.3 20.6 46.7 4.9 6.4 8.7 92.0 88.9 84.4 146 138 132 54.0 51.2 49.0 W16×31 W12× 35 W8×48 203 192 184 142 137 130 4.1 5.4 7.4 11.0 15.2 31.1 8.85 5.67 2.27 3.92 1.93 17.9 31.2 6.2 8.3 81.9 82.1 128 126 47.3 46.8 W14×30 W10× 39 177 176 126 126 5.3 7.0 13.7 21.8 6.06 3.32 5.15 3.22 13.3 19.1 4.7 6.3 74.9 75.3 119 116 44.2 43.1 W16×26 W12× 30 166 162 115 116 4.0 5.4 10.4 14.4 7.88 5.10 4.44 1.25 1.89 13.4 39.1 27.4 4.5 8.5 8.1 68.8 69.2 68.3 109 107 105 40.2 39.8 38.8 W14×26 W8×40 W10× 33 151 149 146 106 107 105 3.8 7.2 6.9 10.3 26.4 19.7 6.96 2.22 3.15 2.99 2.44 1.23 18.1 20.3 35.1 6.3 5.7 8.5 65.1 63.2 60.8 100 98.8 93.7 37.2 36.6 34.7 W12×26 W10× 30 W8×35 140 137 130 100 97.2 93.6 5.3 4.8 7.2 13.8 14.5 24.1 4.64 4.13 2.16 4.06 2.34 1.21 12.5 18.5 32.0 4.3 5.7 8.4 56.6 54.4 53.6 89.6 84.5 82.1 33.2 31.3 30.4 W14×22 W10× 26 W8×31 125 117 114 87.0 83.7 82.5 3.7 4.8 7.1 9.7 13.5 22.3 6.26 3.85 2.07 3.88 1.27 11.1 27.3 3.5 6.8 49.5 47.4 79.1 73.4 29.3 27.2 W12×22 W8×28 110 102 76.2 72.9 3.0 5.7 8.4 18.9 6.24 2.22 2.19 16.9 5.5 45.2 70.2 26.0 W10×22 97.5 69.6 4.7 12.7 3.50 3.61 1.24 10.4 24.4 3.4 6.7 41.5 40.8 66.7 62.6 24.7 23.2 W12×19 W8×24 92.6 87.0 63.9 62.7 2.9 5.7 7.9 17.2 5.70 2.11 2.60 1.46 12.0 18.6 3.6 5.3 36.7 35.5 58.3 55.1 21.6 20.4 W10×19 W8×21 81.0 76.5 56.4 54.6 3.1 4.5 8.9 13.3 4.26 2.47 3.30 0.741 2.46 9.6 31.3 11.2 3.2 6.3 3.5 33.3 32.6 31.6 54.3 51.0 50.5 20.1 18.9 18.7 W12×16 W6×25 W10× 17 75.4 70.9 70.1 51.3 50.1 48.6 2.7 5.4 3.0 7.4 21.0 8.4 5.12 1.33 3.97 2.97 1.40 2.34 0.728 9.2 16.7 10.3 25.6 3.1 5.1 3.4 6.3 29.1 29.6 26.9 26.1 47.0 45.9 43.2 40.2 17.4 17.0 16.0 14.9 W12×14 W8×18 W10× 15 W6×20 65.3 63.8 60.0 55.9 44.7 45.6 41.4 40.2 2.7 4.3 2.9 5.3 7.2 12.3 7.9 17.7 4.56 2.30 3.69 1.27 3.32 1.53 6.9 12.6 2.3 3.7 23.6 23.0 38.6 36.7 14.3 13.6 M12×11.8 W8×15 53.7 51.0 36.3 35.4 2.0 3.1 5.4 9.2 5.10 2.56 Shape φbMp AMERICAN INSTITUTE OF STEEL CONSTRUCTION LOAD FACTOR DESIGN SELECTION TABLE FOR SHAPES USED AS BEAMS 4 - 21 LOAD FACTOR DESIGN SELECTION TABLE For shapes used as beams φb = 0.90 Fy = 36 ksi Zx Fy = 50 ksi BF Lr Lp φbMr φbMp Zx Kips Ft Ft Kip-ft Kip-ft in.3 3.10 2.03 0.817 0.458 1.44 0.417 0.693 0.444 6.8 9.5 18.3 30.3 11.5 31.1 20.8 26.3 2.3 3.3 4.0 5.3 3.5 5.0 6.7 5.3 21.6 21.3 19.9 19.9 19.3 18.8 19.0 16.6 35.4 34.0 31.6 31.3 30.8 29.7 28.8 25.9 13.1 12.6 11.7 11.6 11.4 11.0 10.8 9.59 M12×10.8 W10× 12b W6× 16 W5× 19 W8× 13 M5× 18.9 W6×15b,c W5× 16 49.2 47.0 43.9 43.5 42.8 41.3 38.6 36.0 2.32 1.30 0.775 6.2 10.2 14.4 2.1 3.5 3.8 15.2 15.2 14.3 24.9 23.9 22.4 9.21 8.87 8.30 M10×9 W8× 10b W6× 12 2.13 0.295 0.724 6.1 25.5 12.0 2.1 4.2 3.8 13.6 10.6 10.8 22.1 17.0 16.8 8.20 6.28 6.23 1.50 5.5 1.8 14.6 5.40 9.01 φbMr Lp Lr BF Kip-ft Kip-ft Ft Ft Kips 33.3 32.7 30.6 30.6 29.7 28.9 29.2 25.5 2.0 2.9 3.4 4.5 3.0 4.2 6.8 4.5 5.3 7.4 12.5 20.1 8.5 20.5 15.0 17.6 4.74 3.13 1.46 0.830 2.35 0.758 1.16 0.795 34.5 33.0 31.1 23.5 23.4 21.9 1.8 3.1 3.2 4.9 7.8 10.2 3.59 2.03 1.33 M10×8 W4× 13 W6× 9 30.8 23.6 23.4 21.0 16.4 16.7 1.8 3.5 3.2 4.8 16.9 8.9 3.26 0.538 1.17 M8×6.5 20.2 13.9 1.6 4.3 2.35 Shape φbMp bIndicates noncompact shape; F = 50 ksi y cIndicates noncompact shape; F = 36 ksi y AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 22 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES 4 - 23 MOMENT OF INERTIA SELECTION TABLES FOR W AND M SHAPES These two tables for moment of inertia (Ix and Iy) are provided to facilitate the selection of beams and columns on the basis of their stiffness properties with respect to the X-X axis or Y-Y axis, as applicable, where Ix = moment of inertia, X-X axis, in.4 Iy = moment of inertia, Y-Y axis, in.4 In each table the shapes are listed in groups by descending order of moment of inertia for all W and M shapes. The boldface type identifies the shapes that are the lightest in weight in each group. Enter the column headed Ix (or Iy) and find a value of Ix (or Iy) equal to or greater than the moment of inertia required. The shape opposite this value, and all shapes above it, have sufficient stiffness. Note that the member selected must also be checked for compliance with specification provisions governing its specific application. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 24 Ix Shape BEAM AND GIRDER DESIGN MOMENT OF INERTIA SELECTION TABLE For W and M shapes Ix Shape In.4 W36×848* 67400 W36×798* 62600 W40×593* W36× 650* 50400 48900 W40×503* W36× 527* 41700 38300 W40×466* 36300 W40×431 34800 W44×335 W36× 439* W40× 392* W40× 372 W36× 393* 31100 31000 29900 29600 27500 W44×290 W30× 477* W27× 539* W40× 321 W36× 359* W40× 331 27100 26100 25500 25100 24800 24700 W44×262 W40× 297 W36× 328* W40× 277 W33× 354* 24200 23200 22500 21900 21900 W44×230 W30× 391* W40× 278 W27× 448* W36× 300 W33× 318* W40× 249 W40× 264 W24× 492* W36× 280 W33× 291* W40× 235 W36× 260 W30× 326* W36× 256 20800 20700 20500 20400 20300 19500 19500 19400 19100 18900 17700 17400 17300 16800 16800 Ix W40×215 W27× 368* W36×245 W14× 808* W33× 263* 16700 16100 16100 16000 15800 W40×211 W24× 408* W36×230 W36×232 15500 15100 15000 15000 W40×199 W30× 292* W14× 730* W33×241 14900 14900 14300 14200 W40×183 W36×210 W27× 307* W30×261 W33×221 W14× 665* 13300 13200 13100 13100 12800 12400 W40×174 W36×194 W24× 335* W30×235 12200 12100 11900 11700 W40×167 W33×201 W36×182 W14× 605* W27×258 W36×170 W30× 211 11600 11500 11300 10800 10800 10500 10300 W40×149 W36×160 W27×235 W24× 279* W14× 550* W33×169 W30×191 W36×150 W27×217 W24× 250* W14× 500* W30×173 W33×152 W27×194 9780 9750 9660 9600 9430 9290 9170 9040 8870 8490 8210 8200 8160 7820 Ix Shape In.4 Shape In.4 W36×135 W24× 229 W33× 141 W14×455* W27× 178 W18× 311* W24× 207 7800 7650 7450 7190 6990 6960 6820 W33×130 W30× 148 W14×426* W27× 161 W24× 192 W18×283* W14×398* 6710 6680 6600 6280 6260 6160 6000 W33×118 W30× 132 W24× 176 W27× 146 W18×258* W14×370* W30× 124 W21× 201 W24× 162 5900 5770 5680 5630 5510 5440 5360 5310 5170 W30×116 W18×234* W14×342* W27× 129 W21× 182 W24× 146 4930 4900 4900 4760 4730 4580 W30×108 W18× 211* W14× 311* W21× 166 W27× 114 W12×336* W24× 131 4470 4330 4330 4280 4090 4060 4020 *Group 4 or 5 shape. See Notes in Table 1-2 (Part 1). AMERICAN INSTITUTE OF STEEL CONSTRUCTION Ix In.4 W30×99 W18× 192 W14× 283* W21× 147 3990 3870 3840 3630 W30×90 W27× 102 W12× 305* W24× 117 W18× 175 W14× 257* W27× 94 W21× 132 W12× 279* W24× 104 W18× 158 W14× 233* W24× 103 W21× 122 3620 3620 3550 3540 3450 3400 3270 3220 3110 3100 3060 3010 3000 2960 W27×84 W18× 143 W12× 252* W24× 94 W21× 111 W14× 211 W18× 130 W12× 230* W21× 101 W14× 193 2850 2750 2720 2700 2670 2660 2460 2420 2420 2400 W24×84 W18× 119 W14× 176 W12× 210* 2370 2190 2140 2140 W24×76 W21× 93 W18× 106 W14× 159 W12× 190 2100 2070 1910 1900 1890 MOMENT OF INERTIA SELECTION TABLE FOR W AND M SHAPES 4 - 25 MOMENT OF INERTIA SELECTION TABLE For W and M shapes Shape Ix Shape In.4 W24×68 W21× 83 W18× 97 W14× 145 W12× 170 W21× 73 1830 1830 1750 1710 1650 1600 W24×62 W14× 132 W18× 86 W16× 100 W21× 68 W12× 152 W14× 120 1550 1530 1530 1490 1480 1430 1380 W24×55 W18× 76 W21× 62 W16× 89 W14× 109 W12× 136 W18× 71 W21× 57 W14× 99 W16× 77 W12× 120 W18× 65 W14× 90 W18× 60 1350 1330 1330 1300 1240 1240 1170 1170 1110 1110 1070 1070 999 984 W21×50 W16× 67 W12× 106 W18× 55 W14× 62 984 954 933 890 882 Ix Shape In.4 Ix Shape In.4 W21×44 W12× 96 W18× 50 W14× 74 W16× 57 W12× 87 W14× 68 W10× 112 W18× 46 W12× 79 W16× 50 W14× 61 W10× 100 843 833 800 796 758 740 723 716 712 662 659 640 623 W16×26 W14× 30 W12× 35 W8× 67 W10× 49 W10× 45 301 291 285 272 272 248 W14×26 W12× 30 W8× 58 W10× 39 245 238 228 209 W12×26 204 W18×40 W12× 72 W16× 45 W14× 53 W10× 88 W12× 65 612 597 586 541 534 533 W14×22 W8× 48 W10× 30 W10× 33 199 184 170 170 W16×40 518 W12×22 W8× 40 W10× 26 156 146 144 W18×35 W14× 48 W12× 58 W10× 77 W16× 36 W14× 43 W12× 53 W12× 50 W10× 68 W14× 38 510 485 475 455 448 428 425 394 394 385 W12×19 W8× 35 W10× 22 W8× 31 130 127 118 110 W12×16 W8× 28 W10× 19 103 98.0 96.3 W16×31 W12× 45 W10× 60 W14× 34 W12× 40 W10× 54 375 350 341 340 310 303 W12×14 W8× 24 W10× 17 W8× 21 88.6 82.8 81.9 75.3 M12×11.8 W10× 15 71.7 68.9 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Ix Ix In.4 M12×10.8 W8× 18 W10×12 W6× 25 W8× 15 W6× 20 W8× 13 65.8 61.9 53.8 53.4 48.0 41.4 39.6 M10×9 38.5 M10×8 W6× 16 W8× 10 W6× 15 W5× 19 M5× 18.9 W6× 12 W5× 16 34.3 32.1 30.8 29.1 26.2 24.1 22.1 21.3 M8×6.5 W6×9 W4× 13 18.1 16.4 11.3 4 - 26 Iy Shape BEAM AND GIRDER DESIGN MOMENT OF INERTIA SELECTION TABLE For W and M shapes Iy Shape In.4 W14×808* 5510 W14×730* W36× 848* W36× 798* 4720 4550 4200 W14×665* 4170 W14×605* 3680 W14×550* W36× 650* W14×283* W40×372 W36× 328* W24× 408* W27× 368* W36×300 1440 1420 1420 1320 1310 1300 W14×257* W33× 318* W30× 326* W36×280 W44×335 W12× 336* W40×321 W33× 291* 1290 1290 1240 1200 1200 1190 1190 1160 3250 3230 W14×500* 2880 W14×455* W40× 593* W36× 527* 2560 2520 2490 W14×426* 2360 W14×398* W27× 539* W40× 503* 2170 2110 2050 W14×370* W36× 439* W30× 477* 1990 1990 1970 W14×342* W36× 393* W40× 431 W27× 448* W24× 492* 1810 1750 1690 1670 1670 W14×311* W36× 359* W30× 391* W33× 354* Iy 1610 1570 1550 1460 W14×233* W30× 292* W40×297 W36×260 W44×290 W27× 307* W12× 305* W40×277 W33× 263* W24× 335* 1150 1100 1090 1090 1050 1050 1050 1040 1030 1030 W14×211 W40× 466* W36×245 W30×261 W36×230 W12× 279* W33×241 1030 1010 1010 959 940 937 932 W14×193 W44×262 W40×249 W27×258 W30×235 W33×221 931 927 926 859 855 840 Iy Shape In.4 Shape In.4 W14×176 W12×252* W24×279* W40×392* W40× 215 W44× 230 W18× 311* W27× 235 W30× 211 W33× 201 838 828 823 803 796 796 795 768 757 749 W14×159 W12×230* W24×250* W18×283* W27× 217 W40× 199 748 742 724 704 704 695 W14×145 W30× 191 W12×210* W24× 229 W40× 331 W18×258* W27× 194 W30× 173 W12× 190 W24× 207 W18×234* W27× 178 677 673 664 651 646 628 618 598 589 578 558 555 W14×132 W21× 201 W40× 174 W24× 192 W36× 256 W40× 278 W12× 170 W27× 161 548 542 541 530 528 521 517 497 *Group 4 or 5 shape. See Notes in Table 1-2 (Part 1). AMERICAN INSTITUTE OF STEEL CONSTRUCTION Iy In.4 W14×120 W40× 264 W18× 211* W21× 182 W24× 176 W36× 232 W12× 152 495 493 493 483 479 468 454 W14×109 W40× 235 W24× 162 W27× 146 W18× 192 W21× 166 W36× 210 447 444 443 443 440 435 411 W14×99 W12× 136 W18× 175 W24× 146 W40× 211 W21× 147 W36× 194 402 398 391 391 390 376 375 W14×90 W36× 182 W18× 158 W12× 120 W24× 131 W40× 183 W21× 132 W36× 170 W18× 143 W33× 169 W21× 122 W12× 106 W24× 117 W36× 160 W40× 167 W18× 130 W21× 111 W33× 152 W36× 150 W12× 96 W24× 104 W18× 119 W21× 101 W33× 141 362 347 347 345 340 336 333 320 311 310 305 301 297 295 283 278 274 273 270 270 259 253 248 246 MOMENT OF INERTIA SELECTION TABLE FOR W AND M SHAPES 4 - 27 MOMENT OF INERTIA SELECTION TABLE For W and M shapes Shape Iy Shape In.4 W12×87 W10× 112 W40× 149 W30× 148 W36× 135 W18× 106 W33× 130 241 236 229 227 225 220 218 W12×79 W10× 100 W18× 97 W30× 132 216 207 201 196 W12×72 W33× 118 W16× 100 W27× 129 W30× 124 W10× 88 W18× 86 195 187 186 184 181 179 175 W12×65 W30× 116 W16× 89 W27× 114 W10× 77 W18× 76 W14× 82 W30× 108 W27× 102 W16× 77 W10× 68 W14× 74 W30× 99 W27× 94 W14× 68 W24× 103 W16× 67 174 164 163 159 154 152 148 146 139 138 134 134 128 124 121 119 119 Iy Shape In.4 W10×60 W30× 90 W24× 94 116 115 109 W12×58 W14× 61 W27× 84 107 107 106 W10×54 103 W12×53 W24× 84 95.8 94.4 W10×49 W21× 93 W8× 67 W24× 76 W21× 83 W8× 58 W21× 73 W24× 68 W21× 68 93.4 92.9 88.6 82.5 81.4 75.1 70.6 70.4 64.7 W8×48 W18× 71 W14× 53 W21× 62 W12× 50 W18× 65 60.9 60.3 57.7 57.5 56.3 54.8 W10×45 W14× 48 W18× 60 53.4 51.4 50.1 W12×45 50.0 W8×40 W14× 43 49.1 45.2 Iy Shape In.4 W10×39 W18× 55 W12× 40 W16× 57 45.0 44.9 44.1 43.1 W8×35 W18× 50 W16× 50 42.6 40.1 37.2 W8×31 W10× 33 W24× 62 W16× 45 W21× 57 W24× 55 W16× 40 W14× 38 W21× 50 W12× 35 W16× 36 W14× 34 W18× 46 37.1 36.6 34.5 32.8 30.6 29.1 28.9 26.7 24.9 24.5 24.5 23.3 22.5 W8×28 W21× 44 W12× 30 W14× 30 W18× 40 21.7 20.7 20.3 19.6 19.1 W8×24 W12× 26 W6× 25 W10× 30 W18× 35 W10× 26 18.3 17.3 17.1 16.7 15.3 14.1 W6×20 W16× 31 W10× 22 W8× 21 W16× 26 13.3 12.4 11.4 9.77 9.59 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Iy Iy In.4 W6×15 W5× 19 W14×26 W8× 18 M5× 18.9 W5× 16 W14×22 W12×22 W6× 16 W10×19 9.32 9.13 8.91 7.97 7.86 7.51 7.00 4.66 4.43 4.29 W4×13 W12×19 W10×17 W8× 15 3.86 3.76 3.56 3.41 W6×12 W10×15 W12×16 W8× 13 W12×14 2.99 2.89 2.82 2.73 2.36 W6×9 W10×12 W8× 10 M12× 11.8 M12× 10.8 2.19 2.18 2.09 1.09 0.995 M10×9 0.673 M10×8 0.597 M8×6.5 0.371 4 - 28 BEAM AND GIRDER DESIGN FACTORED UNIFORM LOAD TABLES General Notes The Tables of Factored Uniform Loads for W and S shapes and channels (C and MC) used as simple laterally supported beams give the maximum uniformly distributed factored loads in kips. The tables are based on the flexural design strengths specified in Section F1 of the LRFD Specification. Separate tables are presented for Fy = 36 ksi and Fy = 50 ksi. The tabulated loads include the weight of the beam, which should be deducted in the calculation to determine the net load that the beam will support. The tables are also applicable to laterally supported simple beams for concentrated loading conditions. A method to determine the beam load capacity for several cases is shown in this discussion. It is assumed, in all cases, that the loads are applied normal to the X-X axis (shown in the Tables of Properties of Shapes in Part 1 of this LRFD Manual) and that the beam deflects vertically in the plane of bending. If the conditions of loading involve forces outside this plane, design strengths must be determined from the general theory of flexure and torsion. Lateral Support of Beams The flexural design strength of a beam is dependent upon lateral support of its compression flange in addition to its section properties. In these tables the notation Lp is used to denote the maximum unbraced length of the compression flange, in feet, for the uniform moment case (Cb = 1.0) and for which the design strengths for compact symmetrical shapes are calculated with a flexural design strength of: φbMn = φbMp = φbZxFy / 12 Noncompact shapes are calculated with a flexural design strength of: λ − λp φbMn′ = φbMp − φb(Mp − Mr) λr − λp as permitted in the LRFD Specification Appendix F1. The associated maximum unbraced length for φbMn′ is tabulated as Lp. The notation Lr is the unbraced length of the compression flange for which the flexural design strength for rolled shapes is: φbMr = φbSx(Fy − 10) / 12 These tables are not applicable for beams with unbraced lengths greater than Lr. For such cases, the beam charts should be used. Flexural Design Strength and Tabulated Factored Uniform Loads For symmetrical rolled shapes designated W and S the flexural design strengths and resultant loads are based on the assumption that the compression flanges of the beams are laterally supported at intervals not greater than Lp. The Uniform Load Constant φbWc is obtained from the moment and stress relationship of a simply supported, uniformly loaded beam. The relationship results in the formula: φbWc = φb(2ZxFy / 3), kip-ft for compact shapes AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES 4 - 29 The following expression may be used for calculating the tabulated uniformly distributed factored load Wu on a simply supported beam or girder: Wu = φbWc / L, kips For compact shapes, the tabulated constant is based on the yield stress Fy = 36 ksi or 50 ksi and the plastic section modulus Zx. (See Section F1.1 of the LRFD Specification.) For noncompact sections, the tabulated constant is based on the nominal resisting moment as determined by Equation A-F1-3. (See LRFD Specification Appendix F1.) Shear For relatively short spans, the design strengths for beams and channels may be limited by the shear strength of the web instead of the bending strength. This limit is indicated in the tables by solid horizontal lines. Loads shown above these lines will produce the design shear strength in the beam web. End and Interior Bearing For a discussion of end and interior bearing and use of the tabulated values φR1 through φr R6 and φR, see Part 9 in Volume II of this LRFD Manual. Vertical Deflection For rolled shapes designated W, M, S, C, and MC, the maximum vertical deflection may be calculated using the formula: ∆ = ML2 / (C1Ix) where M = maximum service load moment, kip-ft L = span length, ft Ix = moment of inertia, in.4 C1 = loading constant (see Figure 4-2) ∆ = maximum vertical deflection, in. W P C1 = 161 P C1 = 201 P P P C1 = 158 C1= 170 Fig. 4-2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION P 4 - 30 BEAM AND GIRDER DESIGN Table 4-2. Recommended Span/Depth Ratios Service Load Ratios Maximum Span/Depth Ratios Dead / Total Dead / Live Fy = 36 ksi Fy = 50 ksi 0.2 0.3 0.4 0.5 0.6 0.25 0.43 0.67 1.00 1.50 20.0 22.2 25.0 29.0 — 14.0 16.0 18.0 21.0 26.0 Deflection can be controlled by limiting the span-depth ratio of a simply supported, uniformly loaded beam as shown in Table 4-2. A live-load deflection limit of L / 360 is assumed; i.e., ∆LL ≤ Span Length 360 For large span/depth ratios, vibration may also be a consideration. Use of Tables Maximum factored uniform loads are tabulated for steels of Fy = 36 ksi and Fy = 50 ksi. They are based on the design flexural strength determined from the LRFD Specification: Equation F1-1 (in Section F1.1) for compact members, and Equation A-F1-3 (in Appendix F1) for noncompact members. The beams must be braced adequately and have an axis of symmetry in the plane of loading. Factored loads may be read directly from the tables when the distance between points of lateral support of the compression flange Lb does not exceed Lp (tabulated earlier in the Load Factor Design Selection Table for beams). Loads above the heavy horizontal lines in the tables are governed by the design shear strength, determined from Section F2 of the LRFD Specification. EXAMPLE 4-4 Given: A W16×45 floor beam of Fy = 50 ksi steel spans 20 feet. Determine the maximum uniform load, end reaction, and total service load deflection. The live load equals the dead load. Solution: Based on Section A4 of the LRFD Specification, the governing load combination for a floor beam is 1.2 (dead load) + 1.6 (live load). As the two loads are equal, factored load = 1.4 (total load) Enter the Factored Uniform Loads Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 124 kips, or 124/20 = 6.2 kips/ft Factored end reaction = Wu / 2 = 124 / 2 = 61.8 kips AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES 4 - 31 Service load moment = 124(20) Wu L = 8(1.4) 8(LF) = 221 kip-ft Deflection: ∆= ML2 221(20)2 = = 0.94 in. C1Ix 161(586) Live load deflection = 0.5 × 0.94 in. = 0.47 in. < (L / 360 = 20 × 12 / 360 = 0.66 in.) o.k. EXAMPLE 4-5 Given: A W10×45 beam of Fy = 50 ksi steel spans 6 feet. Determine the maximum load and corresponding end reaction. Solution: Enter the Factored Uniform Loads Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 191 kips, or 191/6 = 31.8 kips/ft As Wu appears above the horizontal line, it is limited by shear in the web. Factored end reaction = Wu / 2 = 191 / 2 = 96 kips EXAMPLE 4-6 Given: Using Fy = 50 ksi steel, select an 18-in. deep beam to span 30 feet and support two equal concentrated loads at the one-third and two-thirds points of the span. The service load intensities are 10 kips dead load and 24 kips live load. The beam is supported laterally at the points of load application and the ends. Determine the beam size and service live load deflection. Solution: Refer to the Table of Concentrated Load Equivalents on page 4-189 and note that: Equivalent uniform load = 2.67Pu 1. Required factored uniform load: Wu = 2.67Pu = 2.67[1.2(10) + 1.6(24)] = 2.67(50.4) = 135 kips 2. Enter the Factored Uniform Loads Table for Fy = 50 ksi and Wu ≥ 135 kips For W18×71: Wu = 145 kips > 135 kips; however, Lb = 10 ft > Lp = 6.0 ft. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 32 BEAM AND GIRDER DESIGN For W18×76: Wu = 163 kips > 135 kips; however, Lb = 10 ft > Lp = 9.2 ft. 3. Since Lp < Lb < Lr, use the Load Factor Design Selection Table. φbMn = Cb[φbMp − BF(Lb − Lp)] For the central third of the span (uniform moment), Cb = 1.0. Required flexural strength: Mu = Pu (L / 3) = 50.4(30 / 3) = 504 kip-ft 4. Try W18×71: φbMn = 1.0[544 − 13.8(10 − 6)] = 489 kip-ft < 504 kip-ft req’d. n.g. 5. Try W18×76: φbMn = 1.0[611 − 11.1(10 − 9.2)] = 602 kip-ft > 504 kip-ft req’d. o.k. Use W18×76 6. Determine service live load deflection: MLL = (PLL / Pu )Mu = (24 / 50.4)504 = 240 kip-ft Maximum ∆ (at midspan) = 240(30)2 MLLL2 = = 1.03 in. C1Ix 158(1,330) EXAMPLE 4-7 Given: A W24×55 of 50 ksi steel spans 20 feet and is braced at 4-ft intervals. Determine the maximum factored load and end reaction. Solution: 1. Enter the Factored Uniform Load Table for Fy = 50 ksi and note that: Maximum factored uniform load = Wu = 201 kips, or 201 / 20 = 10.1 kips/ft This is true for Lb ≤ Lp : 4.0 ft < 4.7 ft o.k. 2. End reaction = R = Wu / 2 = 201 / 2 = 101 kips AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES 4 - 33 Reference Notes on Tables 1. Maximum factored uniform loads, in kips, are given for beams with adequate lateral support; i.e., Lb ≤ Lp for Cb = 1.0, Lb ≤ Lm for Cb > 1.0. 2. Loads below the heavy horizontal line are limited by design flexural strength, while loads above the line are limited by design shear strength. 3. Factored loads are given for span lengths up to the smaller of L / d = 30 or 72 ft. 4. The end bearing values at the bottom of the tables are for use in solving LRFD Specification Equations K1-3, K1-5a, and K1-5b. They are defined as follows: φR1 = φ(2.5kFy tw) φR2 = φ(Fy tw) kips kips/in. Equation K1-3 becomes φRn = φR1 + N(φR2) Fty tf φrR3 = φr 68t2w √ w kips 1.5 3 tw φrR4 = φr 68t2w d tf √Ft t y f w kips/in. Equation K1-5a becomes φrRn = φrR3 + N(φrR4) 1.5 tw φrR5 = φr 68t2w 1 − 0.2 tf 1.5 4 tw φrR6 = φr 68t2w d tf Fty tf √ w √Fty t f w kips kips/in. Equation K1-5b becomes φrRn = φrR5 + N(φrR6) where φ = 1.00, φr = 0.75, N = length of bearing (in.), and the other terms as defined in the LRFD Specification, Section K1. φR (N = 31⁄4) is defined as the design bearing strength for N = 31⁄4-in. For N / d ≤ 0.2, φR is the minimum of φR1 + N(φR2) φrR3 + N(φrR4) For N / d > 0.2, φR is the minimum of φR1 + N(φR2) φrR5 + N(φrR6) For a complete explanation of end and interior bearing and use of the tabulated values, see Part 9 in Volume II of this LRFD Manual. 5. The other terms at the bottom of the tables are: Zx = plastic section modulus for major axis bending, in.3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 34 BEAM AND GIRDER DESIGN φvVn = design shear strength, kips φbWc = uniform load constant = φb(2ZxFy / 3) kip-ft for compact shapes; per Equation A-F1-3 (LRFD Specification Appendix F1) for noncompact shapes 6. Tabulated maximum factored uniformly distributed load for the given beam and span is the minimum of φbWc and 2φvVn L See also Note 2 above. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 35 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 44 For beams laterally unsupported, see page 4-113 Designation W 44 Span (ft) Fy = 36 ksi Wt./ft 335 290 262 230 20 21 22 23 24 25 1750 1670 1590 1520 1460 1400 1480 1460 1390 1330 1280 1230 1330 1310 1250 1190 1140 1100 1180 1130 1080 1030 990 950 26 27 28 29 30 31 1350 1300 1250 1210 1170 1130 1180 1140 1100 1060 1020 989 1060 1020 980 946 914 885 914 880 849 819 792 766 32 33 34 35 36 1090 1060 1030 1000 972 959 929 902 876 852 857 831 807 784 762 743 720 699 679 660 38 40 42 44 46 48 921 875 833 795 761 729 807 767 730 697 667 639 722 686 653 623 596 572 625 594 566 540 517 495 50 52 54 56 58 60 700 673 648 625 603 583 613 590 568 548 529 511 549 528 508 490 473 457 475 457 440 424 410 396 62 64 66 68 70 72 564 547 530 515 500 486 495 479 465 451 438 426 442 429 416 403 392 381 383 371 360 349 339 330 1270 27400 665 156 28.4 256 7.36 235 9.81 248 1100 23800 592 128 25.6 202 6.28 184 8.37 211 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1620 35000 873 235 36.7 419 12.5 383 16.7 355 1420 30700 738 186 31.3 312 8.77 287 11.7 288 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 36 BEAM AND GIRDER DESIGN W 40 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Wt./ft W 40 431 372 321 297 277 249 199 174 977 937 965 965 908 858 813 772 985 945 904 867 832 800 893 852 815 781 750 721 735 702 671 644 618 594 896 864 834 806 780 756 770 743 717 693 671 650 694 670 647 625 605 586 572 552 533 515 498 483 818 794 771 750 730 711 733 712 691 672 654 637 630 612 594 578 562 547 568 551 536 521 507 493 468 454 441 429 417 406 718 684 653 625 599 575 675 643 614 587 563 540 605 576 550 526 504 484 520 495 473 452 433 416 469 446 426 408 391 375 386 368 351 336 322 309 590 568 548 529 511 495 552 532 513 495 479 463 519 500 482 466 450 435 465 448 432 417 403 390 400 385 371 359 347 335 361 347 335 323 312 302 297 286 276 266 257 249 479 465 451 438 426 449 435 422 410 399 422 409 397 386 375 378 367 356 346 336 325 315 306 297 289 293 284 276 268 260 241 234 227 221 215 1120 24200 574 190 27.0 237 6.93 219 9.23 259 963 20800 493 154 23.4 177 5.30 163 7.07 194 868 18700 489 143 23.4 165 6.12 150 8.16 185 715 15400 483 117 23.4 146 7.95 126 10.6 172 1830 1800 1560 1530 1440 1440 21 22 23 24 25 26 2010 1910 1830 1760 1680 1620 1720 1640 1570 1500 1440 1390 1460 1390 1330 1280 1230 1180 1370 1310 1250 1200 1150 1100 1280 1230 1170 1130 1080 1040 1150 1100 1050 1010 968 930 27 28 29 30 31 32 1560 1500 1450 1400 1360 1320 1340 1290 1240 1200 1160 1130 1140 1100 1060 1020 989 959 1060 1030 991 958 927 898 1000 964 931 900 871 844 33 34 35 36 37 38 1280 1240 1200 1170 1140 1110 1090 1060 1030 1000 975 949 929 902 876 852 829 807 871 845 821 798 776 756 40 42 44 46 48 50 1050 1000 957 916 878 842 902 859 820 784 752 721 767 730 697 667 639 613 52 54 56 58 60 62 810 780 752 726 702 679 694 668 644 622 601 582 64 66 68 70 72 658 638 619 602 585 564 547 530 515 501 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1950 42100 1075 430 48.2 729 22.7 667 30.2 586 1670 36100 916 339 41.8 547 17.2 501 22.9 475 Span (ft) 2150 2110 Fy = 36 ksi 15 16 17 18 19 20 215 Properties and Reaction Values 1420 30700 779 264 36.0 407 12.9 373 17.3 381 1330 28700 720 256 33.5 353 11.2 323 15.0 365 1250 27000 640 224 29.9 290 8.40 268 11.2 318 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 37 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 40 For beams laterally unsupported, see page 4-113 Span (ft) Fy = 36 ksi Designation Wt./ft W 40 331 278 264 235 211 167 149 985 937 975 934 879 830 936 921 860 806 759 716 1030 977 931 889 850 815 888 843 803 767 733 703 787 747 712 679 650 623 679 645 614 586 561 537 873 839 808 779 752 727 782 752 724 698 674 652 675 649 625 602 582 562 598 575 554 534 515 498 516 496 478 461 445 430 787 763 740 718 697 678 704 682 661 642 623 606 631 611 592 575 559 543 544 527 511 496 482 469 482 467 453 440 427 415 416 403 391 379 368 358 695 676 643 612 584 559 660 642 610 581 555 531 590 574 545 519 496 474 528 514 489 465 444 425 456 444 422 402 383 367 404 393 374 356 340 325 349 339 322 307 293 280 644 618 594 572 552 533 536 514 494 476 459 443 509 488 469 452 436 421 455 436 420 404 390 376 407 391 376 362 349 337 351 337 324 312 301 291 311 299 287 277 267 258 269 258 248 239 230 222 60 62 64 66 68 70 515 498 483 468 454 441 428 415 402 389 378 367 407 394 381 370 359 349 364 352 341 331 321 312 326 315 305 296 287 279 281 272 264 256 248 241 249 241 234 226 220 214 215 208 201 195 190 184 72 429 357 339 303 272 234 208 179 781 16900 493 154 23.4 177 5.30 163 7.07 194 692 14900 488 143 23.4 162 6.37 146 8.50 183 597 12900 468 128 22.7 139 7.24 121 9.65 163 13 14 15 16 17 18 1930 1930 1820 1720 1590 1510 1430 1490 1440 1360 1280 1210 1150 1090 19 20 21 22 23 24 1630 1540 1470 1400 1340 1290 1350 1290 1220 1170 1120 1070 1280 1220 1160 1110 1060 1020 1150 1090 1040 992 949 909 25 26 27 28 29 30 1240 1190 1140 1100 1070 1030 1030 989 952 918 886 857 976 939 904 872 842 814 31 32 33 34 35 36 996 965 936 908 883 858 829 803 779 756 734 714 37 38 40 42 44 46 835 813 772 735 702 671 48 50 52 54 56 58 183 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1430 30900 967 364 43.9 602 19.2 550 25.6 506 1190 25700 796 275 36.7 424 13.4 388 17.9 395 1130 24400 746 254 34.6 379 11.7 347 15.6 366 1010 21800 640 205 29.9 290 8.40 268 11.2 303 905 19500 574 177 27.0 236 6.95 218 9.27 259 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 38 BEAM AND GIRDER DESIGN W 36 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation W 36 Span (ft) Fy = 36 ksi Wt./ft 300 280 260 245 230 1120 1090 1040 992 949 909 1060 1020 970 926 886 849 19 20 21 22 23 24 1350 1300 1240 1180 1130 1260 1200 1150 1100 1050 1180 1170 1110 1060 1010 972 25 26 27 28 29 30 1090 1050 1010 972 938 907 1010 972 936 903 871 842 933 897 864 833 804 778 873 839 808 779 752 727 815 783 754 727 702 679 31 32 33 34 35 36 878 851 825 800 778 756 815 790 766 743 722 702 753 729 707 686 667 648 704 682 661 642 623 606 657 637 617 599 582 566 37 38 39 40 41 42 736 716 698 680 664 648 683 665 648 632 616 602 630 614 598 583 569 555 590 574 559 545 532 519 551 536 522 509 497 485 43 44 46 48 50 52 633 619 592 567 544 523 588 574 549 527 505 486 543 530 507 486 467 449 507 496 474 455 436 420 474 463 443 424 407 392 54 56 58 60 62 64 504 486 469 454 439 425 468 451 436 421 408 395 432 417 402 389 376 365 404 390 376 364 352 341 377 364 351 339 329 318 66 68 70 72 412 400 389 378 383 372 361 351 353 343 333 324 331 321 312 303 309 300 291 283 1010 21800 561 180 28.8 254 9.65 231 12.9 274 943 20400 530 162 27.4 228 8.91 206 11.9 251 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1260 27200 675 239 34.0 364 12.6 334 16.7 350 1170 25300 628 214 31.9 319 11.1 292 14.8 318 1080 23300 592 194 30.2 283 10.4 258 13.9 292 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 39 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 36 For beams laterally unsupported, see page 4-113 Designation Wt./ft W 36 256 19 20 21 22 23 24 194 182 170 160 150 135 1260 1190 1120 1180 1120 1060 1000 1090 1040 975 920 1020 969 912 862 956 902 849 802 910 899 842 793 749 871 837 784 738 697 1180 1120 1070 1020 977 936 1060 1010 963 919 879 842 947 900 857 818 782 750 872 828 789 753 720 690 816 775 739 705 674 646 759 721 687 656 627 601 709 674 642 613 586 562 661 627 598 570 546 523 579 550 524 500 478 458 25 26 27 28 29 30 899 864 832 802 775 749 809 778 749 722 697 674 720 692 666 643 620 600 663 637 614 592 571 552 620 596 574 554 535 517 577 555 534 515 498 481 539 518 499 481 465 449 502 483 465 448 433 418 440 423 407 393 379 366 31 32 33 34 35 36 725 702 681 661 642 624 652 632 613 595 578 562 580 562 545 529 514 500 534 518 502 487 473 460 500 485 470 456 443 431 465 451 437 424 412 401 435 421 408 396 385 374 405 392 380 369 359 349 355 344 333 323 314 305 38 40 42 44 46 48 591 562 535 511 488 468 532 505 481 459 440 421 473 450 428 409 391 375 436 414 394 377 360 345 408 388 369 352 337 323 380 361 344 328 314 301 355 337 321 306 293 281 330 314 299 285 273 261 289 275 262 250 239 229 50 52 54 56 58 60 449 432 416 401 387 374 404 389 374 361 349 337 360 346 333 321 310 300 331 319 307 296 286 276 310 298 287 277 267 258 289 277 267 258 249 240 270 259 250 241 232 225 251 241 232 224 216 209 220 211 204 196 190 183 62 64 66 68 70 72 362 351 340 330 321 312 326 316 306 297 289 281 290 281 273 265 257 250 267 259 251 244 237 230 250 242 235 228 222 215 233 225 219 212 206 200 217 211 204 198 193 187 202 196 190 185 179 174 177 172 167 162 157 153 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1040 22500 699 227 34.6 379 12.5 347 16.7 339 936 20200 628 196 31.3 311 10.4 285 13.8 298 624 13500 455 113 23.4 162 6.86 145 9.15 184 581 12500 436 105 22.5 147 6.65 131 8.87 168 509 11000 415 91.1 21.6 126 7.06 110 9.41 149 Span (ft) 1400 1320 1250 210 829 785 733 687 647 611 Fy = 36 ksi 13 14 15 16 17 18 232 Properties and Reaction Values 833 18000 592 173 29.9 270 10.5 244 14.0 270 767 16600 543 151 27.5 230 8.94 208 11.9 240 718 15500 512 139 26.1 205 8.16 185 10.9 223 668 14400 478 122 24.5 180 7.25 162 9.67 202 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 40 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 33 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 33 241 221 W 33 201 169 152 141 130 118 755 710 671 635 604 575 694 653 617 584 555 529 630 593 560 531 504 480 560 527 498 472 448 427 16 17 18 19 20 21 1100 1070 1010 966 1020 972 923 879 936 926 878 834 794 849 799 755 715 679 647 22 23 24 25 26 27 922 882 845 811 780 751 839 803 770 739 710 684 758 725 695 667 641 618 618 591 566 543 523 503 549 525 503 483 464 447 505 483 463 444 427 411 459 439 420 403 388 374 407 390 374 359 345 332 28 29 30 31 32 33 724 699 676 654 634 615 660 637 616 596 577 560 596 575 556 538 521 505 485 468 453 438 425 412 431 416 402 389 377 366 397 383 370 358 347 336 360 348 336 325 315 306 320 309 299 289 280 272 34 35 36 37 38 40 597 579 563 548 534 507 543 528 513 499 486 462 490 476 463 451 439 417 400 388 377 367 358 340 355 345 335 326 318 302 327 317 308 300 292 278 297 288 280 273 265 252 264 256 249 242 236 224 42 44 46 48 50 52 483 461 441 423 406 390 440 420 401 385 369 355 397 379 363 347 334 321 323 309 295 283 272 261 287 274 262 252 241 232 264 252 241 231 222 214 240 229 219 210 202 194 213 204 195 187 179 172 54 56 58 60 62 64 376 362 350 338 327 317 342 330 318 308 298 289 309 298 288 278 269 261 252 243 234 226 219 212 224 216 208 201 195 189 206 198 191 185 179 173 187 180 174 168 163 158 166 160 155 149 145 140 66 68 70 72 307 298 290 282 280 272 264 257 253 245 238 232 206 200 194 189 183 178 172 168 168 163 159 154 153 148 144 140 136 132 128 125 514 11100 392 95.3 21.8 141 6.36 127 8.48 162 467 10100 373 88.1 20.9 125 6.33 111 8.44 146 415 8960 351 77.3 19.8 107 6.28 93.6 8.37 128 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 939 20300 552 163 29.9 274 11.0 249 14.6 261 855 18500 511 144 27.9 236 9.88 213 13.2 235 772 16700 468 125 25.7 198 8.66 179 11.6 208 629 13600 440 124 24.1 185 6.69 170 8.92 203 559 12100 413 107 22.9 159 6.65 144 8.87 181 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 41 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 30 For beams laterally unsupported, see page 4-113 Designation W 30 Span (ft) Fy = 36 ksi Wt./ft 261 235 191 173 932 899 851 809 770 847 808 765 727 692 775 769 726 688 653 622 830 794 761 730 702 676 735 703 674 647 622 599 661 632 606 581 559 538 594 568 545 523 503 484 726 701 678 656 635 616 652 629 608 589 570 553 578 558 539 522 506 490 519 501 485 469 454 441 467 451 436 422 408 396 34 36 38 40 42 44 598 565 535 508 484 462 537 507 480 456 435 415 476 449 426 404 385 368 428 404 383 363 346 330 384 363 344 327 311 297 46 48 50 52 54 56 442 423 407 391 376 363 397 380 365 351 338 326 352 337 324 311 300 289 316 303 291 280 269 260 284 272 261 251 242 233 58 60 62 64 66 68 350 339 328 318 308 299 315 304 294 285 277 268 279 270 261 253 245 238 251 242 234 227 220 214 225 218 211 204 198 192 70 72 290 282 261 254 231 225 208 202 187 182 673 14500 423 124 25.6 199 9.04 181 12.0 207 605 13100 388 111 23.6 167 7.96 151 10.6 187 16 17 18 19 20 21 1140 1130 1070 1020 968 1010 961 913 869 22 23 24 25 26 27 924 884 847 813 782 753 28 29 30 31 32 33 211 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 941 20300 571 204 33.5 353 14.2 323 18.9 313 845 18300 505 168 29.9 283 11.2 260 14.9 265 749 16200 466 148 27.9 239 10.5 218 14.0 239 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 42 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 30 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 30 148 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 775 771 720 675 635 600 568 540 514 491 470 450 432 415 400 386 372 360 348 338 327 318 300 284 270 257 245 235 225 216 208 200 193 186 180 174 169 164 159 154 150 132 725 674 629 590 555 524 497 472 449 429 410 393 378 363 350 337 325 315 304 295 286 278 262 248 236 225 215 205 197 189 182 175 169 163 157 152 147 143 139 135 131 124 686 678 629 588 551 518 490 464 441 420 401 383 367 353 339 326 315 304 294 284 275 267 259 245 232 220 210 200 192 184 176 169 163 157 152 147 142 138 134 130 126 122 116 108 99 90 659 628 583 544 510 480 454 430 408 389 371 355 340 327 314 302 292 282 272 263 255 247 240 227 215 204 194 186 177 170 163 157 151 146 141 136 132 128 124 120 117 113 632 623 575 534 498 467 440 415 393 374 356 340 325 311 299 287 277 267 258 249 241 234 226 220 208 197 187 178 170 162 156 149 144 138 133 129 125 121 117 113 110 107 104 599 562 518 481 449 421 396 374 355 337 321 306 293 281 270 259 250 241 232 225 217 211 204 198 187 177 168 160 153 147 140 135 130 125 120 116 112 109 105 102 99 96 94 540 509 470 437 408 382 360 340 322 306 291 278 266 255 245 235 226 218 211 204 197 191 185 180 170 161 153 146 139 133 127 122 118 113 109 105 102 99 96 93 90 87 85 346 7470 316 76.6 19.6 107 6.55 94.3 8.74 129 312 6740 300 67.3 18.7 93.9 6.50 81.1 8.66 115 283 6110 270 55.5 16.9 77.0 5.29 66.6 7.05 94.2 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 500 10800 388 117 23.4 174 6.97 160 9.29 193 437 9440 362 96.9 22.1 148 7.05 133 9.39 169 408 8810 343 88.8 21.1 132 6.55 119 8.73 153 378 8160 330 82.6 20.3 120 6.49 107 8.65 141 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 43 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 27 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 27 258 235 194 178 161 146 917 900 850 805 765 820 798 754 714 678 784 765 720 680 645 612 708 691 651 614 582 553 644 622 586 553 524 498 791 755 722 692 664 639 728 695 665 637 612 588 646 617 590 565 543 522 583 557 532 510 490 471 527 503 481 461 442 425 474 453 433 415 398 383 680 656 633 612 592 574 615 593 573 554 536 519 566 546 527 510 493 478 502 484 468 452 438 424 454 437 422 408 395 383 410 395 381 369 357 346 369 356 343 332 321 311 33 34 35 36 37 38 556 540 525 510 496 483 503 489 475 461 449 437 463 450 437 425 413 402 411 399 388 377 367 357 371 360 350 340 331 322 335 325 316 307 299 291 302 293 285 277 269 262 40 42 44 46 48 50 459 437 417 399 383 367 415 395 378 361 346 332 382 364 348 332 319 306 339 323 308 295 283 271 306 292 278 266 255 245 276 263 251 240 230 221 249 237 226 216 207 199 52 54 56 58 60 62 353 340 328 317 306 296 319 308 297 286 277 268 294 283 273 264 255 247 261 251 242 234 226 219 236 227 219 211 204 198 213 205 197 191 184 178 191 184 178 172 166 161 64 66 287 278 260 252 239 232 212 206 191 186 173 168 156 151 567 12200 392 122 26.1 206 10.6 186 14.1 207 512 11100 354 108 23.8 171 8.86 154 11.8 185 461 9960 322 91.9 21.8 142 7.62 128 10.2 163 15 16 17 18 19 20 1100 1080 1020 966 918 1010 977 923 874 831 21 22 23 24 25 26 874 835 798 765 734 706 27 28 29 30 31 32 217 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 850 18400 552 221 35.3 395 16.8 362 22.5 335 769 16600 507 189 32.8 337 15.0 308 20.0 296 708 15300 459 163 29.9 283 12.3 260 16.4 261 628 13600 410 139 27.0 230 10.3 211 13.7 227 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 44 BEAM AND GIRDER DESIGN W 27 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation W 27 Span (ft) Fy = 36 ksi Wt./ft 129 102 94 84 605 570 529 494 463 542 507 471 439 412 513 500 462 429 400 375 478 439 405 376 351 329 502 474 449 427 406 388 436 412 390 370 353 337 388 366 347 329 314 299 353 334 316 300 286 273 310 293 277 264 251 240 23 24 25 26 27 28 371 356 341 328 316 305 322 309 296 285 274 265 286 275 264 253 244 235 261 250 240 231 222 214 229 220 211 203 195 188 29 30 31 32 33 34 294 284 275 267 259 251 255 247 239 232 225 218 227 220 213 206 200 194 207 200 194 188 182 177 182 176 170 165 160 155 36 38 40 42 44 46 237 225 213 203 194 185 206 195 185 176 168 161 183 173 165 157 150 143 167 158 150 143 136 131 146 139 132 125 120 115 48 50 52 54 56 58 178 171 164 158 152 147 154 148 142 137 132 128 137 132 127 122 118 114 125 120 115 111 107 104 110 105 101 98 94 91 60 62 64 66 142 138 133 129 123 119 116 112 110 106 103 100 100 97 94 91 88 85 82 80 278 6000 256 63.4 17.6 90.6 5.39 80.9 7.18 108 244 5270 239 56.9 16.6 76.4 5.23 67.1 6.97 93.4 11 12 13 14 15 16 655 609 569 533 17 18 19 20 21 22 114 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 395 8530 328 99.5 22.0 153 6.86 140 9.14 171 343 7410 302 83.4 20.5 127 6.70 115 8.93 149 305 6590 271 72.4 18.5 103 5.58 93.0 7.44 121 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 45 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 24 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 24 229 207 192 176 146 131 117 104 685 674 632 595 562 625 602 564 531 502 576 571 533 500 470 444 519 505 471 441 415 392 468 446 416 390 367 347 581 552 526 502 480 460 532 505 481 459 440 421 475 451 430 410 393 376 421 400 381 363 347 333 372 353 336 321 307 294 329 312 297 284 271 260 483 464 447 431 416 402 442 425 409 394 381 368 404 389 374 361 349 337 361 347 334 322 311 301 320 307 296 285 276 266 283 272 262 252 244 235 250 240 231 223 215 208 422 409 397 385 374 364 389 377 366 355 345 335 356 345 334 325 315 307 326 316 306 297 289 281 291 282 274 266 258 251 258 250 242 235 228 222 228 221 214 208 202 196 201 195 189 184 178 173 384 365 348 332 317 304 344 327 312 297 285 273 318 302 287 274 262 252 290 276 263 251 240 230 266 253 241 230 220 211 238 226 215 205 196 188 210 200 190 182 174 167 186 177 168 161 154 147 164 156 149 142 136 130 292 281 270 261 252 243 262 252 242 234 226 218 241 232 224 216 208 201 221 212 204 197 190 184 202 194 187 181 174 168 181 174 167 161 156 150 160 154 148 143 138 133 141 136 131 126 122 118 125 120 116 111 108 104 676 14600 486 216 34.6 379 18.0 347 24.1 328 606 13100 435 186 31.3 311 15.0 285 20.0 288 370 7990 288 95.3 21.8 141 8.65 127 11.5 166 327 7060 259 80.4 19.8 115 7.41 103 9.88 139 289 6240 234 67.5 18.0 93.7 6.36 83.5 8.48 114 13 14 15 16 17 18 971 913 859 811 870 818 770 727 802 755 710 671 736 736 690 649 613 19 20 21 22 23 24 769 730 695 664 635 608 689 654 623 595 569 545 635 604 575 549 525 503 25 26 27 28 29 30 584 562 541 521 504 487 524 503 485 467 451 436 31 32 33 34 35 36 471 456 442 429 417 406 38 40 42 44 46 48 50 52 54 56 58 60 162 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 559 12100 401 164 29.2 270 13.1 247 17.5 259 511 11000 368 143 27.0 230 11.5 211 15.3 231 468 10100 343 127 25.4 200 10.5 182 14.1 209 418 9030 313 110 23.4 167 9.35 152 12.5 186 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 46 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 24 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 24 103 94 84 W 24 76 68 62 55 397 367 330 300 275 362 362 322 289 263 241 7 8 9 10 11 12 525 504 487 457 440 440 403 409 393 360 383 382 348 319 13 14 15 16 17 18 465 432 403 378 356 336 422 392 366 343 323 305 372 346 323 302 285 269 332 309 288 270 254 240 294 273 255 239 225 212 254 236 220 207 194 184 223 207 193 181 170 161 19 20 21 22 23 24 318 302 288 275 263 252 289 274 261 249 239 229 255 242 230 220 210 202 227 216 206 196 188 180 201 191 182 174 166 159 174 165 157 150 144 138 152 145 138 132 126 121 25 26 27 28 29 30 242 233 224 216 209 202 219 211 203 196 189 183 194 186 179 173 167 161 173 166 160 154 149 144 153 147 142 137 132 127 132 127 122 118 114 110 116 111 107 103 100 96 31 32 33 34 35 36 195 189 183 178 173 168 177 171 166 161 157 152 156 151 147 142 138 134 139 135 131 127 123 120 123 119 116 112 109 106 107 103 100 97 94 92 93 90 88 85 83 80 38 40 42 44 46 48 159 151 144 137 131 126 144 137 131 125 119 114 127 121 115 110 105 101 114 108 103 98 94 90 101 96 91 87 83 80 87 83 79 75 72 69 76 72 69 66 63 60 50 52 54 56 58 60 121 116 112 108 104 101 110 106 102 98 95 91 97 93 90 86 83 81 86 83 80 77 74 76 74 71 68 66 66 64 61 59 57 58 56 54 52 50 177 3820 191 51.4 14.9 62.6 4.73 55.1 6.30 77.9 153 3300 198 53.2 15.5 66.3 5.21 58.0 6.95 83.2 134 2890 181 46.7 14.2 54.0 4.75 46.5 6.34 69.4 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 280 6050 262 86.6 19.8 124 6.35 113 8.47 144 254 5490 243 75.3 18.5 106 5.89 96.2 7.86 125 224 4840 220 66.1 16.9 86.5 5.14 78.3 6.85 103 200 4320 205 56.9 15.8 73.6 4.81 66.0 6.41 89.3 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 47 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 21 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 21 201 182 166 147 132 122 111 101 552 514 480 450 423 400 506 474 442 414 390 368 460 430 402 377 354 335 415 390 364 342 321 304 13 14 15 16 17 18 815 763 716 673 636 733 685 643 605 571 656 622 583 549 518 618 575 537 504 474 448 19 20 21 22 23 24 603 572 545 520 498 477 541 514 490 467 447 428 491 467 444 424 406 389 424 403 384 366 350 336 379 360 343 327 313 300 349 332 316 301 288 276 317 301 287 274 262 251 288 273 260 248 238 228 25 26 27 28 29 30 458 440 424 409 395 382 411 395 381 367 355 343 373 359 346 333 322 311 322 310 298 288 278 269 288 277 266 257 248 240 265 255 246 237 229 221 241 232 223 215 208 201 219 210 202 195 188 182 31 32 33 34 35 36 369 358 347 337 327 318 332 321 312 302 294 286 301 292 283 274 267 259 260 252 244 237 230 224 232 225 218 212 206 200 214 207 201 195 189 184 194 188 183 177 172 167 176 171 166 161 156 152 38 40 42 44 46 48 301 286 273 260 249 239 271 257 245 234 224 214 246 233 222 212 203 194 212 201 192 183 175 168 189 180 171 163 156 150 175 166 158 151 144 138 159 151 143 137 131 126 144 137 130 124 119 114 50 52 229 220 206 198 187 179 161 155 144 138 133 128 121 116 109 105 307 6630 253 91.1 21.6 139 9.53 126 12.7 161 279 6030 230 80.4 19.8 117 8.11 105 10.8 143 253 5460 208 70.3 18.0 96.8 6.72 87.2 8.95 119 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 530 11400 407 195 32.8 339 18.4 311 24.6 301 476 10300 367 168 29.9 281 15.6 258 20.8 265 432 9330 328 143 27.0 232 12.7 213 16.9 231 373 8060 309 122 25.9 200 13.5 181 18.0 206 333 7190 276 106 23.4 163 11.2 147 14.9 182 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 48 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 21 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 21 93 83 73 W 21 68 62 57 50 44 281 258 229 206 187 172 7 8 9 10 11 12 488 477 434 398 429 423 385 353 376 372 338 310 353 346 314 288 326 311 283 259 332 310 279 253 232 308 297 264 238 216 198 13 14 15 16 17 18 367 341 318 298 281 265 326 302 282 265 249 235 286 265 248 232 219 206 266 247 230 216 203 192 239 222 207 194 183 173 214 199 186 174 164 155 183 170 158 149 140 132 159 147 137 129 121 114 19 20 21 22 23 24 251 239 227 217 208 199 223 212 202 192 184 176 196 186 177 169 162 155 182 173 165 157 150 144 164 156 148 141 135 130 147 139 133 127 121 116 125 119 113 108 103 99 108 103 98 94 90 86 25 26 27 28 29 30 191 184 177 170 165 159 169 163 157 151 146 141 149 143 138 133 128 124 138 133 128 123 119 115 124 120 115 111 107 104 111 107 103 100 96 93 95 91 88 85 82 79 82 79 76 74 71 69 31 32 33 34 35 36 154 149 145 140 136 133 137 132 128 125 121 118 120 116 113 109 106 103 111 108 105 102 99 96 100 97 94 91 89 86 90 87 84 82 80 77 77 74 72 70 68 66 66 64 62 61 59 57 38 40 42 44 46 48 126 119 114 108 104 99 111 106 101 96 92 88 98 93 88 84 81 77 91 86 82 79 75 72 82 78 74 71 68 65 73 70 66 63 61 58 63 59 57 54 52 50 54 52 49 47 45 43 50 52 95 92 85 81 74 71 69 66 62 60 56 54 48 46 41 129 2790 166 50.1 14.6 63.6 4.45 57.3 5.94 78.1 110 2380 154 44.9 13.7 52.4 4.52 46.2 6.03 67.1 95.4 2060 141 37.4 12.6 42.5 4.23 36.7 5.64 56.3 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 221 4770 244 88.1 20.9 130 8.91 118 11.9 156 196 4230 215 72.4 18.5 103 7.01 93.3 9.34 126 172 3720 188 61.4 16.4 80.8 5.50 73.0 7.34 98.7 160 3460 177 55.6 15.5 71.4 5.04 64.3 6.72 87.8 144 3110 163 49.5 14.4 60.7 4.55 54.3 6.07 75.5 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 49 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 18 For beams laterally unsupported, see page 4-113 Designation Wt./ft W 18 192 175 158 W 18 143 130 119 106 97 86 76 430 414 382 355 331 311 387 380 351 326 304 285 343 335 309 287 268 251 301 293 271 251 235 220 693 661 614 573 537 621 592 549 513 481 553 535 497 464 435 501 484 449 419 393 17 18 19 20 21 22 562 530 502 477 455 434 506 478 452 430 409 391 452 427 405 384 366 350 409 386 366 348 331 316 370 349 331 314 299 286 332 313 297 282 268 256 292 276 261 248 237 226 268 253 240 228 217 207 236 223 211 201 191 183 207 196 185 176 168 160 23 24 25 26 27 28 415 398 382 367 354 341 374 358 344 331 318 307 334 320 308 296 285 275 302 290 278 268 258 248 273 262 251 242 233 224 245 235 226 217 209 201 216 207 199 191 184 177 198 190 182 175 169 163 175 167 161 155 149 143 153 147 141 135 130 126 29 30 31 32 33 34 329 318 308 298 289 281 296 287 277 269 261 253 265 256 248 240 233 226 240 232 224 217 211 205 217 210 203 196 190 185 194 188 182 176 171 166 171 166 160 155 151 146 157 152 147 142 138 134 139 134 130 126 122 118 121 117 114 110 107 104 35 36 37 38 39 40 273 265 258 251 245 239 246 239 232 226 220 215 220 214 208 202 197 192 199 193 188 183 178 174 180 175 170 165 161 157 161 157 152 148 145 141 142 138 134 131 127 124 130 127 123 120 117 114 115 112 109 106 103 100 101 98 95 93 90 88 42 44 227 217 205 195 183 175 166 158 150 143 134 128 118 113 109 104 96 91 84 80 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 442 9550 380 211 34.6 381 22.8 350 30.4 323 398 8600 347 180 32.0 324 20.3 297 27.1 284 230 4970 215 86.3 21.2 134 10.7 121 14.3 155 211 4560 193 75.2 19.3 112 8.69 101 11.6 138 186 4020 172 62.1 17.3 89.3 7.17 80.5 9.56 113 163 3520 150 52.6 15.3 69.9 5.69 63.0 7.59 88.4 Span (ft) 760 734 682 636 597 483 470 434 403 376 352 Fy = 36 ksi 11 12 13 14 15 16 Properties and Reaction Values 356 7690 311 155 29.2 268 17.2 245 22.9 250 322 6960 277 131 26.3 219 13.9 201 18.5 217 291 6290 251 113 24.1 184 12.0 168 15.9 191 261 5640 242 103 23.6 167 12.8 151 17.1 180 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 50 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 18 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 18 71 65 6 7 8 9 10 11 355 348 313 285 321 319 287 261 12 13 14 15 16 17 261 241 224 209 196 184 18 19 20 21 22 23 60 W 18 55 50 46 40 35 294 266 242 275 269 242 220 248 242 218 198 253 245 218 196 178 219 212 188 169 154 206 205 180 160 144 131 239 221 205 192 180 169 221 204 190 177 166 156 202 186 173 161 151 142 182 168 156 145 136 128 163 151 140 131 122 115 141 130 121 113 106 100 120 110 103 96 90 84 174 165 157 149 142 136 160 151 144 137 131 125 148 140 133 127 121 116 134 127 121 115 110 105 121 115 109 104 99 95 109 103 98 93 89 85 94 89 85 81 77 74 80 76 72 68 65 62 24 25 26 27 28 29 131 125 120 116 112 108 120 115 110 106 103 99 111 106 102 98 95 92 101 97 93 90 86 83 91 87 84 81 78 75 82 78 75 73 70 68 71 68 65 63 60 58 60 57 55 53 51 50 30 31 32 33 34 35 104 101 98 95 92 89 96 93 90 87 84 82 89 86 83 81 78 76 81 78 76 73 71 69 73 70 68 66 64 62 65 63 61 59 58 56 56 55 53 51 50 48 48 46 45 44 42 41 36 38 40 42 44 87 82 78 75 71 80 76 72 68 65 74 70 66 63 60 67 64 60 58 55 61 57 55 52 50 54 52 49 47 45 47 45 42 40 38 40 38 36 34 33 90.7 1960 126 40.5 13.0 51.4 3.92 46.7 5.23 64.2 78.4 1690 110 33.7 11.3 39.2 3.05 35.6 4.07 49.1 66.5 1440 103 30.4 10.8 32.8 3.29 28.9 4.39 43.5 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 145 3130 178 66.8 17.8 95.9 7.44 86.7 9.92 120 133 2870 161 58.2 16.2 80.0 6.08 72.6 8.10 99.8 123 2660 147 51.4 14.9 68.2 5.18 61.9 6.90 85.0 112 2420 137 46.1 14.0 59.2 4.77 53.4 6.36 74.7 101 2180 124 39.9 12.8 48.9 4.01 44.1 5.34 61.9 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 51 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 16 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 16 100 89 W 16 77 6 7 8 9 10 11 386 342 292 12 13 14 15 16 17 356 329 305 285 267 252 315 291 270 252 236 222 18 19 20 21 22 23 238 225 214 204 194 186 24 25 26 27 28 29 67 57 50 45 W 16 40 36 31 26 153 136 119 106 95 87 251 275 252 227 206 240 221 199 181 216 198 178 162 190 175 157 143 182 173 154 138 126 170 167 146 130 117 106 270 249 231 216 203 191 234 216 201 187 176 165 189 174 162 151 142 133 166 153 142 132 124 117 148 137 127 119 111 105 131 121 112 105 98 93 115 106 99 92 86 81 97 90 83 78 73 69 80 73 68 64 60 56 210 199 189 180 172 164 180 171 162 154 147 141 156 148 140 134 128 122 126 119 113 108 103 99 110 105 99 95 90 86 99 94 89 85 81 77 87 83 79 75 72 68 77 73 69 66 63 60 65 61 58 56 53 51 53 50 48 45 43 42 178 171 164 158 153 147 158 151 145 140 135 130 135 130 125 120 116 112 117 112 108 104 100 97 95 91 87 84 81 78 83 79 76 74 71 69 74 71 68 66 63 61 66 63 61 58 56 54 58 55 53 51 49 48 49 47 45 43 42 40 40 38 37 35 34 33 30 31 32 33 34 35 143 138 134 130 126 122 126 122 118 115 111 108 108 105 101 98 95 93 94 91 88 85 83 80 76 73 71 69 67 65 66 64 62 60 58 57 59 57 56 54 52 51 52 51 49 48 46 45 46 45 43 42 41 39 39 38 36 35 34 33 32 31 30 29 28 27 36 38 40 119 113 107 105 99 95 90 85 81 78 74 70 63 60 57 55 52 50 49 47 44 44 41 39 38 36 32 31 27 25 198 4280 193 88.8 21.1 136 11.0 123 14.7 157 175 3780 171 73.8 18.9 109 9.06 98.8 12.1 135 72.9 1570 94.9 32.6 11.0 36.6 3.22 33.2 4.30 47.1 64.0 1380 91.0 29.9 10.6 32.2 3.46 28.5 4.61 43.5 54.0 1170 84.9 27.8 9.90 29.3 2.73 26.4 3.64 38.2 44.2 955 76.3 23.9 9.00 22.5 2.65 19.7 3.53 31.2 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 150 3240 146 58.9 16.4 81.9 6.89 74.3 9.18 104 130 2810 125 48.9 14.2 61.9 5.21 56.3 6.95 78.9 105 2270 137 53.2 15.5 73.0 6.21 66.2 8.28 93.2 92.0 1990 120 44.9 13.7 56.9 4.92 51.6 6.56 72.9 82.3 1780 108 38.8 12.4 46.6 4.14 42.2 5.52 60.1 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 52 BEAM AND GIRDER DESIGN W 14 Fy = 36 ksi BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-113 Designation Wt./ft W 14 132 120 109 W 14 99 90 82 74 68 61 248 247 227 209 194 181 227 226 207 191 177 166 203 200 184 169 157 147 332 327 305 292 276 267 267 249 240 226 16 17 18 19 20 21 316 297 281 266 253 241 286 269 254 241 229 218 259 244 230 218 207 197 234 220 208 197 187 178 212 199 188 178 170 161 188 177 167 158 150 143 170 160 151 143 136 130 155 146 138 131 124 118 138 130 122 116 110 105 22 23 24 25 26 27 230 220 211 202 194 187 208 199 191 183 176 170 189 180 173 166 160 154 170 162 156 149 144 138 154 147 141 136 130 126 136 131 125 120 115 111 124 118 113 109 105 101 113 108 104 99 96 92 100 96 92 88 85 82 28 29 30 31 32 33 181 174 168 163 158 153 164 158 153 148 143 139 148 143 138 134 130 126 133 129 125 121 117 113 121 117 113 109 106 103 107 104 100 97 94 91 97 94 91 88 85 82 89 86 83 80 78 75 79 76 73 71 69 67 34 149 135 122 110 100 88 80 73 65 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 234 5050 184 98.0 23.2 161 16.3 145 21.8 173 212 4580 166 86.3 21.2 134 13.9 121 18.5 155 139 3000 142 74.6 18.4 103 9.95 93.6 13.3 134 126 2720 124 63.3 16.2 81.8 7.52 74.7 10.0 107 115 2480 113 56.0 14.9 69.4 6.49 63.3 8.65 91.5 102 2200 101 48.5 13.5 56.4 5.40 51.4 7.20 74.8 Span (ft) 368 361 337 284 273 250 231 214 200 Fy = 36 ksi 10 11 12 13 14 15 Properties and Reaction Values 192 4150 146 73.8 18.9 108 10.8 97.6 14.4 135 173 3740 134 62.7 17.5 91.3 9.48 82.3 12.6 119 157 3390 120 54.5 15.8 75.3 7.86 67.9 10.5 102 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 53 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 14 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 14 53 48 5 6 7 8 9 10 200 188 182 169 11 12 13 14 15 16 171 157 145 134 125 118 17 18 19 20 21 22 W 14 43 38 34 W 14 30 26 22 162 150 170 166 148 133 155 147 131 118 145 128 114 102 138 124 109 96 87 123 120 102 90 80 72 154 141 130 121 113 106 137 125 116 107 100 94 121 111 102 95 89 83 107 98 91 84 79 74 93 85 79 73 68 64 79 72 67 62 58 54 65 60 55 51 48 45 111 105 99 94 90 86 100 94 89 85 81 77 88 84 79 75 72 68 78 74 70 66 63 60 69 66 62 59 56 54 60 57 54 51 49 46 51 48 46 43 41 39 42 40 38 36 34 33 23 24 25 26 27 28 82 78 75 72 70 67 74 71 68 65 63 60 65 63 60 58 56 54 58 55 53 51 49 47 51 49 47 45 44 42 44 43 41 39 38 36 38 36 35 33 32 31 31 30 29 28 27 26 29 30 31 32 33 34 65 63 61 59 57 55 58 56 55 53 51 50 52 50 48 47 46 44 46 44 43 42 40 39 41 39 38 37 36 35 35 34 33 32 31 30 30 29 28 27 26 26 25 24 23 22 22 21 47.3 1020 72.6 22.8 9.72 26.6 3.39 23.5 4.52 38.2 40.2 868 69.0 21.5 9.18 25.5 2.61 23.1 3.47 34.4 33.2 717 61.4 18.1 8.28 19.5 2.43 17.3 3.24 27.8 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 87.1 1880 100 47.9 13.3 55.9 5.06 51.3 6.75 73.2 78.4 1690 91.1 42.1 12.2 46.8 4.40 42.8 5.86 61.8 69.6 1500 81.0 36.0 11.0 37.5 3.60 34.2 4.80 49.8 61.5 1330 85.0 29.6 11.2 37.9 3.77 34.4 5.02 50.7 54.6 1180 77.5 25.7 10.3 31.4 3.34 28.3 4.45 42.8 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 54 BEAM AND GIRDER DESIGN W 12 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Wt./ft W 12 120 106 96 87 W 12 79 72 65 58 53 162 153 140 129 120 112 306 295 272 253 236 272 265 244 227 212 251 238 219 204 190 226 214 198 184 171 205 194 179 167 156 184 174 161 149 139 16 17 18 19 20 21 251 236 223 211 201 191 221 208 197 186 177 169 198 187 176 167 159 151 178 168 158 150 143 136 161 151 143 135 129 122 146 137 130 123 117 111 131 123 116 110 105 100 117 110 104 98 93 89 105 99 93 89 84 80 22 23 24 25 26 27 183 175 167 161 155 149 161 154 148 142 136 131 144 138 132 127 122 118 130 124 119 114 110 106 117 112 107 103 99 95 106 101 97 93 90 86 95 91 87 84 80 77 85 81 78 75 72 69 76 73 70 67 65 62 28 29 30 143 139 134 127 122 118 113 109 106 102 98 95 92 89 86 83 80 78 75 72 70 67 64 62 60 58 56 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 186 4020 181 116 25.6 192 22.7 173 30.2 199 164 3540 153 92.6 22.0 145 16.3 131 21.8 164 108 2330 102 53.2 15.5 70.6 8.89 63.4 11.9 102 96.8 2090 91.9 46.1 14.0 58.0 7.43 52.0 9.90 84.1 86.4 1870 85.3 44.6 13.0 52.9 5.49 48.4 7.32 72.2 77.9 1680 80.9 38.8 12.4 47.0 5.44 42.6 7.25 66.2 Span (ft) 362 335 309 287 268 171 170 156 144 133 124 Fy = 36 ksi 10 11 12 13 14 15 Properties and Reaction Values 147 3180 136 80.4 19.8 118 13.4 107 17.8 145 132 2850 125 69.5 18.5 102 12.4 91.5 16.5 130 119 2570 113 60.8 16.9 84.5 10.5 75.9 14.0 116 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 55 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 12 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 12 50 45 W 12 40 4 5 6 7 8 9 175 174 157 155 10 11 12 13 14 15 156 142 130 120 112 104 16 17 18 19 20 21 35 30 W 12 26 22 19 16 14 111 107 89 76 67 59 103 87 72 62 54 48 93 75 63 54 47 42 137 146 138 123 125 116 103 109 100 89 124 105 90 79 70 140 127 116 108 100 93 124 113 104 96 89 83 111 101 92 85 79 74 93 85 78 72 66 62 80 73 67 62 57 54 63 58 53 49 45 42 53 49 44 41 38 36 43 39 36 33 31 29 38 34 31 29 27 25 98 92 87 82 78 74 87 82 78 74 70 67 78 73 69 65 62 59 69 65 61 58 55 53 58 55 52 49 47 44 50 47 45 42 40 38 40 37 35 33 32 30 33 31 30 28 27 25 27 26 24 23 22 21 23 22 21 20 19 18 22 23 24 25 26 27 71 68 65 63 60 58 64 61 58 56 54 52 56 54 52 50 48 46 50 48 46 44 43 41 42 40 39 37 36 34 37 35 33 32 31 30 29 28 26 25 24 23 24 23 22 21 21 20 20 19 18 17 17 16 17 16 16 15 14 14 28 29 30 56 54 52 50 48 47 44 43 37 39 38 31 33 32 27 29 28 21 23 22 18 19 18 16 15 13 13 72.4 1560 87.7 45.8 13.3 55.1 5.96 50.3 7.95 76.1 64.7 1400 78.5 37.7 12.1 45.0 4.98 41.0 6.64 62.6 29.3 633 62.2 20.5 9.36 26.4 3.08 23.9 4.11 37.3 24.7 534 55.6 17.2 8.46 20.6 2.80 18.4 3.73 30.5 20.1 434 51.3 14.9 7.92 16.3 3.08 13.8 4.10 27.1 17.4 376 46.3 12.4 7.20 13.0 2.74 10.8 3.65 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 57.5 1240 68.5 33.2 10.6 35.2 3.83 32.1 5.11 48.7 51.2 1110 72.9 27.0 10.8 36.3 3.81 33.1 5.08 49.6 43.1 931 62.4 21.9 9.36 26.9 2.97 24.5 3.96 37.3 37.2 804 54.6 18.1 8.28 20.8 2.41 18.8 3.21 29.3 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 22.7 4 - 56 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 10 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation W 10 112 100 88 77 68 60 54 49 9 10 11 12 13 14 333 318 289 265 244 227 293 281 255 234 216 201 255 244 222 203 188 174 218 211 192 176 162 151 190 184 167 154 142 132 167 161 146 134 124 115 145 144 131 120 111 103 132 130 119 109 100 93 15 16 17 18 19 20 212 198 187 176 167 159 187 176 165 156 148 140 163 153 144 136 128 122 141 132 124 117 111 105 123 115 108 102 97 92 107 101 95 90 85 81 96 90 85 80 76 72 87 82 77 72 69 65 21 22 23 24 151 144 138 132 134 128 122 117 116 111 106 102 100 96 92 88 88 84 80 77 77 73 70 67 69 65 63 60 62 59 57 54 74.6 1610 83.4 49.6 15.1 68.7 9.79 62.0 13.0 98.8 66.6 1440 72.6 41.6 13.3 54.0 7.49 49.0 9.99 81.4 60.4 1300 66.0 36.3 12.2 45.4 6.46 41.1 8.61 69.1 Span (ft) Fy = 36 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 147 3180 167 127 27.2 224 27.8 203 37.1 216 130 2810 147 107 24.5 182 23.2 164 31.0 187 113 2440 127 88.5 21.8 143 18.9 130 25.3 159 97.6 2110 109 71.5 19.1 110 14.8 99.7 19.8 134 85.3 1840 95.0 58.2 16.9 86.5 11.9 78.3 15.9 113 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 57 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 10 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft W 10 45 3 4 5 6 7 8 137 9 10 11 12 13 14 39 W 10 33 30 26 W 10 22 19 17 15 12 73 68 54 45 39 34 100 93 78 67 58 94 81 67 58 50 89 86 69 58 49 43 121 110 105 122 113 99 104 97 85 95 94 80 70 132 119 108 99 91 85 112 101 92 84 78 72 93 84 76 70 64 60 88 79 72 66 61 56 75 68 61 56 52 48 62 56 51 47 43 40 52 47 42 39 36 33 45 40 37 34 31 29 38 35 31 29 27 25 30 27 25 23 21 19 15 16 17 18 19 20 79 74 70 66 62 59 67 63 59 56 53 51 56 52 49 47 44 42 53 49 47 44 42 40 45 42 40 38 36 34 37 35 33 31 30 28 31 29 27 26 25 23 27 25 24 22 21 20 23 22 20 19 18 17 18 17 16 15 14 14 21 22 23 24 56 54 52 49 48 46 44 42 40 38 36 35 38 36 34 33 32 31 29 28 27 26 24 23 22 21 20 19 19 18 18 17 16 16 15 14 13 12 12 11 54.9 1190 68.7 39.4 12.6 49.9 6.29 45.7 8.38 72.9 46.8 1010 60.7 31.9 11.3 39.4 5.46 35.8 7.28 59.4 21.6 467 49.8 18.3 9.00 24.0 3.55 21.6 4.73 37.0 18.7 404 47.2 16.2 8.64 20.7 3.80 18.1 5.07 34.6 16.0 346 44.7 14.2 8.28 17.5 4.14 14.8 5.52 32.7 12.6 272 36.5 10.7 6.84 11.6 3.04 9.61 4.05 22.8 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 38.8 838 54.9 27.7 10.4 31.5 5.29 28.1 7.05 51.0 36.6 791 61.1 25.3 10.8 35.9 4.64 32.7 6.19 52.8 31.3 676 52.2 20.5 9.36 26.9 3.55 24.5 4.73 39.8 26.0 562 47.4 16.2 8.64 21.6 3.47 19.2 4.62 34.3 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 58 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W8 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation W8 67 58 48 7 8 9 10 11 12 199 190 168 152 138 126 40 35 31 174 161 144 129 117 108 132 118 106 96 88 115 107 96 86 78 72 98 94 83 75 68 62 89 82 73 66 60 55 13 14 15 16 17 18 117 108 101 95 89 84 99 92 86 81 76 72 81 76 71 66 62 59 66 61 57 54 51 48 58 54 50 47 44 42 51 47 44 41 39 36 19 20 80 76 68 65 56 53 45 43 39 37 35 33 39.8 860 57.7 34.4 13.0 49.5 9.27 44.4 12.4 76.5 34.7 750 48.9 27.9 11.2 37.2 6.80 33.5 9.07 63.0 30.4 657 44.3 24.0 10.3 30.7 6.11 27.4 8.14 53.9 Span (ft) Fy = 36 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 70.2 1520 99.7 73.7 20.5 127 20.2 115 26.9 140 59.8 1290 86.8 60.2 18.4 100 17.2 90.3 22.9 120 49.0 1060 66.1 42.8 14.4 64.1 10.1 58.4 13.5 89.6 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 59 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W8 For beams laterally unsupported, see page 4-113 Designation W8 Span (ft) Fy = 36 ksi Wt./ft 28 W8 24 21 W8 18 15 13 10 71 62 49 41 35 31 52 48 38 32 27 24 3 4 5 6 7 8 89 84 73 76 72 63 80 73 63 55 73 61 52 46 77 73 59 49 42 37 9 10 11 12 13 14 65 59 53 49 45 42 56 50 46 42 39 36 49 44 40 37 34 31 41 37 33 31 28 26 33 29 27 24 23 21 27 25 22 21 19 18 21 19 17 16 15 14 15 16 17 18 19 20 39 37 35 33 31 29 33 31 29 28 26 22 29 28 26 24 23 18 24 23 22 20 19 15 20 18 17 16 15 16 15 14 14 13 13 12 11 11 10 13.6 294 38.6 16.5 8.82 20.8 5.28 18.0 7.05 40.9 11.4 246 35.7 14.2 8.28 17.0 5.48 14.1 7.31 37.9 8.87 192 26.1 9.56 6.12 9.71 2.79 8.24 3.72 20.3 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 27.2 588 44.7 24.0 10.3 31.7 5.67 28.7 7.56 53.3 23.2 501 37.8 19.3 8.82 23.5 4.26 21.2 5.67 39.7 20.4 441 40.2 18.3 9.00 24.2 4.33 21.8 5.77 40.6 17.0 367 36.4 15.5 8.28 19.4 4.16 17.1 5.54 35.2 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 60 BEAM AND GIRDER DESIGN W 6–5–4 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation W6 25 2 3 4 5 6 7 79 68 58 8 9 10 11 12 13 14 20 W6 15* 16 W5 12 9 63 54 46 54 46 38 33 63 63 51 42 36 54 45 36 30 26 39 34 27 22 19 51 45 41 37 34 31 40 36 32 29 27 25 29 26 23 21 19 18 32 28 25 23 21 19 22 20 18 16 15 14 17 15 13 12 11 10 29 23 16 18 13 18.9 408 39.7 23.4 11.5 37.4 10.4 33.0 13.8 60.8 14.9 322 31.3 17.5 9.36 24.5 7.13 21.6 9.51 48.0 19 W4 16 13 54 50 42 36 47 41 35 30 45 45 34 27 23 19 31 28 25 23 21 26 23 21 19 17 17 15 14 11.6 251 27.0 19.7 9.72 28.2 8.16 25.4 10.9 51.3 9.59 207 23.4 16.2 8.64 21.6 7.04 19.2 9.38 44.3 6.28 136 22.6 17.3 10.1 26.6 14.0 22.7 18.7 50.1 9.6 Span (ft) Fy = 36 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 10.8 230 26.8 12.9 8.28 17.2 7.17 14.3 9.56 39.8 11.7 253 31.7 17.5 9.36 25.8 6.34 23.2 8.46 48.0 8.30 179 27.0 12.9 8.28 17.9 6.62 15.2 8.82 39.8 6.23 135 19.5 8.61 6.12 9.95 3.56 8.55 4.74 24.0 *Indicates noncompact shape. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 61 BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported S 24–20 For beams laterally unsupported, see page 4-113 Designation Wt./ft S 24 121 12 13 14 15 16 17 90 S 20 80 96 S 20 86 75 66 521 494 439 395 359 494 472 413 367 330 300 393 378 336 302 275 591 548 695 648 576 518 471 583 533 480 436 467 441 401 551 508 472 441 413 389 502 464 430 402 377 354 432 399 370 346 324 305 400 369 343 320 300 282 367 339 315 294 275 259 356 329 305 285 267 252 329 304 282 264 247 233 275 254 236 220 207 194 252 233 216 202 189 178 18 19 20 21 22 23 367 348 330 315 300 287 335 317 301 287 274 262 288 273 259 247 236 225 266 252 240 228 218 208 245 232 220 210 200 192 238 225 214 204 194 186 220 208 198 188 180 172 184 174 165 157 150 144 168 159 151 144 137 131 24 25 26 27 28 29 275 264 254 245 236 228 251 241 232 223 215 208 216 207 199 192 185 179 200 192 184 178 171 165 184 176 169 163 157 152 178 171 164 158 153 147 165 158 152 146 141 136 138 132 127 122 118 114 126 121 116 112 108 104 30 32 34 36 38 40 220 207 194 184 174 165 201 188 177 167 159 151 173 162 152 144 136 130 160 150 141 133 126 120 147 138 130 122 116 110 143 134 126 119 113 107 132 124 116 110 104 99 110 103 97 92 87 83 101 95 89 84 80 76 42 44 46 48 50 52 157 150 144 138 132 127 143 137 131 126 121 116 123 118 113 108 104 100 114 109 104 100 96 92 105 100 96 92 88 85 102 97 93 89 86 94 90 86 82 79 79 75 72 69 66 72 69 66 63 60 54 56 58 60 122 118 114 110 112 108 104 100 96 93 89 86 89 86 83 80 82 79 76 73 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 306 6610 381 144 28.8 229 17.6 200 23.5 238 279 6030 295 112 22.3 156 8.19 143 10.9 183 183 3950 260 104 23.8 157 14.1 138 18.8 181 153 3300 247 92.9 22.9 138 14.8 118 19.7 167 140 3020 196 73.9 18.2 97.9 7.44 88.0 9.91 122 Span (ft) 762 734 661 601 100 631 611 535 475 428 389 Fy = 36 ksi 6 7 8 9 10 11 S 24 106 Properties and Reaction Values 240 5180 348 117 26.8 184 18.2 154 24.2 205 222 4800 292 98.4 22.5 141 10.7 124 14.3 172 204 4410 233 78.8 18.0 101 5.50 92.1 7.33 119 198 4280 316 126 28.8 210 25.2 176 33.6 220 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 62 BEAM AND GIRDER DESIGN S 18–15–12–10 BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft S 18 70 3 4 5 6 7 8 498 450 386 338 9 10 11 12 13 14 S 15 54.7 50 S 12 42.9 50 S 12 40.8 35 S 10 31.8 35 25.4 121 102 88 77 240 214 187 321 264 220 189 165 216 191 164 143 200 194 161 138 121 163 151 130 113 231 191 153 127 109 96 185 167 151 139 128 119 166 150 136 125 115 107 147 132 120 110 102 94 127 115 104 96 88 82 108 97 88 81 74 69 101 91 82 76 70 65 85 76 70 64 59 55 68 61 56 51 47 44 151 142 133 126 119 113 111 104 98 93 88 83 100 94 88 83 79 75 88 83 78 73 70 66 76 72 67 64 60 57 65 60 57 54 51 48 60 57 53 50 48 45 51 48 45 42 40 38 41 38 36 34 32 31 129 123 117 113 108 104 108 103 99 95 91 87 79 76 72 69 67 64 71 68 65 62 60 58 63 60 57 55 53 51 55 52 50 48 46 44 46 44 42 40 39 37 43 41 39 38 36 35 36 35 33 32 31 29 28 27 26 25 27 28 29 30 31 32 100 96 93 90 87 84 84 81 78 76 73 71 62 59 57 56 54 52 55 53 52 50 48 47 49 47 46 44 42 41 40 38 36 35 33 32 34 32 31 30 33 34 35 36 37 38 82 79 77 75 73 71 69 67 65 63 61 60 50 49 48 46 45 45 44 43 42 40 40 42 44 68 64 61 57 54 52 125 2700 249 96.0 25.6 152 26.5 121 35.4 179 105 2270 161 62.2 16.6 79.6 7.23 70.9 9.64 103 44.8 968 99.8 45.7 15.4 63.2 11.0 54.4 14.7 95.8 42.0 907 81.6 37.4 12.6 46.7 6.03 41.9 8.04 68.0 35.4 765 115 60.1 21.4 98.2 39.2 72.0 52.2 130 28.4 613 60.5 31.5 11.2 37.2 5.62 33.4 7.50 57.8 323 284 321 278 238 208 300 270 245 225 208 193 252 227 206 189 174 162 15 16 17 18 19 20 180 169 159 150 142 135 21 22 23 24 25 26 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 77.1 1670 160 68.1 19.8 98.4 16.4 82.1 21.8 132 69.3 1500 120 50.9 14.8 63.6 6.83 56.8 9.11 86.4 61.2 1320 160 88.9 24.7 141 37.6 111 50.2 169 53.1 1150 108 59.8 16.6 78.0 11.4 68.8 15.3 114 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 63 BEAMS S 8–6–5–4–3 S Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-113 Designation Wt./ft S8 23 1 2 3 4 5 6 137 104 83 69 7 8 9 10 11 12 S6 18.4 17.25 S5 12.5 10 42 41 31 24 20 60 52 46 42 38 35 51 45 40 36 32 30 33 29 25 23 21 19 26 23 20 18 17 15 17 15 14 12 11 10 13 32 27 18 14 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 19.3 417 68.6 39.7 15.9 58.5 23.1 46.2 30.8 91.3 16.5 356 42.1 24.4 9.76 28.2 5.36 25.3 7.15 48.5 S3 7.7 7.5 5.7 41 25 17 13 10 8.50 20 14 11 8.42 7.02 51 44 29 22 17 15 30 25 19 15 13 12 11 9.70 8.73 11 9.48 8.42 7.58 7.28 6.02 3.51 75.8 15.0 13.0 6.95 14.0 5.63 12.5 7.51 35.6 2.36 51.0 20.4 21.6 12.6 32.2 50.0 22.2 66.7 62.4 1.95 42.1 9.91 10.5 6.12 10.9 5.78 9.78 7.71 30.4 Span (ft) 54 46 37 30 Fy = 36 ksi 84 71 59 108 76 57 46 38 S4 9.5 Properties and Reaction Values 10.6 229 54.2 36.6 16.7 58.1 42.9 41.0 57.1 91.0 8.47 183 27.1 18.3 8.35 20.5 5.32 18.4 7.10 41.4 5.67 122 20.8 15.6 7.70 17.3 5.52 15.5 7.36 39.4 4.04 87.3 25.3 22.0 11.7 30.8 27.1 23.6 36.2 60.1 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 64 BEAM AND GIRDER DESIGN MC,C 18–15 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation MC 18 Span (ft) Fy = 36 ksi Wt./ft 58 51.9 C 15 45.8 42.7 50 40 33.9 303 247 206 177 154 233 218 181 156 136 3 4 5 6 7 8 490 409 341 292 255 420 374 311 267 234 350 339 282 242 212 315 268 230 201 418 368 295 246 210 184 9 10 11 12 13 14 227 204 186 170 157 146 208 187 170 156 144 133 188 169 154 141 130 121 179 161 146 134 124 115 164 147 134 123 113 105 137 124 112 103 95 88 121 109 99 91 84 78 15 16 17 18 19 20 136 128 120 114 108 102 125 117 110 104 98 93 113 106 100 94 89 85 107 100 95 89 85 80 98 92 87 82 78 74 82 77 73 69 65 62 73 68 64 60 57 54 21 22 23 24 25 26 97 93 89 85 82 79 89 85 81 78 75 72 81 77 74 71 68 65 77 73 70 67 64 62 70 67 64 61 59 57 59 56 54 51 49 48 52 49 47 45 44 42 28 30 32 34 36 38 73 68 64 60 57 54 67 62 58 55 52 49 60 56 53 50 47 45 57 54 50 47 45 42 53 49 46 43 41 44 41 39 36 34 39 36 34 32 30 40 42 44 51 49 46 47 44 42 42 40 38 40 38 37 68.2 1470 209 92.6 25.8 149 34.6 115 46.1 176 57.2 1240 152 67.3 18.7 92.5 13.2 79.3 17.7 128 50.4 1090 117 51.8 14.4 62.4 6.03 56.4 8.03 82.5 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 94.6 2040 245 86.6 25.2 142 28.0 108 37.3 169 86.5 1870 210 74.3 21.6 112 17.6 91.3 23.5 144 78.4 1690 175 61.9 18.0 85.5 10.2 73.3 13.6 119 74.4 1610 157 55.7 16.2 73.0 7.44 64.1 9.91 97.2 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 65 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported MC 13 For beams laterally unsupported, see page 4-113 Designation MC 13 Span (ft) Fy = 36 ksi Wt./ft 50 40 35 31.8 3 4 5 6 7 8 398 327 261 218 187 163 283 275 220 183 157 137 226 200 166 143 125 190 186 155 133 116 9 10 11 12 13 14 145 131 119 109 101 93 122 110 100 92 85 79 111 100 91 83 77 71 103 93 85 78 72 66 15 16 17 18 19 20 87 82 77 73 69 65 73 69 65 61 58 55 67 62 59 55 53 50 62 58 55 52 49 47 21 22 23 24 25 26 62 59 57 54 52 50 52 50 48 46 44 42 48 45 43 42 40 38 44 42 40 39 37 36 27 28 29 30 31 32 48 47 45 44 42 41 41 39 38 37 35 34 37 36 34 33 32 31 34 33 32 31 30 29 46.2 998 113 55.3 16.1 71.4 10.3 62.5 13.8 107 43.1 931 94.8 46.4 13.5 54.9 6.10 49.6 8.14 76.0 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 60.5 1310 199 97.4 28.3 167 56.4 118 75.2 189 50.9 1100 142 69.3 20.2 100 20.3 82.5 27.1 135 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 66 BEAM AND GIRDER DESIGN C, MC 12 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation Wt./ft C 12 30 25 MC 12 20.7 50 45 40 MC 12 35 31 10.6 181 158 126 105 90 132 110 91 78 390 303 242 202 173 332 279 223 186 160 275 255 204 170 146 218 185 154 132 173 170 141 121 8 9 10 11 12 13 91 81 73 66 60 56 79 70 63 57 53 49 69 61 55 50 46 42 151 135 121 110 101 93 140 124 112 102 93 86 128 114 102 93 85 79 116 103 92 84 77 71 106 94 85 77 71 65 31 28 25 23 21 19 14 15 16 17 18 19 52 48 45 43 40 38 45 42 39 37 35 33 39 37 34 32 30 29 87 81 76 71 67 64 80 74 70 66 62 59 73 68 64 60 57 54 66 62 58 54 51 49 61 57 53 50 47 45 18 17 16 15 14 13 20 21 22 23 24 25 36 35 33 32 30 29 32 30 29 27 26 25 27 26 25 24 23 22 61 58 55 53 50 48 56 53 51 49 47 45 51 49 46 44 43 41 46 44 42 40 39 37 42 40 39 37 35 34 13 12 11 11 10 10 26 27 28 29 30 28 27 26 25 24 24 23 23 22 21 21 20 20 19 18 47 45 43 42 40 43 41 40 39 37 39 38 36 35 34 36 34 33 32 31 33 31 30 29 28 9.64 9.28 8.95 8.64 8.35 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 33.6 726 119 51.6 18.4 78.9 20.3 62.7 27.0 111 29.2 631 90.3 39.2 13.9 52.1 8.85 45.1 11.8 83.4 47.3 1020 138 69.7 21.2 116 22.4 98.1 29.9 139 42.8 924 109 55.2 16.8 81.7 11.1 72.8 14.8 110 39.3 849 86.3 43.7 13.3 57.6 5.54 53.2 7.38 77.2 11.6 251 44.3 11.8 6.84 14.1 1.70 12.7 2.26 20.1 Span (ft) 238 181 145 121 104 89 84 63 50 42 36 Fy = 36 ksi 2 3 4 5 6 7 Properties and Reaction Values 25.4 549 65.8 28.6 10.2 32.4 3.42 29.7 4.57 44.5 56.1 1210 195 98.6 30.1 195 63.6 144 84.8 196 51.7 1120 166 84.1 25.6 154 39.4 122 52.6 167 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 67 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C, MC 10 For beams laterally unsupported, see page 4-113 Designation Span (ft) Fy = 36 ksi Wt./ft C 10 MC 10 30 25 20 2 3 4 5 6 7 262 192 144 115 96 82 205 166 124 99 83 71 8 9 10 11 12 13 72 64 57 52 48 44 14 15 16 17 18 19 20 21 22 23 24 33.6 MC 10 28.5 25 MC 10 15.3 41.1 22 147 139 104 83 69 60 93 85 68 57 49 309 280 210 168 140 120 224 180 144 120 103 165 160 128 107 91 148 139 111 93 80 113 102 85 73 66 57 42 34 28 24 8.4 62 55 50 45 41 38 52 46 42 38 35 32 43 38 34 31 28 26 105 93 84 76 70 65 90 80 72 66 60 55 80 71 64 58 53 49 70 62 56 51 46 43 64 57 51 46 42 39 21 19 17 15 14 13 41 38 36 34 32 30 35 33 31 29 28 26 30 28 26 25 23 22 24 23 21 20 19 18 60 56 53 49 47 44 52 48 45 42 40 38 46 43 40 38 36 34 40 37 35 33 31 29 36 34 32 30 28 27 12 11 11 10 9.4 8.9 29 27 26 25 24 25 24 23 22 21 21 20 19 18 17 17 16 16 15 14 42 40 38 37 35 36 34 33 31 30 32 30 29 28 27 28 27 25 24 23 25 24 23 22 21 8.5 8.1 7.7 7.4 7.1 26.6 575 131 60.6 24.2 112 64.2 68.8 85.6 139 23.0 497 102 47.3 18.9 77.1 30.6 56.7 40.9 109 29.6 639 82.6 47.8 15.3 64.3 12.3 56.1 16.3 97.5 25.8 557 73.9 42.8 13.7 54.4 8.76 48.5 11.7 86.5 23.6 510 56.4 32.6 10.4 36.2 3.89 33.6 5.19 50.5 7.86 170 33.0 10.5 6.12 11.3 1.61 10.3 2.15 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 19.3 417 73.7 34.1 13.6 47.1 11.5 39.5 15.3 78.5 15.8 341 46.7 21.6 8.64 23.8 2.91 21.8 3.88 34.4 38.9 840 155 89.6 28.7 165 80.5 111 107 183 33.4 721 112 64.7 20.7 101 30.4 80.9 40.5 132 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 17.3 4 - 68 BEAM AND GIRDER DESIGN C, MC 9 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation C9 Span (ft) Fy = 36 ksi Wt./ft MC 9 20 15 13.4 25.4 23.9 2 3 4 5 6 7 157 121 91 73 60 52 100 97 73 58 49 42 82 68 54 45 39 157 125 100 84 72 140 120 96 80 69 8 9 10 11 12 13 45 40 36 33 30 28 36 32 29 27 24 22 34 30 27 25 23 21 63 56 50 46 42 39 60 53 48 44 40 37 14 15 16 17 18 19 26 24 23 21 20 19 21 19 18 17 16 15 19 18 17 16 15 14 36 33 31 29 28 26 34 32 30 28 27 25 20 21 22 18 17 16 15 14 13 14 13 12 25 24 23 24 23 22 23.2 501 78.7 48.1 16.2 68.5 16.9 58.4 22.5 101 22.2 480 70.0 42.8 14.4 57.4 11.9 50.3 15.8 89.6 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 16.8 363 78.4 37.8 16.1 59.0 22.2 45.6 29.6 90.2 13.5 292 49.9 24.0 10.3 29.9 5.72 26.5 7.62 51.3 12.5 270 40.8 19.7 8.39 22.1 3.12 20.2 4.17 33.8 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 69 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C, MC 8 For beams laterally unsupported, see page 4-113 Designation C8 Span (ft) Fy = 36 ksi Wt./ft MC 8 MC 8 MC 8 18.75 13.75 11.5 22.8 21.4 20 18.7 1 2 3 4 5 6 151 149 99 75 60 50 8.5 94 78 59 47 39 68 52 41 34 133 102 81 68 117 97 78 65 124 117 87 70 58 110 83 67 55 56 50 37 30 25 7 8 9 10 11 12 43 37 33 30 27 25 34 29 26 24 21 20 29 26 23 21 19 17 58 51 45 41 37 34 56 49 43 39 35 32 50 44 39 35 32 29 48 42 37 33 30 28 21 19 17 15 14 12 13 14 15 16 17 18 23 21 20 19 18 17 18 17 16 15 14 13 16 15 14 13 12 11 31 29 27 25 24 23 30 28 26 24 23 22 27 25 23 22 21 19 26 24 22 21 20 18 11 11 10 9.3 8.8 8.3 19 20 16 15 12 12 11 10 21 20 20 19 18 17 18 17 7.9 7.5 16.2 350 62.2 40.5 14.4 54.7 14.7 46.9 19.6 87.3, 15.4 333 54.9 35.7 12.7 45.4 10.1 40.0 13.5 77.0 6.91 149 27.8 12.1 6.44 12.9 2.12 11.8 2.82 21.0 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 13.8 298 75.7 41.1 17.5 64.9 34.0 46.8 45.3 98.1 10.9 235 47.1 25.6 10.9 31.9 8.18 27.5 10.9 61.0 9.55 206 34.2 18.6 7.92 19.7 3.13 18.0 4.18 31.6 18.8 406 66.4 45.6 15.4 61.9 17.0 52.8 22.7 95.6 18.0 389 58.3 40.1 13.5 50.9 11.5 44.8 15.4 84.0 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 70 BEAM AND GIRDER DESIGN BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C, MC 7–6 Fy = 36 ksi For beams laterally unsupported, see page 4-113 Designation C7 12.25 MC 7 9.8 22.7 C6 19.1 13 10.5 73 66 44 33 27 22 1 2 3 4 5 6 85 60 45 36 30 57 51 38 31 26 137 117 87 70 58 96 77 62 51 102 78 52 39 31 26 7 8 9 10 11 12 26 23 20 18 16 15 22 19 17 15 14 13 50 44 39 35 32 29 44 39 34 31 28 26 22 20 17 16 14 13 19 17 15 13 12 11 13 14 15 16 14 13 12 11 12 11 10 9.61 27 25 23 22 24 22 21 19 12 11 10 10 9.49 8.86 8.40 181 42.7 24.7 11.3 32.6 11.1 27.4 14.8 61.5 7.12 154 28.6 16.5 7.56 17.8 3.32 16.3 4.42 30.6 MC 6 8.2 MC 6 MC 6 18 16.3 15.1 12 47 37 28 22 18 88 83 62 50 41 87 73 55 44 37 74 70 52 42 35 72 53 40 32 27 16 14 12 11 10 9.23 35 31 28 25 23 21 31 28 24 22 20 18 30 26 23 21 19 17 23 20 18 16 14 13 8.52 7.91 7.39 19 18 17 17 16 15 16 15 14 12 11 11 11.5 248 44.2 36.2 13.6 49.2 17.5 42.2 23.4 80.6 10.2 220 43.7 35.9 13.5 48.4 17.0 41.6 22.6 79.7 9.69 209 36.9 30.2 11.4 37.5 10.2 33.4 13.6 67.2 7.38 159 36.2 22.7 11.2 32.3 12.2 27.5 16.2 58.9 Span (ft) Fy = 36 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 16.2 350 68.4 50.9 18.1 77.2 33.4 61.6 44.5 110 14.3 309 47.9 35.6 12.7 45.2 11.4 39.8 15.3 76.8 7.26 157 51.0 32.0 15.7 51.8 37.2 36.9 49.6 83.1 6.15 133 36.6 23.0 11.3 31.5 13.8 26.0 18.4 59.7 5.13 111 23.3 14.6 7.20 16.0 3.57 14.6 4.76 30.1 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 36 ksi 4 - 71 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C 5–4–3 For beams laterally unsupported, see page 4-113 Designation C5 Wt./ft 9 1 2 3 4 5 6 C3 7.25 5.4 6 5 4.1 63 47 31 24 19 16 37 25 19 15 13 50 30 20 15 12 10 29 24 16 12 9.8 8.1 37 19 12 9.3 7.4 6.2 30 16 11 8.1 6.5 5.4 20 14 9.4 7.0 5.6 4.7 13 12 10 9.4 8.6 7.9 11 9.5 8.4 7.6 6.9 6.3 7.0 6.1 5.4 4.9 5.3 4.6 4.0 1.72 37.2 20.8 22.0 12.8 34.0 50.6 23.8 67.4 63.7 1.50 32.4 15.0 16.0 9.29 21.0 19.2 17.1 25.7 46.1 1.30 28.1 9.91 10.5 6.12 11.2 5.51 10.1 7.34 30.4 8.7 7.6 6.7 6.1 Span (ft) Fy = 36 ksi 7 8 9 10 11 12 C4 6.7 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 4.36 94.2 31.6 21.9 11.7 32.1 19.7 25.5 26.3 60.0 3.51 75.8 18.5 12.8 6.84 14.3 3.94 13.0 5.25 30.1 2.81 60.7 25.0 19.9 11.6 30.3 25.6 23.4 34.2 57.4 2.26 48.8 14.3 11.4 6.62 13.1 4.83 11.9 6.44 32.8 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 72 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 44 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation W 44 Span (ft) Fy = 50 ksi Wt./ft 335 290 262 230 20 21 22 23 24 25 2420 2310 2210 2110 2030 1940 2050 2030 1940 1850 1780 1700 1850 1810 1730 1660 1590 1520 1650 1570 1500 1430 1380 1320 26 27 28 29 30 31 1870 1800 1740 1680 1620 1570 1640 1580 1520 1470 1420 1370 1470 1410 1360 1310 1270 1230 1270 1220 1180 1140 1100 1060 32 33 34 35 36 38 1520 1470 1430 1390 1350 1280 1330 1290 1250 1220 1180 1120 1190 1150 1120 1090 1060 1000 1030 1000 971 943 917 868 40 42 44 46 48 50 1220 1160 1100 1060 1010 972 1070 1010 968 926 888 852 953 907 866 828 794 762 825 786 750 717 688 660 52 54 56 58 60 62 935 900 868 838 810 784 819 789 761 734 710 687 733 706 680 657 635 615 635 611 589 569 550 532 64 66 68 70 72 759 736 715 694 675 666 645 626 609 592 595 577 560 544 529 516 500 485 471 458 1270 38100 924 216 39.5 302 8.67 277 11.6 330 1100 33000 823 178 35.5 238 7.40 217 9.86 262 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1620 48600 1212 327 51.0 494 14.7 451 19.6 492 1420 42600 1025 258 43.5 368 10.3 338 13.8 400 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 73 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 40 For beams laterally unsupported, see page 4-139 Designation Wt./ft W 40 431 372 321 297 277 249 199 174* 1360 1300 1340 1330 1250 1180 1120 1070 1370 1310 1260 1200 1160 1110 1240 1180 1130 1090 1040 1000 1010 969 927 888 852 820 1240 1200 1160 1120 1080 1050 1070 1030 996 963 932 903 964 930 898 868 840 814 789 761 735 710 687 666 1140 1100 1070 1040 987 938 1020 988 960 933 884 840 875 850 825 803 760 722 789 766 744 723 685 651 646 627 609 592 561 533 950 907 867 831 798 767 893 852 815 781 750 721 800 764 730 700 672 646 688 657 628 602 578 556 620 592 566 543 521 501 507 484 463 444 426 410 789 761 734 710 687 666 739 713 688 665 644 623 694 670 647 625 605 586 622 600 579 560 542 525 535 516 498 482 466 451 482 465 449 434 420 407 395 381 367 355 344 333 645 626 609 592 605 587 570 554 568 551 536 521 509 494 480 467 438 425 413 401 395 383 372 362 323 313 304 296 1120 33600 797 264 37.5 279 8.16 258 10.9 306 963 28900 684 213 32.5 209 6.25 193 8.33 229 868 26000 679 198 32.5 195 7.21 176 9.62 218 715 21300 670 163 32.5 172 9.37 148 12.5 203 2550 2510 2160 2130 2000 2000 21 22 23 24 25 26 2790 2660 2540 2440 2340 2250 2390 2280 2180 2090 2000 1930 2030 1940 1850 1780 1700 1640 1900 1810 1730 1660 1600 1530 1780 1700 1630 1560 1500 1440 1590 1530 1460 1400 1340 1290 27 28 29 30 31 32 2170 2090 2020 1950 1890 1830 1860 1790 1730 1670 1620 1570 1580 1520 1470 1420 1370 1330 1480 1430 1380 1330 1290 1250 1390 1340 1290 1250 1210 1170 33 34 35 36 38 40 1770 1720 1670 1630 1540 1460 1520 1470 1430 1390 1320 1250 1290 1250 1220 1180 1120 1070 1210 1170 1140 1110 1050 998 42 44 46 48 50 52 1390 1330 1270 1220 1170 1130 1190 1140 1090 1040 1000 963 1010 968 926 888 852 819 54 56 58 60 62 64 1080 1040 1010 975 944 914 928 895 864 835 808 783 66 68 70 72 886 860 836 813 759 737 716 696 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1950 58500 1493 597 67.0 859 26.7 786 35.6 814 1670 50100 1273 471 58.0 645 20.3 590 27.0 660 Span (ft) 2990 2930 Fy = 50 ksi 15 16 17 18 19 20 215 Properties and Reaction Values 1420 42600 1082 367 50.0 480 15.3 439 20.3 529 1330 39900 1000 356 46.5 415 13.2 380 17.7 458 1250 37500 889 311 41.5 342 9.90 316 13.2 374 *Noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 74 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 40 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 40 331 278 264 235 211 167 149 1370 1300 1350 1300 1220 1150 1300 1280 1190 1120 1050 995 1430 1360 1290 1230 1180 1130 1230 1170 1120 1070 1020 976 1090 1040 989 944 903 865 943 896 853 814 779 746 1210 1170 1120 1080 1040 1010 1090 1040 1010 970 936 905 937 901 868 837 808 781 830 798 769 741 716 692 716 689 663 640 618 597 1090 1060 1030 997 969 942 977 947 918 891 866 842 876 848 823 799 776 754 756 732 710 689 669 651 670 649 629 611 593 577 578 560 543 527 512 498 939 893 850 811 776 744 892 848 807 770 737 706 797 758 721 689 659 631 714 679 646 617 590 566 617 586 558 533 509 488 546 519 494 472 451 433 471 448 426 407 389 373 858 825 794 766 740 715 714 687 661 638 616 595 678 652 628 605 584 565 606 583 561 541 522 505 543 522 503 485 468 453 469 451 434 418 404 391 415 399 384 371 358 346 358 344 332 320 309 299 692 670 650 631 613 596 576 558 541 525 510 496 547 530 514 499 484 471 489 473 459 446 433 421 438 424 411 399 388 377 378 366 355 345 335 325 335 324 315 305 297 288 289 280 271 263 256 249 781 23400 684 213 32.5 209 6.25 193 8.33 229 692 20800 677 198 32.5 191 7.51 172 10.0 216 597 17900 650 177 31.5 164 8.53 143 11.4 192 13 14 15 16 17 18 2690 2680 2520 2380 2210 2100 1980 2070 1990 1880 1780 1680 1590 1510 19 20 21 22 23 24 2260 2150 2040 1950 1870 1790 1880 1790 1700 1620 1550 1490 1780 1700 1610 1540 1470 1410 1590 1520 1440 1380 1320 1260 25 26 27 28 29 30 1720 1650 1590 1530 1480 1430 1430 1370 1320 1280 1230 1190 1360 1300 1260 1210 1170 1130 31 32 33 34 35 36 1380 1340 1300 1260 1230 1190 1150 1120 1080 1050 1020 992 38 40 42 44 46 48 1130 1070 1020 975 933 894 50 52 54 56 58 60 62 64 66 68 70 72 183 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1430 42900 1344 505 61.0 709 22.6 648 30.1 703 1190 35700 1106 383 51.0 500 15.8 458 21.1 548 1130 33900 1037 353 48.0 446 13.8 409 18.4 491 1010 30300 889 285 41.5 342 9.90 316 13.2 374 905 27200 797 246 37.5 279 8.19 257 10.9 305 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 75 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 36 For beams laterally unsupported, see page 4-139 Designation W 36 Span (ft) Fy = 50 ksi Wt./ft 300 280 260 245 230 1560 1520 1440 1380 1320 1260 1470 1410 1350 1290 1230 1180 19 20 21 22 23 24 1870 1800 1720 1640 1580 1750 1670 1600 1530 1460 1640 1620 1540 1470 1410 1350 25 26 27 28 29 30 1510 1450 1400 1350 1300 1260 1400 1350 1300 1250 1210 1170 1300 1250 1200 1160 1120 1080 1210 1170 1120 1080 1040 1010 1130 1090 1050 1010 976 943 31 32 33 34 35 36 1220 1180 1150 1110 1080 1050 1130 1100 1060 1030 1000 975 1050 1010 982 953 926 900 977 947 918 891 866 842 913 884 857 832 808 786 38 40 42 44 46 48 995 945 900 859 822 788 924 878 836 798 763 731 853 810 771 736 704 675 797 758 721 689 659 631 744 707 674 643 615 589 50 52 54 56 58 60 756 727 700 675 652 630 702 675 650 627 605 585 648 623 600 579 559 540 606 583 561 541 522 505 566 544 524 505 488 472 62 64 66 68 70 72 610 591 573 556 540 525 566 548 532 516 501 488 523 506 491 476 463 450 489 473 459 446 433 421 456 442 429 416 404 393 1010 30300 779 250 40.0 300 11.4 272 15.2 337 943 28300 737 226 38.0 268 10.5 243 14.0 302 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1260 37800 937 332 47.3 429 14.8 393 19.7 477 1170 35100 873 297 44.3 376 13.1 344 17.4 419 1080 32400 822 269 42.0 333 12.3 303 16.4 373 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 76 BEAM AND GIRDER DESIGN W 36 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Wt./ft W 36 256 19 20 21 22 23 24 194 182 170 160 150 135 1740 1650 1560 1640 1560 1470 1390 1510 1440 1350 1280 1420 1350 1270 1200 1330 1250 1180 1110 1260 1250 1170 1100 1040 1210 1160 1090 1030 968 1640 1560 1490 1420 1360 1300 1480 1400 1340 1280 1220 1170 1320 1250 1190 1140 1090 1040 1210 1150 1100 1050 1000 959 1130 1080 1030 979 937 898 1050 1000 954 911 871 835 985 936 891 851 814 780 917 872 830 792 758 726 804 764 727 694 664 636 25 26 27 28 29 30 1250 1200 1160 1110 1080 1040 1120 1080 1040 1000 968 936 1000 961 926 893 862 833 920 885 852 822 793 767 862 828 798 769 743 718 802 771 742 716 691 668 749 720 693 669 646 624 697 670 646 623 601 581 611 587 566 545 527 509 31 32 33 34 35 36 1010 975 945 918 891 867 906 878 851 826 802 780 806 781 757 735 714 694 742 719 697 677 657 639 695 673 653 634 615 598 646 626 607 589 573 557 604 585 567 551 535 520 562 545 528 513 498 484 493 477 463 449 436 424 38 40 42 44 46 48 821 780 743 709 678 650 739 702 669 638 610 585 658 625 595 568 543 521 606 575 548 523 500 479 567 539 513 490 468 449 527 501 477 455 436 418 493 468 446 425 407 390 459 436 415 396 379 363 402 382 364 347 332 318 50 52 54 56 58 60 624 600 578 557 538 520 562 540 520 501 484 468 500 481 463 446 431 417 460 443 426 411 397 384 431 414 399 385 371 359 401 385 371 358 346 334 374 360 347 334 323 312 349 335 323 311 301 291 305 294 283 273 263 255 62 64 66 68 70 72 503 488 473 459 446 433 453 439 425 413 401 390 403 390 379 368 357 347 371 360 349 338 329 320 347 337 326 317 308 299 323 313 304 295 286 278 302 293 284 275 267 260 281 272 264 256 249 242 246 239 231 225 218 212 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 1040 31200 970 315 48.0 446 14.8 409 19.7 471 936 28100 872 272 43.5 367 12.2 336 16.3 406 668 20000 664 170 34.0 212 8.55 191 11.4 240 624 18700 632 157 32.5 191 8.09 171 10.8 217 581 17400 605 146 31.3 173 7.84 154 10.5 198 509 15300 576 127 30.0 149 8.32 129 11.1 176 Span (ft) 1940 1840 1730 210 1150 1090 1020 954 898 848 Fy = 50 ksi 13 14 15 16 17 18 232 Properties and Reaction Values 833 25000 822 240 41.5 318 12.4 288 16.5 358 767 23000 754 209 38.3 271 10.5 245 14.0 305 718 21500 711 193 36.3 242 9.62 219 12.8 273 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 77 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 33 For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 33 241 221 W 33 201 169 152 141 130 118 1050 986 932 883 839 799 964 907 857 812 771 734 876 824 778 737 701 667 778 732 692 655 623 593 16 17 18 19 20 21 1530 1480 1410 1340 1420 1350 1280 1220 1300 1290 1220 1160 1100 1180 1110 1050 993 944 899 22 23 24 25 26 27 1280 1220 1170 1130 1080 1040 1170 1120 1070 1030 987 950 1050 1010 965 926 891 858 858 820 786 755 726 699 762 729 699 671 645 621 701 670 643 617 593 571 637 609 584 560 539 519 566 541 519 498 479 461 28 29 30 31 32 33 1010 971 939 909 880 854 916 884 855 827 802 777 827 799 772 747 724 702 674 651 629 609 590 572 599 578 559 541 524 508 551 532 514 497 482 467 500 483 467 452 438 425 445 429 415 402 389 377 34 35 36 37 38 40 829 805 783 761 741 704 754 733 713 693 675 641 681 662 643 626 609 579 555 539 524 510 497 472 493 479 466 453 441 419 454 441 428 417 406 386 412 400 389 379 369 350 366 356 346 336 328 311 42 44 46 48 50 52 671 640 612 587 563 542 611 583 558 534 513 493 551 526 503 483 463 445 449 429 410 393 377 363 399 381 365 349 335 323 367 350 335 321 308 297 334 318 305 292 280 269 296 283 271 259 249 239 54 56 58 60 62 64 522 503 486 470 454 440 475 458 442 428 414 401 429 414 399 386 374 362 349 337 325 315 304 295 311 299 289 280 270 262 286 275 266 257 249 241 259 250 242 234 226 219 231 222 215 208 201 195 66 68 70 72 427 414 402 391 389 377 366 356 351 341 331 322 286 278 270 262 254 247 240 233 234 227 220 214 212 206 200 195 189 183 178 173 514 15400 544 132 30.3 166 7.49 150 9.99 191 467 14000 518 122 29.0 147 7.46 131 9.95 172 415 12500 488 107 27.5 127 7.40 110 9.87 151 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 939 28200 766 227 41.5 323 12.9 293 17.2 362 855 25700 710 200 38.8 278 11.6 251 15.5 316 772 23200 650 173 35.8 234 10.2 211 13.6 267 629 18900 612 173 33.5 218 7.89 201 10.5 244 559 16800 574 149 31.8 187 7.84 170 10.5 213 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 78 BEAM AND GIRDER DESIGN W 30 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation W 30 Span (ft) Fy = 50 ksi Wt./ft 261 235 191 173 1290 1250 1180 1120 1070 1180 1120 1060 1010 961 1080 1070 1010 955 908 864 1150 1100 1060 1010 975 939 1020 977 936 899 864 832 918 878 841 808 777 748 825 789 756 726 698 672 1010 973 941 911 882 855 905 874 845 818 792 768 803 775 749 725 702 681 721 696 673 651 631 612 648 626 605 585 567 550 34 36 38 40 42 44 830 784 743 706 672 642 746 704 667 634 604 576 661 624 591 562 535 511 594 561 531 505 481 459 534 504 478 454 432 413 46 48 50 52 54 56 614 588 565 543 523 504 551 528 507 488 469 453 488 468 449 432 416 401 439 421 404 388 374 361 395 378 363 349 336 324 58 60 62 64 66 68 487 471 455 441 428 415 437 423 409 396 384 373 387 375 362 351 340 330 348 337 326 315 306 297 313 303 293 284 275 267 70 72 403 392 362 352 321 312 288 280 259 252 673 20200 588 172 35.5 235 10.7 213 14.2 269 605 18200 538 154 32.8 197 9.38 178 12.5 228 16 17 18 19 20 21 1590 1570 1490 1410 1340 1400 1330 1270 1210 22 23 24 25 26 27 1280 1230 1180 1130 1090 1050 28 29 30 31 32 33 211 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 941 28200 794 283 46.5 415 16.7 380 22.2 434 845 25400 701 233 41.5 334 13.2 306 17.6 368 749 22500 647 206 38.8 282 12.4 257 16.5 322 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 79 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 30 For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 30 148 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 1080 1070 1000 938 882 833 789 750 714 682 652 625 600 577 556 536 517 500 484 469 455 441 417 395 375 357 341 326 313 300 288 278 268 259 250 242 234 227 221 214 208 132 1010 936 874 819 771 728 690 656 624 596 570 546 524 504 486 468 452 437 423 410 397 386 364 345 328 312 298 285 273 262 252 243 234 226 219 211 205 199 193 187 182 124 953 942 874 816 765 720 680 644 612 583 556 532 510 490 471 453 437 422 408 395 383 371 360 340 322 306 291 278 266 255 245 235 227 219 211 204 197 191 185 180 175 170 116 108 99 90 916 872 810 756 709 667 630 597 567 540 515 493 473 454 436 420 405 391 378 366 354 344 334 315 298 284 270 258 247 236 227 218 210 203 196 189 183 177 172 167 162 158 878 865 798 741 692 649 611 577 546 519 494 472 451 433 415 399 384 371 358 346 335 324 315 305 288 273 260 247 236 226 216 208 200 192 185 179 173 167 162 157 153 148 144 833 780 720 669 624 585 551 520 493 468 446 425 407 390 374 360 347 334 323 312 302 293 284 275 260 246 234 223 213 203 195 187 180 173 167 161 156 151 146 142 138 134 130 749 708 653 606 566 531 499 472 447 425 404 386 369 354 340 327 314 303 293 283 274 265 257 250 236 223 212 202 193 185 177 170 163 157 152 146 142 137 133 129 125 121 118 346 10400 439 106 27.3 126 7.73 111 10.3 152 312 9360 416 93.4 26.0 111 7.66 95.6 10.2 136 283 8490 375 77.1 23.5 90.8 6.24 78.5 8.31 111 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 500 15000 538 163 32.5 205 8.21 189 10.9 232 437 13100 503 135 30.8 174 8.30 157 11.1 201 408 12200 477 123 29.2 156 7.72 140 10.3 181 378 11300 458 115 28.3 141 7.65 126 10.2 166 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 80 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 27 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 27 258 235 194 178 161 146 1270 1250 1180 1120 1060 1140 1110 1050 992 942 1090 1060 1000 945 895 851 983 960 904 853 808 768 895 864 814 768 728 692 1100 1050 1000 961 923 887 1010 965 923 885 850 817 897 856 819 785 754 725 810 773 740 709 680 654 731 698 668 640 614 591 659 629 601 576 553 532 944 911 879 850 823 797 854 824 796 769 744 721 787 759 732 708 685 664 698 673 650 628 608 589 630 608 587 567 549 532 569 549 530 512 495 480 512 494 477 461 446 432 33 34 35 36 37 38 773 750 729 708 689 671 699 679 659 641 624 607 644 625 607 590 574 559 571 554 538 523 509 496 515 500 486 473 460 448 465 452 439 427 415 404 419 407 395 384 374 364 40 42 44 46 48 50 638 607 580 554 531 510 577 549 524 502 481 461 531 506 483 462 443 425 471 449 428 410 393 377 425 405 387 370 354 340 384 366 349 334 320 307 346 329 314 301 288 277 52 54 56 58 60 62 490 472 455 440 425 411 444 427 412 398 385 372 408 393 379 366 354 343 362 349 336 325 314 304 327 315 304 293 284 274 295 284 274 265 256 248 266 256 247 238 231 223 64 66 398 386 360 350 332 322 294 285 266 258 240 233 216 210 567 17000 544 170 36.3 243 12.5 220 16.6 283 512 15400 492 150 33.0 201 10.4 182 13.9 235 461 13800 447 128 30.3 168 8.97 151 12.0 197 15 16 17 18 19 20 1530 1500 1420 1340 1280 1410 1360 1280 1210 1150 21 22 23 24 25 26 1210 1160 1110 1060 1020 981 27 28 29 30 31 32 217 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 850 25500 767 306 49.0 465 19.9 427 26.5 466 769 23100 704 263 45.5 397 17.7 363 23.6 411 708 21200 637 227 41.5 334 14.5 306 19.3 362 628 18800 569 193 37.5 271 12.1 248 16.2 311 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 81 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 27 For beams laterally unsupported, see page 4-139 Designation W 27 Span (ft) Fy = 50 ksi Wt./ft 129 102 94 84 840 792 735 686 643 753 704 654 610 572 712 695 642 596 556 521 663 610 563 523 488 458 697 658 624 593 564 539 605 572 542 515 490 468 538 508 482 458 436 416 491 463 439 417 397 379 431 407 385 366 349 333 23 24 25 26 27 28 515 494 474 456 439 423 447 429 412 396 381 368 398 381 366 352 339 327 363 348 334 321 309 298 318 305 293 282 271 261 29 30 31 32 33 34 409 395 382 370 359 349 355 343 332 322 312 303 316 305 295 286 277 269 288 278 269 261 253 245 252 244 236 229 222 215 36 38 40 42 44 46 329 312 296 282 269 258 286 271 257 245 234 224 254 241 229 218 208 199 232 219 209 199 190 181 203 193 183 174 166 159 48 50 52 54 56 58 247 237 228 219 212 204 214 206 198 191 184 177 191 183 176 169 163 158 174 167 160 154 149 144 153 146 141 136 131 126 60 62 64 66 198 191 185 180 172 166 161 156 153 148 143 139 139 135 130 126 122 118 114 111 278 8340 356 88.0 24.5 107 6.35 95.4 8.46 127 244 7320 332 79.1 23.0 90.0 6.16 79.0 8.21 110 11 12 13 14 15 16 910 846 790 741 17 18 19 20 21 22 114 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 395 11900 455 138 30.5 180 8.08 165 10.8 206 343 10300 420 116 28.5 150 7.89 135 10.5 175 305 9150 377 101 25.8 121 6.57 110 8.76 143 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 82 BEAM AND GIRDER DESIGN W 24 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Wt./ft W 24 131 117 104 952 936 878 826 780 868 836 784 738 697 800 793 740 694 653 617 721 701 654 613 577 545 650 619 578 542 510 482 807 767 730 697 667 639 739 702 669 638 610 585 660 627 597 570 545 523 584 555 529 505 483 463 516 491 467 446 427 409 456 434 413 394 377 361 671 645 621 599 578 559 613 590 568 548 529 511 562 540 520 501 484 468 502 482 464 448 432 418 444 427 411 396 383 370 392 377 363 350 338 327 347 333 321 310 299 289 586 568 551 535 519 505 541 524 508 493 479 466 495 479 465 451 438 426 453 439 425 413 401 390 405 392 380 369 358 348 358 347 336 326 317 308 316 307 297 289 280 273 280 271 263 255 248 241 534 507 483 461 441 423 478 455 433 413 395 379 441 419 399 381 365 349 403 383 365 348 333 319 369 351 334 319 305 293 330 314 299 285 273 261 292 278 264 252 241 231 258 245 234 223 213 204 228 217 206 197 188 181 50 52 54 56 58 60 406 390 376 362 350 338 364 350 337 325 313 303 335 323 311 299 289 280 307 295 284 274 264 256 281 270 260 251 242 234 251 241 232 224 216 209 222 213 206 198 191 185 196 189 182 175 169 164 173 167 161 155 149 145 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 676 20300 674 300 48.0 446 21.3 409 28.4 456 606 18200 604 258 43.5 367 17.6 336 23.5 400 370 11100 400 132 30.3 166 10.2 150 13.6 199 327 9810 360 112 27.5 136 8.73 121 11.6 164 289 8670 325 93.8 25.0 110 7.49 98.4 9.99 135 Span (ft) 146 Fy = 50 ksi 229 207 192 176 13 14 15 16 17 18 1350 1270 1190 1130 1210 1140 1070 1010 1110 1050 986 932 1020 1020 958 902 852 19 20 21 22 23 24 1070 1010 966 922 882 845 957 909 866 826 790 758 883 839 799 762 729 699 25 26 27 28 29 30 811 780 751 724 699 676 727 699 673 649 627 606 31 32 33 34 35 36 654 634 615 596 579 563 38 40 42 44 46 48 162 Properties and Reaction Values 559 16800 557 228 40.5 318 15.5 291 20.6 359 511 15300 511 199 37.5 271 13.5 248 18.0 315 468 14000 476 176 35.3 236 12.4 215 16.6 276 418 12500 434 152 32.5 197 11.0 179 14.7 233 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 83 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 24 For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 24 103 94 84 W 24 76 68 62 55 551 510 459 417 383 503 503 447 402 365 335 7 8 9 10 11 12 729 700 676 635 612 611 560 568 545 500 532 531 483 443 13 14 15 16 17 18 646 600 560 525 494 467 586 544 508 476 448 423 517 480 448 420 395 373 462 429 400 375 353 333 408 379 354 332 312 295 353 328 306 287 270 255 309 287 268 251 236 223 19 20 21 22 23 24 442 420 400 382 365 350 401 381 363 346 331 318 354 336 320 305 292 280 316 300 286 273 261 250 279 266 253 241 231 221 242 230 219 209 200 191 212 201 191 183 175 168 25 26 27 28 29 30 336 323 311 300 290 280 305 293 282 272 263 254 269 258 249 240 232 224 240 231 222 214 207 200 212 204 197 190 183 177 184 177 170 164 158 153 161 155 149 144 139 134 31 32 33 34 35 36 271 263 255 247 240 233 246 238 231 224 218 212 217 210 204 198 192 187 194 188 182 176 171 167 171 166 161 156 152 148 148 143 139 135 131 128 130 126 122 118 115 112 38 40 42 44 46 48 221 210 200 191 183 175 201 191 181 173 166 159 177 168 160 153 146 140 158 150 143 136 130 125 140 133 126 121 115 111 121 115 109 104 100 96 106 101 96 91 87 84 50 52 54 56 58 60 168 162 156 150 145 140 152 147 141 136 131 127 134 129 124 120 116 112 120 115 111 107 103 106 102 98 95 92 92 88 85 82 79 80 77 74 72 69 177 5310 266 71.3 20.8 73.7 5.57 64.9 7.43 91.8 153 4590 276 73.9 21.5 78.1 6.14 68.4 8.19 98.1 134 4020 251 64.8 19.8 63.6 5.60 54.8 7.47 81.8 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 280 8400 364 120 27.5 146 7.49 133 9.98 170 254 7620 338 105 25.8 125 6.95 113 9.26 147 224 6720 306 91.8 23.5 102 6.05 92.2 8.07 122 200 6000 284 79.1 22.0 86.8 5.67 77.8 7.55 105 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 84 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 21 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 21 201 182 166 147 132 122 111 101 766 714 666 624 588 555 702 658 614 576 542 512 639 598 558 523 492 465 577 542 506 474 446 422 13 14 15 16 17 18 1130 1060 994 935 883 1020 952 893 840 793 910 864 810 762 720 858 799 746 699 658 622 19 20 21 22 23 24 837 795 757 723 691 663 752 714 680 649 621 595 682 648 617 589 563 540 589 560 533 509 487 466 526 500 476 454 434 416 485 461 439 419 400 384 441 419 399 380 364 349 399 380 361 345 330 316 25 26 27 28 29 30 636 612 589 568 548 530 571 549 529 510 492 476 518 498 480 463 447 432 448 430 414 400 386 373 400 384 370 357 344 333 368 354 341 329 318 307 335 322 310 299 289 279 304 292 281 271 262 253 31 32 33 34 35 36 513 497 482 468 454 442 461 446 433 420 408 397 418 405 393 381 370 360 361 350 339 329 320 311 322 312 303 294 285 278 297 288 279 271 263 256 270 262 254 246 239 233 245 237 230 223 217 211 38 40 42 44 46 48 418 398 379 361 346 331 376 357 340 325 310 298 341 324 309 295 282 270 294 280 266 254 243 233 263 250 238 227 217 208 242 230 219 209 200 192 220 209 199 190 182 174 200 190 181 173 165 158 50 52 318 306 286 275 259 249 224 215 200 192 184 177 167 161 152 146 307 9210 351 127 30.0 164 11.2 148 15.0 201 279 8370 319 112 27.5 138 9.56 124 12.8 169 253 7590 288 97.7 25.0 114 7.91 103 10.6 140 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 530 15900 566 270 45.5 400 21.7 366 29.0 418 476 14300 509 233 41.5 332 18.4 304 24.5 368 432 13000 455 199 37.5 273 14.9 251 19.9 321 373 11200 429 169 36.0 236 15.9 213 21.2 286 333 9990 383 147 32.5 192 13.1 173 17.5 235 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 85 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 21 For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 21 93 83 73 W 21 68 62 57 50 44 390 358 318 286 260 239 7 8 9 10 11 12 677 663 603 553 596 588 535 490 522 516 469 430 491 480 436 400 453 432 393 360 461 430 387 352 323 427 413 367 330 300 275 13 14 15 16 17 18 510 474 442 414 390 368 452 420 392 368 346 327 397 369 344 323 304 287 369 343 320 300 282 267 332 309 288 270 254 240 298 276 258 242 228 215 254 236 220 206 194 183 220 204 191 179 168 159 19 20 21 22 23 24 349 332 316 301 288 276 309 294 280 267 256 245 272 258 246 235 224 215 253 240 229 218 209 200 227 216 206 196 188 180 204 194 184 176 168 161 174 165 157 150 143 138 151 143 136 130 124 119 25 26 27 28 29 30 265 255 246 237 229 221 235 226 218 210 203 196 206 198 191 184 178 172 192 185 178 171 166 160 173 166 160 154 149 144 155 149 143 138 133 129 132 127 122 118 114 110 114 110 106 102 99 95 31 32 33 34 35 36 214 207 201 195 189 184 190 184 178 173 168 163 166 161 156 152 147 143 155 150 145 141 137 133 139 135 131 127 123 120 125 121 117 114 111 108 106 103 100 97 94 92 92 89 87 84 82 80 38 40 42 44 46 48 174 166 158 151 144 138 155 147 140 134 128 123 136 129 123 117 112 108 126 120 114 109 104 100 114 108 103 98 94 90 102 97 92 88 84 81 87 83 79 75 72 69 75 72 68 65 62 60 50 52 133 128 118 113 103 99 96 92 86 83 77 74 66 63 57 129 3870 230 69.6 20.3 74.9 5.25 67.6 7.00 92.0 110 3300 214 62.3 19.0 61.8 5.33 54.4 7.10 79.1 95.4 2860 195 52.0 17.5 50.1 4.99 43.2 6.65 66.3 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 221 6630 339 122 29.0 154 10.5 138 14.0 188 196 5880 298 101 25.8 122 8.26 110 11.0 149 172 5160 261 85.3 22.8 95.2 6.48 86.0 8.64 116 160 4800 245 77.3 21.5 84.2 5.94 75.8 7.92 103 144 4320 227 68.8 20.0 71.5 5.36 64.0 7.15 89.0 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 86 BEAM AND GIRDER DESIGN W 18 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 18 192 175 158 W 18 143 130 119 106 97 86 76 597 575 531 493 460 431 537 528 487 452 422 396 477 465 429 399 372 349 418 408 376 349 326 306 11 12 13 14 15 16 1050 1020 947 884 829 963 918 853 796 746 863 822 763 712 668 768 743 690 644 604 696 672 624 582 546 671 653 602 559 522 489 17 18 19 20 21 22 780 737 698 663 631 603 702 663 628 597 569 543 628 593 562 534 509 485 568 537 508 483 460 439 514 485 459 437 416 397 461 435 412 392 373 356 406 383 363 345 329 314 372 352 333 317 301 288 328 310 294 279 266 254 288 272 257 245 233 222 23 24 25 26 27 28 577 553 530 510 491 474 519 498 478 459 442 426 464 445 427 411 396 381 420 403 386 372 358 345 380 364 349 336 323 312 340 326 313 301 290 280 300 288 276 265 256 246 275 264 253 243 234 226 243 233 223 215 207 199 213 204 196 188 181 175 29 30 31 32 33 34 457 442 428 414 402 390 412 398 385 373 362 351 368 356 345 334 324 314 333 322 312 302 293 284 301 291 282 273 265 257 270 261 253 245 237 230 238 230 223 216 209 203 218 211 204 198 192 186 192 186 180 174 169 164 169 163 158 153 148 144 35 36 37 38 39 40 379 368 358 349 340 332 341 332 323 314 306 299 305 297 289 281 274 267 276 268 261 254 248 242 249 243 236 230 224 218 224 218 212 206 201 196 197 192 186 182 177 173 181 176 171 167 162 158 159 155 151 147 143 140 140 136 132 129 125 122 42 44 316 301 284 271 254 243 230 220 208 198 186 178 164 157 151 144 133 127 116 111 442 13300 527 293 48.0 449 26.9 412 35.8 449 398 11900 482 250 44.5 382 23.9 350 31.9 395 230 6900 298 120 29.5 158 12.6 143 16.8 199 211 6330 269 104 26.8 132 10.2 119 13.7 165 186 5580 238 86.3 24.0 105 8.45 94.9 11.3 133 163 4890 209 73.0 21.3 82.4 6.71 74.3 8.94 104 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 356 10700 431 215 40.5 315 20.2 289 27.0 347 322 9660 384 183 36.5 258 16.4 237 21.8 301 291 8730 348 157 33.5 217 14.1 199 18.8 262 261 7830 335 143 32.8 197 15.1 178 20.2 246 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 87 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 18 For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 18 71 65 6 7 8 9 10 11 494 483 435 395 446 443 399 363 12 13 14 15 16 17 363 335 311 290 272 256 18 19 20 21 22 23 60 W 18 55 50 46 40 35 409 369 335 381 373 336 305 345 337 303 275 351 340 302 272 247 304 294 261 235 214 287 285 249 222 200 181 333 307 285 266 249 235 308 284 264 246 231 217 280 258 240 224 210 198 253 233 216 202 189 178 227 209 194 181 170 160 196 181 168 157 147 138 166 153 143 133 125 117 242 229 218 207 198 189 222 210 200 190 181 173 205 194 185 176 168 160 187 177 168 160 153 146 168 159 152 144 138 132 151 143 136 130 124 118 131 124 118 112 107 102 111 105 100 95 91 87 24 25 26 27 28 29 181 174 167 161 155 150 166 160 153 148 143 138 154 148 142 137 132 127 140 134 129 124 120 116 126 121 117 112 108 104 113 109 105 101 97 94 98 94 90 87 84 81 83 80 77 74 71 69 30 31 32 33 34 35 145 140 136 132 128 124 133 129 125 121 117 114 123 119 115 112 109 105 112 108 105 102 99 96 101 98 95 92 89 87 91 88 85 82 80 78 78 76 74 71 69 67 67 64 62 60 59 57 36 38 40 42 44 121 114 109 104 99 111 105 100 95 91 103 97 92 88 84 93 88 84 80 76 84 80 76 72 69 76 72 68 65 62 65 62 59 56 53 55 53 50 48 45 90.7 2720 176 56.3 18.0 60.6 4.62 55.0 6.16 75.6 78.4 2350 152 46.8 15.8 46.2 3.60 41.9 4.80 57.9 66.5 2000 143 42.2 15.0 38.6 3.88 34.0 5.18 51.3 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 145 4350 247 92.8 24.8 113 8.77 102 11.7 142 133 3990 223 80.9 22.5 94.3 7.16 85.5 9.55 118 123 3690 204 71.3 20.8 80.4 6.10 73.0 8.13 100 112 3360 191 64.0 19.5 69.7 5.62 62.9 7.50 88.0 101 3030 172 55.5 17.8 57.6 4.72 51.9 6.29 72.9 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 88 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 16 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 16 100 89 77 6 7 8 9 10 11 536 475 406 12 13 14 15 16 17 495 457 424 396 371 349 438 404 375 350 328 309 18 19 20 21 22 23 330 313 297 283 270 258 24 25 26 27 28 29 W 16 67 57 50 45 W 16 40 36 31 26 212 189 166 147 133 121 348 382 350 315 286 334 307 276 251 301 274 247 224 264 243 219 199 253 240 213 192 175 236 231 203 180 162 147 375 346 321 300 281 265 325 300 279 260 244 229 263 242 225 210 197 185 230 212 197 184 173 162 206 190 176 165 154 145 182 168 156 146 137 129 160 148 137 128 120 113 135 125 116 108 101 95 111 102 95 88 83 78 292 276 263 250 239 228 250 237 225 214 205 196 217 205 195 186 177 170 175 166 158 150 143 137 153 145 138 131 125 120 137 130 123 118 112 107 122 115 109 104 99 95 107 101 96 91 87 83 90 85 81 77 74 70 74 70 66 63 60 58 248 238 228 220 212 205 219 210 202 194 188 181 188 180 173 167 161 155 163 156 150 144 139 134 131 126 121 117 113 109 115 110 106 102 99 95 103 99 95 91 88 85 91 87 84 81 78 75 80 77 74 71 69 66 68 65 62 60 58 56 55 53 51 49 47 46 30 31 32 33 34 35 198 192 186 180 175 170 175 169 164 159 154 150 150 145 141 136 132 129 130 126 122 118 115 111 105 102 98 95 93 90 92 89 86 84 81 79 82 80 77 75 73 71 73 71 68 66 64 62 64 62 60 58 56 55 54 52 51 49 48 46 44 43 41 40 39 38 36 38 40 165 156 149 146 138 131 125 118 113 108 103 98 88 83 79 77 73 69 69 65 62 61 58 55 53 51 45 43 37 35 198 5940 268 123 29.2 160 13.0 145 17.3 202 175 5250 237 103 26.2 128 10.7 116 14.2 163 72.9 2190 132 45.3 15.3 43.2 3.80 39.1 5.06 55.6 64.0 1920 126 41.5 14.7 37.9 4.07 33.6 5.43 51.2 54.0 1620 118 38.7 13.8 34.5 3.22 31.1 4.29 45.0 44.2 1330 106 33.2 12.5 26.5 3.12 23.2 4.16 36.7 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 150 4500 203 81.8 22.8 96.5 8.12 87.5 10.8 123 130 3900 174 67.9 19.8 73.0 6.14 66.3 8.19 93.0 105 3150 191 73.9 21.5 86.0 7.32 78.0 9.76 110 92.0 2760 167 62.3 19.0 67.1 5.80 60.8 7.73 85.9 82.3 2470 150 53.9 17.3 54.9 4.87 49.7 6.50 70.8 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 89 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 14 For beams laterally unsupported, see page 4-139 Designation Wt./ft W 14 132 120 109 W 14 99* 90* 82 74 68 61 344 344 315 291 270 252 315 314 288 265 246 230 281 278 255 235 219 204 461 454 424 406 384 371 370 345 333 329 307 16 17 18 19 20 21 439 413 390 369 351 334 398 374 353 335 318 303 360 339 320 303 288 274 323 304 287 272 259 246 288 271 256 243 230 219 261 245 232 219 209 199 236 222 210 199 189 180 216 203 192 182 173 164 191 180 170 161 153 146 22 23 24 25 26 27 319 305 293 281 270 260 289 277 265 254 245 236 262 250 240 230 222 213 235 225 216 207 199 192 210 200 192 184 177 171 190 181 174 167 160 154 172 164 158 151 145 140 157 150 144 138 133 128 139 133 128 122 118 113 28 29 30 31 32 33 251 242 234 226 219 213 227 219 212 205 199 193 206 199 192 186 180 175 185 178 172 167 162 157 165 159 154 149 144 140 149 144 139 135 130 126 135 130 126 122 118 115 123 119 115 111 108 105 109 106 102 99 96 93 34 206 187 169 152 136 123 111 101 90 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 234 7020 255 136 32.3 190 19.2 171 25.6 241 212 6360 231 120 29.5 158 16.3 143 21.8 213 126 3780 172 87.9 22.5 96.5 8.86 88.1 11.8 126 115 3450 157 77.8 20.8 81.8 7.65 74.6 10.2 108 102 3060 141 67.4 18.8 66.5 6.37 60.6 8.49 88.2 Span (ft) 511 501 468 394 379 348 321 298 278 Fy = 50 ksi 10 11 12 13 14 15 Properties and Reaction Values 192 5760 203 103 26.2 127 12.7 115 16.9 170 173 5170 185 87.1 24.3 108 11.2 97.0 14.9 145 157 4610 167 75.6 22.0 88.7 9.26 80.0 12.3 120 139 4170 197 104 25.5 121 11.7 110 15.6 161 *Noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 90 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 14 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 14 53 48 5 6 7 8 9 10 278 261 253 235 11 12 13 14 15 16 238 218 201 187 174 163 17 18 19 20 21 22 W 14 43 38 34 W 14 30 26 22 225 209 236 231 205 185 215 205 182 164 202 177 158 142 192 172 151 134 121 171 166 142 125 111 100 214 196 181 168 157 147 190 174 161 149 139 131 168 154 142 132 123 115 149 137 126 117 109 102 129 118 109 101 95 89 110 101 93 86 80 75 91 83 77 71 66 62 154 145 138 131 124 119 138 131 124 118 112 107 123 116 110 104 99 95 109 103 97 92 88 84 96 91 86 82 78 74 83 79 75 71 68 65 71 67 63 60 57 55 59 55 52 50 47 45 23 24 25 26 27 28 114 109 105 101 97 93 102 98 94 90 87 84 91 87 84 80 77 75 80 77 74 71 68 66 71 68 66 63 61 59 62 59 57 55 53 51 52 50 48 46 45 43 43 42 40 38 37 36 29 30 31 32 33 34 90 87 84 82 79 77 81 78 76 74 71 69 72 70 67 65 63 61 64 62 60 58 56 54 56 55 53 51 50 48 49 47 46 44 43 42 42 40 39 38 37 35 34 33 32 31 30 29 47.3 1420 101 31.6 13.5 31.4 4.00 27.7 5.33 45.0 40.2 1210 95.8 29.9 12.8 30.1 3.07 27.2 4.09 40.6 33.2 996 85.3 25.2 11.5 23.0 2.86 20.4 3.81 32.8 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 87.1 2610 139 66.5 18.5 65.9 5.96 60.4 7.95 86.2 78.4 2350 127 58.4 17.0 55.1 5.18 50.4 6.91 72.8 69.6 2090 112 50.0 15.3 44.2 4.24 40.4 5.65 58.7 61.5 1850 118 41.2 15.5 44.7 4.44 40.5 5.92 59.7 54.6 1640 108 35.6 14.3 37.0 3.94 33.3 5.25 50.4 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 91 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 12 For beams laterally unsupported, see page 4-139 Designation Wt./ft W 12 120 106 96 87 W 12 79 72 65* 58 53 225 212 195 180 167 156 425 410 378 351 328 377 368 339 315 294 348 330 305 283 264 314 298 275 255 238 284 270 249 231 216 255 238 220 204 191 16 17 18 19 20 21 349 328 310 294 279 266 308 289 273 259 246 234 276 259 245 232 221 210 248 233 220 208 198 189 223 210 198 188 179 170 203 191 180 171 162 154 179 168 159 151 143 136 162 152 144 136 130 123 146 137 130 123 117 111 22 23 24 25 26 27 254 243 233 223 215 207 224 214 205 197 189 182 200 192 184 176 170 163 180 172 165 158 152 147 162 155 149 143 137 132 147 141 135 130 125 120 130 124 119 114 110 106 118 113 108 104 100 96 106 102 97 93 90 87 28 29 30 199 192 186 176 170 164 158 152 147 141 137 132 128 123 119 116 112 108 102 99 95 93 89 86 83 81 78 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 186 5580 252 161 35.5 227 26.7 203 35.6 276 164 4920 212 129 30.5 171 19.2 154 25.7 228 96.8 2860 128 64.0 19.5 68.3 8.75 61.2 11.7 99.2 86.4 2590 118 61.9 18.0 62.3 6.47 57.1 8.63 85.1 77.9 2340 112 53.9 17.3 55.4 6.41 50.3 8.54 78.0 Span (ft) 503 465 429 399 372 237 236 216 199 185 173 Fy = 50 ksi 10 11 12 13 14 15 Properties and Reaction Values 147 4410 189 112 27.5 140 15.7 126 21.0 194 132 3960 174 96.6 25.8 120 14.6 108 19.4 171 119 3570 157 84.5 23.5 99.6 12.3 89.4 16.5 143 108 3240 142 73.9 21.5 83.2 10.5 74.7 14.0 120 *Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 92 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 12 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 12 50 45 4 5 6 7 8 9 244 241 218 216 10 11 12 13 14 15 217 197 181 167 155 145 16 17 18 19 20 21 W 12 40 35 30 W 12 26 22 19 16 14 154 148 124 106 93 82 142 121 101 86 75 67 129 104 87 75 65 58 190 203 192 171 173 162 144 152 140 124 173 147 126 110 98 194 176 162 149 139 129 173 157 144 133 123 115 154 140 128 118 110 102 129 118 108 99 92 86 112 101 93 86 80 74 88 80 73 68 63 59 74 67 62 57 53 49 60 55 50 46 43 40 52 47 44 40 37 35 136 128 121 114 109 103 121 114 108 102 97 92 108 101 96 91 86 82 96 90 85 81 77 73 81 76 72 68 65 62 70 66 62 59 56 53 55 52 49 46 44 42 46 44 41 39 37 35 38 35 34 32 30 29 33 31 29 27 26 25 22 23 24 25 26 27 99 94 91 87 84 80 88 84 81 78 75 72 78 75 72 69 66 64 70 67 64 61 59 57 59 56 54 52 50 48 51 49 47 45 43 41 40 38 37 35 34 33 34 32 31 30 29 27 27 26 25 24 23 22 24 23 22 21 20 19 28 29 30 78 75 72 69 67 65 62 59 51 55 53 43 46 45 37 40 38 29 31 30 25 26 26 22 21 19 18 72.4 2170 122 63.6 18.5 64.9 7.02 59.2 9.37 89.7 64.7 1940 109 52.3 16.8 53.0 5.87 48.3 7.82 73.7 29.3 879 86.4 28.4 13.0 31.2 3.63 28.2 4.85 43.9 24.7 741 77.2 23.9 11.8 24.3 3.30 21.6 4.40 35.9 20.1 603 71.2 20.6 11.0 19.2 3.63 16.3 4.83 32.0 17.4 522 64.3 17.2 10.0 15.3 3.23 12.7 4.31 26.7 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 57.5 1730 95.1 46.1 14.7 41.5 4.52 37.9 6.02 57.4 51.2 1540 101 37.5 15.0 42.7 4.49 39.0 5.99 58.5 43.1 1290 86.6 30.5 13.0 31.7 3.50 28.8 4.67 44.0 37.2 1120 75.9 25.2 11.5 24.5 2.83 22.2 3.78 34.5 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 93 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 10 For beams laterally unsupported, see page 4-139 Designation W 10 112 100 88 77 68 60 54 49 9 10 11 12 13 14 463 441 401 368 339 315 408 390 355 325 300 279 354 339 308 283 261 242 303 293 266 244 225 209 264 256 233 213 197 183 232 224 203 187 172 160 202 200 182 167 154 143 183 181 165 151 139 129 15 16 17 18 19 20 294 276 259 245 232 221 260 244 229 217 205 195 226 212 199 188 178 170 195 183 172 163 154 146 171 160 151 142 135 128 149 140 132 124 118 112 133 125 118 111 105 100 121 113 107 101 95 91 21 22 23 24 210 200 192 184 186 177 170 163 161 154 147 141 139 133 127 122 122 116 111 107 107 102 97 93 95 91 87 83 86 82 79 76 74.6 2240 116 68.9 21.0 80.9 11.5 73.1 15.4 123 66.6 2000 101 57.8 18.5 63.6 8.83 57.7 11.8 96.0 60.4 1810 91.6 50.5 17.0 53.5 7.61 48.4 10.1 81.4 Span (ft) Fy = 50 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 147 4410 232 177 37.8 265 32.8 240 43.7 300 130 3900 204 149 34.0 214 27.4 194 36.5 259 113 3390 177 123 30.3 169 22.3 153 29.8 221 97.6 2930 152 99.4 26.5 130 17.5 117 23.3 185 85.3 2560 132 80.8 23.5 102 14.0 92.2 18.7 153 Load above heavy line is limited by design shear strength. Values of φR (N = 31⁄4) in boldface exceed maximum web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 94 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 10 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft W 10 45 3 4 5 6 7 8 191 9 10 11 12 13 14 39 W 10 33 30 26 W 10 22 19 17 15 12* 101 94 75 63 54 47 138 130 108 93 81 131 112 94 80 70 124 120 96 80 69 60 169 152 146 170 157 137 145 134 117 132 130 111 98 183 165 150 137 127 118 156 140 128 117 108 100 129 116 106 97 90 83 122 110 100 91 84 78 104 94 85 78 72 67 87 78 71 65 60 56 72 65 59 54 50 46 62 56 51 47 43 40 53 48 44 40 37 34 42 38 34 31 29 27 15 16 17 18 19 20 110 103 97 92 87 82 94 88 83 78 74 70 78 73 68 65 61 58 73 69 65 61 58 55 63 59 55 52 49 47 52 49 46 43 41 39 43 41 38 36 34 32 37 35 33 31 30 28 32 30 28 27 25 24 25 23 22 21 20 19 21 22 23 24 78 75 72 69 67 64 61 59 55 53 51 49 52 50 48 46 45 43 41 39 37 35 34 33 31 29 28 27 27 26 24 23 23 22 21 20 18 17 16 16 54.9 1650 95.4 54.7 17.5 58.8 7.41 53.8 9.88 85.9 46.8 1400 84.4 44.3 15.8 46.4 6.43 42.2 8.58 70.0 21.6 648 69.1 25.4 12.5 28.3 4.18 25.5 5.57 43.6 18.7 561 65.5 22.5 12.0 24.4 4.48 21.3 5.98 40.8 16.0 480 62.0 19.8 11.5 20.7 4.88 17.4 6.51 38.6 12.6 376 50.6 14.8 9.50 13.7 3.58 11.3 4.77 26.8 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 38.8 1160 76.2 38.5 14.5 37.1 6.23 33.1 8.31 60.1 36.6 1100 84.8 35.2 15.0 42.3 5.47 38.5 7.29 62.2 31.3 939 72.5 28.4 13.0 31.7 4.18 28.8 5.58 47.0 26.0 780 65.9 22.5 12.0 25.4 4.08 22.7 5.45 40.4 *Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 95 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W8 For beams laterally unsupported, see page 4-139 Designation W8 67 58 48 7 8 9 10 11 12 277 263 234 211 191 175 40 35 31 241 224 199 179 163 150 184 163 147 134 123 160 149 133 119 109 100 136 130 116 104 95 87 123 114 101 91 83 76 13 14 15 16 17 18 162 150 140 132 124 117 138 128 120 112 106 100 113 105 98 92 86 82 92 85 80 75 70 66 80 74 69 65 61 58 70 65 61 57 54 51 19 20 111 105 94 90 77 74 63 60 55 52 48 46 39.8 1190 80.2 47.8 18.0 58.3 10.9 52.3 14.6 99.6 34.7 1040 68.0 38.8 15.5 43.8 8.02 39.5 10.7 74.2 30.4 912 61.6 33.4 14.3 36.2 7.20 32.3 9.60 63.5 Span (ft) Fy = 50 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 70.2 2110 139 102 28.5 150 23.8 136 31.7 195 59.8 1790 120 83.7 25.5 118 20.2 106 27.0 167 49.0 1470 91.8 59.4 20.0 75.5 11.9 68.8 15.9 120 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 96 BEAM AND GIRDER DESIGN BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W8 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation W8 Span (ft) Fy = 50 ksi Wt./ft 28 W8 24 21 W8 18 15 13 10* 99 86 68 57 49 43 72 66 53 44 38 33 3 4 5 6 7 8 124 117 102 105 99 87 112 102 87 77 101 85 73 64 107 102 82 68 58 51 9 10 11 12 13 14 91 82 74 68 63 58 77 70 63 58 54 50 68 61 56 51 47 44 57 51 46 43 39 36 45 41 37 34 31 29 38 34 31 29 26 24 29 26 24 22 20 19 15 16 17 18 19 20 54 51 48 45 43 41 46 44 41 39 37 31 41 38 36 34 32 26 34 32 30 28 27 20 27 26 24 23 21 23 21 20 19 18 18 16 16 15 14 13.6 408 53.6 23.0 12.3 24.5 6.23 21.2 8.30 48.2 11.4 342 49.6 19.8 11.5 20.1 6.46 16.6 8.61 44.6 8.87 264 36.2 13.3 8.50 11.4 3.29 9.72 4.38 24.0 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 27.2 816 62.0 33.4 14.3 37.4 6.68 33.8 8.91 62.8 23.2 696 52.5 26.8 12.3 27.7 5.02 25.0 6.69 46.7 20.4 612 55.9 25.4 12.5 28.5 5.10 25.7 6.81 47.8 17.0 510 50.5 21.6 11.5 22.9 4.90 20.2 6.53 41.4 *Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 97 BEAMS W Shapes Maximum factored uniform loads in kips for beams laterally supported W 6–5–4 For beams laterally unsupported, see page 4-139 Designation Wt./ft W6 25 2 3 4 5 6 7 110 95 81 8 9 10 11 12 13 20 W6 15* 16 W5 12 9 75 62 50 42 36 54 47 37 31 27 71 63 57 52 47 44 56 50 45 41 37 34 38 34 31 28 26 24 44 39 35 32 29 27 31 28 25 23 21 19 23 21 19 17 16 14 14 41 32 22 25 18 13 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 18.9 567 55.1 32.5 16.0 44.0 12.2 38.8 16.3 84.5 14.9 447 43.5 24.4 13.0 28.9 8.40 25.4 11.2 61.8 W4 16 13 75 70 58 50 65 58 48 41 63 63 47 38 31 27 44 39 35 32 29 36 32 29 26 24 24 21 19 11.6 348 37.5 27.4 13.5 33.2 9.62 29.9 12.8 71.3 9.59 288 32.5 22.5 12.0 25.4 8.29 22.7 11.1 58.6 6.28 188 31.4 24.1 14.0 31.4 16.5 26.8 22.1 69.6 Span (ft) 88 88 70 59 50 Fy = 50 ksi 87 75 64 74 62 51 44 19 Properties and Reaction Values 10.8 308 37.2 18.0 11.5 20.3 8.45 16.9 11.3 53.5 11.7 351 44.1 24.4 13.0 30.4 7.48 27.3 9.97 59.7 8.30 249 37.4 18.0 11.5 21.0 7.80 17.9 10.4 51.7 6.23 187 27.1 12.0 8.50 11.7 4.19 10.1 5.59 28.2 *Indicates noncompact shape; Fy = 50 ksi. Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 98 BEAM AND GIRDER DESIGN S 24–20 BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Wt./ft S 24 121 12 13 14 15 16 17 90 S 20 80 96 S 20 86 75 66 723 686 610 549 499 686 656 574 510 459 417 545 525 467 420 382 820 761 966 900 800 720 655 810 740 666 605 648 612 556 765 706 656 612 574 540 698 644 598 558 523 492 600 554 514 480 450 424 555 512 476 444 416 392 510 471 437 408 383 360 495 457 424 396 371 349 458 422 392 366 343 323 383 353 328 306 287 270 350 323 300 280 263 247 18 19 20 21 22 23 510 483 459 437 417 399 465 441 419 399 380 364 400 379 360 343 327 313 370 351 333 317 303 290 340 322 306 291 278 266 330 313 297 283 270 258 305 289 275 261 250 239 255 242 230 219 209 200 233 221 210 200 191 183 24 25 26 27 28 29 383 367 353 340 328 317 349 335 322 310 299 289 300 288 277 267 257 248 278 266 256 247 238 230 255 245 235 227 219 211 248 238 228 220 212 205 229 220 211 203 196 189 191 184 177 170 164 158 175 168 162 156 150 145 30 32 34 36 38 40 306 287 270 255 242 230 279 262 246 233 220 209 240 225 212 200 189 180 222 208 196 185 175 167 204 191 180 170 161 153 198 186 175 165 156 149 183 172 161 153 144 137 153 143 135 128 121 115 140 131 124 117 111 105 42 44 46 48 50 52 219 209 200 191 184 177 199 190 182 174 167 161 171 164 157 150 144 138 159 151 145 139 133 128 146 139 133 128 122 118 141 135 129 124 119 131 125 119 114 110 109 104 100 96 92 100 95 91 88 84 54 56 58 60 170 164 158 153 155 149 144 140 133 129 124 120 123 119 115 111 113 109 106 102 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 306 9180 529 200 40.0 269 20.7 236 27.7 330 279 8370 410 155 31.0 184 9.66 168 12.9 215 183 5490 362 144 33.0 185 16.7 163 22.2 240 153 4590 343 129 31.8 163 17.4 139 23.2 219 140 4200 273 103 25.3 115 8.76 104 11.7 144 Span (ft) 1060 1020 918 835 100 877 849 743 660 594 540 Fy = 50 ksi 6 7 8 9 10 11 S 24 106 Properties and Reaction Values 240 7200 483 163 37.3 216 21.4 182 28.6 284 222 6660 405 137 31.3 166 12.6 146 16.9 207 204 6120 324 109 25.0 119 6.48 109 8.64 140 198 5940 438 175 40.0 248 29.7 207 39.5 305 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 99 BEAMS S 18–15–12–10 S Shapes Maximum factored uniform loads in kips for beams laterally supported For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft S 18 70 3 4 5 6 7 8 691 625 536 469 9 10 11 12 13 14 S 15 54.7 50 S 12 42.9 50 S 12 40.8 35 S 10 31.8 35 25.4 168 142 122 107 333 297 260 445 367 306 262 230 299 266 228 199 277 269 224 192 168 227 210 180 158 321 266 212 177 152 133 257 231 210 193 178 165 231 208 189 173 160 149 204 184 167 153 141 131 177 159 145 133 123 114 149 134 122 112 103 96 140 126 115 105 97 90 118 106 97 89 82 76 95 85 77 71 66 61 210 197 185 175 166 158 154 145 136 129 122 116 139 130 122 116 109 104 122 115 108 102 97 92 106 100 94 89 84 80 90 84 79 75 71 67 84 79 74 70 66 63 71 66 62 59 56 53 57 53 50 47 45 43 179 170 163 156 150 144 150 143 137 131 126 121 110 105 101 96 93 89 99 95 90 87 83 80 87 83 80 77 73 71 76 72 69 66 64 61 64 61 58 56 54 52 60 57 55 53 50 48 51 48 46 44 42 41 39 37 36 34 27 28 29 30 31 32 139 134 129 125 121 117 117 113 109 105 102 98 86 83 80 77 75 72 77 74 72 69 67 65 68 66 63 61 59 57 55 53 50 48 46 45 47 45 43 42 33 34 35 36 37 38 114 110 107 104 101 99 95 93 90 88 85 83 70 68 66 64 63 63 61 59 58 56 40 42 44 94 89 85 79 75 72 125 3750 346 133 35.6 180 31.3 142 41.7 249 105 3150 224 86.4 23.1 93.8 8.52 83.6 11.4 122 44.8 1340 139 63.5 21.4 74.5 13.0 64.1 17.3 120 42.0 1260 113 52.0 17.5 55.1 7.11 49.4 9.47 80.2 35.4 1060 160 83.5 29.7 116 46.2 84.9 61.6 180 28.4 852 84.0 43.7 15.5 43.8 6.63 39.4 8.84 68.1 448 394 446 386 330 289 417 375 341 313 288 268 350 315 286 263 242 225 15 16 17 18 19 20 250 234 221 208 197 188 21 22 23 24 25 26 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 77.1 2310 223 94.5 27.5 116 19.3 96.7 25.7 180 69.3 2080 166 70.6 20.6 74.9 8.05 66.9 10.7 102 61.2 1840 223 123 34.3 167 44.4 131 59.1 235 53.1 1590 150 83.0 23.1 91.9 13.5 81.1 18.0 140 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 100 BEAM AND GIRDER DESIGN S 8–6–5–4–3 BEAMS S Shapes Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Wt./ft S8 23 1 2 3 4 5 6 191 145 116 96 7 8 9 10 11 12 S6 18.4 17.25 S5 12.5 9.5 75 64 51 42 58 57 43 34 28 83 72 64 58 53 48 71 62 55 50 45 41 45 40 35 32 29 27 36 32 28 25 23 21 24 21 19 17 15 14 13 45 38 24 20 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 19.3 579 95.3 55.1 22.1 68.9 27.2 54.4 36.3 127 16.5 495 58.5 33.9 13.6 33.2 6.32 29.8 8.42 57.2 S3 7.7 7.5 5.7 70 61 40 30 24 20 42 35 26 21 18 57 35 24 18 14 12 28 20 15 12 9.75 17 15 13 12 15 13 12 11 10 8.36 4.04 121 35.2 30.6 16.3 36.3 32.0 27.8 42.6 83.5 3.51 105 20.8 18.1 9.65 16.6 6.64 14.8 8.85 43.5 2.36 70.8 28.3 30.0 17.5 37.9 59.0 26.1 78.6 86.7 1.95 58.5 13.8 14.6 8.50 12.9 6.81 11.5 9.09 41.1 Span (ft) 117 99 83 151 106 80 64 53 Fy = 50 ksi S4 10 Properties and Reaction Values 10.6 318 75.3 50.9 23.3 68.5 50.5 48.3 67.3 126 8.47 254 37.6 25.4 11.6 24.1 6.27 21.6 8.36 48.8 5.67 170 28.9 21.7 10.7 20.4 6.50 18.2 8.67 46.4 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 101 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported MC,C 18–15 For beams laterally unsupported, see page 4-139 Designation MC 18 Span (ft) Fy = 50 ksi Wt./ft 58 51.9 C 15 45.8 42.7 50 40 33.9 421 343 286 245 215 324 302 252 216 189 3 4 5 6 7 8 680 568 473 405 355 583 519 433 371 324 486 470 392 336 294 437 372 319 279 580 511 409 341 292 256 9 10 11 12 13 14 315 284 258 237 218 203 288 260 236 216 200 185 261 235 214 196 181 168 248 223 203 186 172 159 227 205 186 170 157 146 191 172 156 143 132 123 168 151 137 126 116 108 15 16 17 18 19 20 189 177 167 158 149 142 173 162 153 144 137 130 157 147 138 131 124 118 149 140 131 124 117 112 136 128 120 114 108 102 114 107 101 95 90 86 101 95 89 84 80 76 21 22 23 24 25 26 135 129 123 118 114 109 124 118 113 108 104 100 112 107 102 98 94 90 106 101 97 93 89 86 97 93 89 85 82 79 82 78 75 72 69 66 72 69 66 63 60 58 28 30 32 34 36 38 101 95 89 83 79 75 93 87 81 76 72 68 84 78 74 69 65 62 80 74 70 66 62 59 73 68 64 60 57 61 57 54 50 48 54 50 47 44 42 40 42 44 71 68 65 65 62 59 59 56 53 56 53 51 68.2 2050 290 129 35.8 176 40.7 135 54.3 245 57.2 1720 211 93.4 26.0 109 15.6 93.4 20.8 161 50.4 1510 162 71.9 20.0 73.6 7.10 66.5 9.47 97.2 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 94.6 2840 340 120 35.0 167 33.0 127 44.0 234 86.5 2600 292 103 30.0 133 20.8 108 27.7 200 78.4 2350 243 85.9 25.0 101 12.0 86.4 16.0 140 74.4 2230 219 77.3 22.5 86.1 8.76 75.5 11.7 115 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 102 BEAM AND GIRDER DESIGN BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported MC 13 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation MC 13 Span (ft) Fy = 50 ksi Wt./ft 50 40 35 31.8 3 4 5 6 7 8 552 454 363 303 259 227 393 382 305 255 218 191 314 277 231 198 173 263 259 216 185 162 9 10 11 12 13 14 202 182 165 151 140 130 170 153 139 127 117 109 154 139 126 116 107 99 144 129 118 108 99 92 15 16 17 18 19 20 121 113 107 101 96 91 102 95 90 85 80 76 92 87 82 77 73 69 86 81 76 72 68 65 21 22 23 24 25 26 86 83 79 76 73 70 73 69 66 64 61 59 66 63 60 58 55 53 62 59 56 54 52 50 27 28 29 30 31 32 67 65 63 61 59 57 57 55 53 51 49 48 51 50 48 46 45 43 48 46 45 43 42 40 46.2 1390 157 76.8 22.4 84.2 12.2 73.6 16.2 126 43.1 1290 132 64.5 18.8 64.7 7.19 58.4 9.59 89.6 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 60.5 1820 276 135 39.3 197 66.5 139 88.7 263 50.9 1530 197 96.3 28.0 118 24.0 97.3 31.9 187 Load above heavy line is limited by design shear strength. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 103 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C,MC 12 For beams laterally unsupported, see page 4-139 Designation Wt./ft C 12 50 45 40 251 219 175 146 125 183 152 127 109 541 421 337 281 240 461 388 310 259 222 382 355 284 237 203 126 112 101 92 84 78 110 97 88 80 73 67 95 85 76 69 64 59 210 187 168 153 140 129 194 172 155 141 129 119 14 15 16 17 18 19 72 67 63 59 56 53 63 58 55 52 49 46 54 51 48 45 42 40 120 112 105 99 94 89 20 21 22 23 24 25 50 48 46 44 42 40 44 42 40 38 37 35 38 36 35 33 32 30 26 27 28 29 30 39 37 36 35 34 34 32 31 30 29 29 28 27 26 25 Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 33.6 1010 165 71.7 25.5 93.0 23.9 73.9 31.8 155 29.2 876 125 54.4 19.4 61.5 10.4 53.1 13.9 98.3 Span (ft) 25 2 3 4 5 6 7 330 252 202 168 144 8 9 10 11 12 13 MC 12 20.7 Fy = 50 ksi 30 MC 12 35 31 10.6 303 257 214 183 240 236 197 168 123 116 87 70 58 50 177 158 142 129 118 109 161 143 128 117 107 99 147 131 118 107 98 91 44 39 35 32 29 27 111 103 97 91 86 82 101 95 89 83 79 75 92 86 80 76 71 68 84 79 74 69 66 62 25 23 22 20 19 18 84 80 77 73 70 67 78 74 71 67 65 62 71 68 65 62 59 57 64 61 58 56 54 51 59 56 54 51 49 47 17 17 16 15 15 14 65 62 60 58 56 60 57 55 53 52 55 53 51 49 47 49 48 46 44 43 45 44 42 41 39 13 13 12 12 12 47.3 1420 191 96.8 29.5 137 26.5 116 35.3 193 42.8 1280 151 76.6 23.4 96.3 13.1 85.8 17.5 143 39.3 1180 120 60.7 18.5 67.9 6.52 62.7 8.70 91.0 11.6 348 61.6 16.3 9.50 16.6 2.00 15.0 2.67 23.7 Properties and Reaction Values 25.4 762 91.4 39.7 14.1 38.2 4.04 35.0 5.38 52.5 56.1 1680 271 137 41.8 230 75.0 170 100.0 273 51.7 1550 231 117 35.6 181 46.5 144 62.0 233 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 104 BEAM AND GIRDER DESIGN C,MC 10 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation Span (ft) Fy = 50 ksi Wt./ft C 10 MC 10 30 25 20 2 3 4 5 6 7 363 266 200 160 133 114 284 230 173 138 115 99 8 9 10 11 12 13 100 89 80 73 67 61 14 15 16 17 18 19 20 21 22 23 24 33.6 MC 10 28.5 25 MC 10 15.3 41.1 22 205 193 145 116 96 83 130 119 95 79 68 430 389 292 233 195 167 311 251 200 167 143 230 222 178 148 127 205 194 155 129 111 157 142 118 101 92 79 59 47 39 34 8.4 86 77 69 63 58 53 72 64 58 53 48 45 59 53 47 43 40 36 146 130 117 106 97 90 125 111 100 91 84 77 111 99 89 81 74 68 97 86 77 70 65 60 89 79 71 64 59 54 29 26 24 21 20 18 57 53 50 47 44 42 49 46 43 41 38 36 41 39 36 34 32 30 34 32 30 28 26 25 83 78 73 69 65 61 72 67 63 59 56 53 63 59 56 52 49 47 55 52 48 46 43 41 51 47 44 42 39 37 17 16 15 14 13 12 40 38 36 35 33 35 33 31 30 29 29 28 26 25 24 24 23 22 21 20 58 56 53 51 49 50 48 46 44 42 44 42 40 39 37 39 37 35 34 32 35 34 32 31 30 12 11 11 10 9.83 26.6 798 182 84.1 33.6 131 75.6 81.0 101 193 23.0 690 142 65.8 26.3 90.8 36.1 66.8 48.1 151 29.6 888 115 66.4 21.3 75.8 14.4 66.1 19.3 129 25.8 774 103 59.4 19.0 64.1 10.3 57.2 13.8 102 23.6 708 78.3 45.3 14.5 42.7 4.59 39.6 6.12 59.5 7.86 236 45.9 14.6 8.50 13.4 1.90 12.1 2.53 20.3 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 19.3 579 102 47.4 19.0 55.6 13.5 46.6 18.0 105 15.8 474 64.8 30.0 12.0 28.0 3.43 25.7 4.57 40.6 38.9 1170 215 124 39.8 194 94.9 131 127 254 33.4 1000 155 89.8 28.8 119 35.8 95.4 47.7 183 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 105 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C,MC 9 For beams laterally unsupported, see page 4-139 Designation C9 Span (ft) Fy = 50 ksi Wt./ft MC 9 20 15 13.4 25.4 23.9 2 3 4 5 6 7 218 168 126 101 84 72 139 135 101 81 68 58 113 94 75 63 54 219 174 139 116 99 194 167 133 111 95 8 9 10 11 12 13 63 56 50 46 42 39 51 45 41 37 34 31 47 42 38 34 31 29 87 77 70 63 58 54 83 74 67 61 56 51 14 15 16 17 18 19 36 34 31 30 28 27 29 27 25 24 23 21 27 25 23 22 21 20 50 46 44 41 39 37 48 44 42 39 37 35 20 21 22 25 24 23 20 19 18 19 18 17 35 33 32 33 32 30 23.2 696 109 66.8 22.5 80.7 19.9 68.8 26.6 140 22.2 666 97.2 59.4 20.0 67.7 14.0 59.3 18.7 120 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 16.8 504 109 52.5 22.4 69.5 26.2 53.8 34.9 125 13.5 405 69.3 33.4 14.3 35.3 6.74 31.2 8.98 60.4 12.5 375 56.6 27.3 11.7 26.1 3.68 23.9 4.91 39.8 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 106 BEAM AND GIRDER DESIGN BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C,MC 8 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation C8 Span (ft) Fy = 50 ksi Wt./ft MC 8 MC 8 MC 8 18.75 13.75 11.5 22.8 21.4 20 18.7 8.5 1 2 3 4 5 6 210 207 138 104 83 69 131 109 82 65 55 95 72 57 48 184 141 113 94 162 135 108 90 173 162 122 97 81 152 116 92 77 77 69 52 41 35 7 8 9 10 11 12 59 52 46 41 38 35 47 41 36 33 30 27 41 36 32 29 26 24 81 70 63 56 51 47 77 68 60 54 49 45 69 61 54 49 44 41 66 58 51 46 42 39 30 26 23 21 19 17 13 14 15 16 17 18 32 30 28 26 24 23 25 23 22 20 19 18 22 20 19 18 17 16 43 40 38 35 33 31 42 39 36 34 32 30 37 35 32 30 29 27 36 33 31 29 27 26 16 15 14 13 12 12 19 20 22 21 17 16 15 14 30 28 28 27 26 24 24 23 11 10 16.2 486 86.4 56.3 20.0 64.5 17.3 55.3 23.1 121 15.4 462 76.2 49.6 17.7 53.5 11.9 47.1 15.9 98.7 6.91 207 38.7 16.8 8.95 15.2 2.49 13.9 3.33 24.7 Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 13.8 414 105 57.1 24.3 76.5 40.1 55.2 53.4 136 10.9 327 65.4 35.5 15.2 37.6 9.65 32.4 12.9 74.2 9.55 287 47.5 25.8 11.0 23.2 3.69 21.3 4.92 37.3 18.8 564 92.2 63.4 21.3 72.9 20.1 62.2 26.7 133 18.0 540 81.0 55.7 18.8 60.0 13.6 52.8 18.1 112 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION FACTORED UNIFORM LOAD TABLES Fy = 50 ksi 4 - 107 BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C,MC 7–6 For beams laterally unsupported, see page 4-139 Designation C7 12.25 MC 7 9.8 22.7 C6 MC 6 MC 6 MC 6 19.1 13 10.5 8.2 18 16.3 15.1 12 102 92 62 46 37 31 65 51 38 31 26 123 115 86 69 58 122 102 77 61 51 102 97 73 58 48 100 74 55 44 37 1 2 3 4 5 6 119 84 63 50 42 79 71 53 43 36 190 162 122 97 81 133 107 86 72 142 109 73 54 44 36 7 8 9 10 11 12 36 31 28 25 23 21 31 27 24 21 19 18 69 61 54 49 44 41 61 54 48 43 39 36 31 27 24 22 20 18 26 23 21 18 17 15 22 19 17 15 14 13 49 43 38 35 31 29 44 38 34 31 28 26 42 36 32 29 26 24 32 28 25 22 20 18 13 14 15 16 19 18 17 16 16 15 14 13 37 35 32 30 33 31 29 27 17 16 15 14 13 12 12 11 10 27 25 23 24 22 20 22 21 19 17 16 15 8.40 252 59.3 34.3 15.7 38.4 13.1 32.3 17.4 85.4 7.12 214 39.7 23.0 10.5 21.0 3.91 19.2 5.21 36.1 11.5 345 61.4 50.3 19.0 58.0 20.7 49.7 27.6 112 10.2 306 60.8 49.8 18.8 57.1 20.0 49.1 26.7 111 9.69 291 51.2 42.0 15.8 44.2 12.0 39.4 16.0 91.3 7.38 221 50.2 31.5 15.5 38.1 14.3 32.4 19.1 81.9 Span (ft) Fy = 50 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 16.2 486 95.1 70.7 25.2 91.0 39.3 72.6 52.5 152 14.3 429 66.5 49.5 17.6 53.3 13.5 47.0 18.0 105 7.26 218 70.8 44.4 21.9 61.0 43.9 43.5 58.5 115 6.15 185 50.9 31.9 15.7 37.2 16.3 30.7 21.7 82.9 5.13 154 32.4 20.3 10.0 18.9 4.21 17.2 5.61 35.4 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 108 BEAM AND GIRDER DESIGN BEAMS Channels Maximum factored uniform loads in kips for beams laterally supported C 5–4–3 Fy = 50 ksi For beams laterally unsupported, see page 4-139 Designation C5 9 C4 C3 6.7 7.25 5.4 69 42 28 21 17 14 40 34 23 17 14 11 1 2 3 4 5 6 88 65 44 33 26 22 51 35 26 21 18 7 8 9 10 11 12 19 16 15 13 12 11 15 13 12 11 9.6 8.8 12 11 9.4 8.4 9.7 8.5 7.5 6.8 6 5 4.1 52 26 17 13 10 8.6 42 23 15 11 9.0 7.5 28 20 13 9.8 7.8 6.5 7.4 6.4 5.6 1.72 51.6 28.8 30.6 17.8 40.0 59.6 28.1 79.5 88.4 1.50 45.0 20.9 22.2 12.9 24.7 22.7 20.2 30.2 64.1 1.30 39.0 13.8 14.6 8.50 13.2 6.49 11.9 8.65 40.0 Span (ft) Fy = 50 ksi Wt./ft Properties and Reaction Values Zx in.3 φbWc kip-ft φvVn kips φR1 kips φR2 kips/in. φr R3 kips φr R4 kips/in. φr R5 kips φr R6 kips/in. φR (N = 31⁄4) kips 4.36 131 43.9 30.5 16.3 37.8 23.2 30.1 30.9 83.3 3.51 105 25.7 17.8 9.50 16.9 4.64 15.3 6.18 35.4 2.81 84.3 34.7 27.6 16.1 35.7 30.2 27.6 40.3 79.7 2.26 67.8 19.9 15.8 9.20 15.5 5.69 14.0 7.59 38.6 Load above heavy line is limited by design shear strength. Values of R in bold face exceed maximum design web shear φvVn. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 109 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH GREATER THAN Lp General Notes Spacing of lateral bracing at distances greater than Lp creates a problem in which the designer is confronted with a given laterally unbraced length (usually less than the total span) along the compression flange, and a calculated required bending moment. The beam cannot be selected from its plastic section modulus alone, since depth, flange proportions, and other properties have an influence on its bending strength. The following charts show the design moment φbMn for W and M shapes of Fy = 36 ksi and Fy = 50 ksi steels, used as beams, with respect to the maximum unbraced length for which this moment is permissible. In bending, φb of 0.9 is given in Section F1.2 of the LRFD Specification. The charts extend over varying unbraced lengths, depending upon the flexural strengths of the beams represented. In general, they extend beyond most unbraced lengths frequently encountered in design practice. The design moment φbMn, kip-ft, is plotted with respect to the unbraced length with no consideration of the moment due to weight of the beam. Design moments are shown for unbraced lengths in feet, starting at spans less than Lp, for spans between Lp and Lr and for spans beyond Lr. The unbraced length Lp, in feet, with the limit indicated by a solid symbol, , is the maximum unbraced length of the compression flange, with Cb = 1.0, for which the design moment is given by φbMp, where Fy Lp = 300ry / √ Mp = ZxFy (F1-4) For those noncompact rolled shapes, which meet the requirements of compact sections Fy , but is less than 141 / √ Fy −Fr , the design moment is except that bf / 2tf exceeds 65 / √ obtained from Equation A-F1-3 in Appendix F1 of the LRFD Specification. This criterion applies to one W shape when Fy is equal to 36 ksi and to seven W shapes when Fy is equal to 50 ksi. (Noncompact W shapes are given on p. 4-7.) For the case Cb = 1.0 and noncompact shapes: λ − λp Mn′ = Mp − (Mp − Mr) λr − λp (A-F1-3) Mp − Mn′ Lp′ = Lp + (Lr − Lp) Mp − Mr λ = bf / 2tf λp = 65 / √ Fy λr = 141 / √ Fy −Fr Lr = ryX1 √ 1+√ 1 + X2(Fy − Fr)2 Fy − Fr X1 = π Sx √ EGJA 2 (F1-6) (F1-8) AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 110 BEAM AND GIRDER DESIGN 4Cw X2 = Iy Sx GJ 2 (F1-9) Mr = (Fy − Fr )Sx Mp = ZxFy Fr = 10 ksi for rolled shapes (F1-7) The unbraced length in the charts may be either the total span or any part of the total span between braced points. The plots shown in these charts were computed for beams for which Cb = 1.0. When a moment gradient exists between points of bracing, Cb may be larger than unity. (See Table 4-1.) Using this larger value of Cb may provide a more liberal flexural strength for the section chosen if the unbraced length is greater than Lp. In these cases, the design moment can be determined using the provisions of Section F1.2a of the LRFD Specification. Lb − Lp φbMn = φbCb Mp − (Mp − Mr) ≤ φbMp Lr − Lp The unbraced length Lr, ft, with the limit indicated by an open symbol , is the maximum unbraced length of the compression flange beyond which the design moment is governed by Specification Section F1.2b. For unbraced lengths greater than Lr: φbMn = φbMcr = φbCb π Lb √ 2 πE EIyGJ + IyCw ≤ φbCbMr and φbMp Lb In computing the points for the curves, Cb in the above formulas was taken as unity, E = 29,000 ksi and G = 11,200 ksi. The properties of the beams are taken from the Tables of Dimensions and Properties in Part 1 of this LRFD Manual. The beam strengths have been reduced by multiplying the nominal flexural strength Mn by 0.9, the resistance factor φb for flexure. Over a limited range of length, a given beam is the lightest available for various combinations of unbraced length and design moment. The charts are designed to assist in selection of the lightest available beam for the given combination. The solid portion of each curve indicates the most economical section by weight. The dashed portion of each curve indicates ranges in which a lighter weight beam will satisfy the loading conditions. The curves are plotted without regard to shear strength and deflection criteria, therefore due care must be exercised in their use. The curves do not extend beyond an arbitrary span/depth limit of 30. The following examples illustrate the use of the charts. EXAMPLE 4-8 Given: Using Fy = 50 ksi steel, determine the size of a “simple” framed girder with a span of 35 feet, which supports two equal concentrated loads. The factored loads produce a required moment of 440 kip-ft in the AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 111 center 15-ft section between the loads. The load points are laterally braced. Solution: For this loading condition, Cb = 1.0 due to nearly uniform moment across the central portion of the span. Center section of 15 feet is longest unbraced length. With total span equal to 35 feet and Mn = 440 kip-ft, assume approximate weight of beam at 70 lbs/ft (equal to 0.07 kips/ft). 0.07 × (35)2 × 1.2 = 453 kip-ft Total Mu = 440 + 8 Entering chart, with unbraced length equal to 15 feet on the bottom scale (abscissa), proceed upward to meet the horizontal line corresponding to a design moment equal to 453 kip-ft on the left hand scale (ordinate). Any beam listed above and to the right of the point so located satisfies the design moment requirement. In this case, the lightest section satisfying this criterion is a W21×68, for which the total design moment with an unbraced length of 15 feet is 457 kip-ft. Use: W21×68 Note: If depth is limited, a W14×82 could be selected, provided deflection conditions are not critical. EXAMPLE 4-9 Given: A “fixed end” girder with a span of 60 feet supports a concentrated load at the center. The compression flange is laterally supported at the concentrated load point and at the inflection points. The factored load produces a maximum calculated moment of 440 kip-ft at the load point and the supports. Determine the size of the beam using Fy = 50 ksi steel. Solution: For this loading condition, Cb = 1.67 (by comparison with Table 4-1), with an unbraced length of 15 feet. With the total span equal to 60 feet and Mu = 440 kip-ft, assume approximate weight of beam at 60 lbs/ft (0.06 kips/ft). 0.06 × (60)2 Total Mu = 440 + ×1.2 24 = 451 kip-ft at the centerline and 462 at the supports Compute Mequiv by dividing the required design moment by Cb Mequiv = 462 / 1.67 = 277 kip-ft Enter charts with unbraced length equal to 15 feet and proceed upward to 277 kip-ft. Any beam listed above and to the right of the point satisfies the design moment. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 112 BEAM AND GIRDER DESIGN The lightest section satisfying the criteria of a design moment of 277 kip-ft at an unbraced length of 15 feet and φbMp greater than 462 kip-ft is a W21×62. The design moment for a W21×62 with an unbraced length of 15 feet is 406 kip-ft and φbMp is 540 kip-ft. Since (φbMn = 406 kip-ft) > (Mequiv = 277 kip-ft) and (φbMp = 540 kip-ft) > (Mu = 462 kip-ft), a W21×62 is o.k. A 21-in. nominal depth beam spanning 60 feet should be checked for deflection since the span/depth ratio exceeds 30. AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 113 4 - 114 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 115 4 - 116 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 117 BEAM AND GIRDER DESIGN 4 - 118 W3 x3 18 30 3x3 W 97 26 0x2 31 W4 0x3 W44 x26 2 0x2 W 24 W4 49 x3 x2 77 35 0x2 30 W4 61 0x2 78 W4 4x2 30 W 11 35 x2 x2 30 27 W 67 W4 79 x2 0x1 0x2 15 W 24 x2 50 W4 0x 4 24 99 W 0x1 49 W4 17 0x1 x2 07 W 92 30 x1 W 24 x1 91 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 0 92 W4 W 35 11 94 W4 W21x201 28 x2 6x 30 07 4 35 x2 0x2 6x1 W4 8 25 8x W1 W18x234 W x3 x26 0x2 30 W4 W3 W27x178 29 x2 24 W W 24 3 28 8x W1 1 31 8x W1 W3 27 W40 W4 W W40x183 W4 W W40x199 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 119 W 24 x4 08 W4 0x2 97 W 27 x3 68 W 30 x3 26 W W 27 30 x3 x2 07 92 W 24 x3 35 30 W3 W 91 61 3x2 x2 W 24 W x2 27 79 x2 58 W1 W 24 x2 50 W W1 8x 27 28 3 x2 35 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 8x 31 1 4 - 120 BEAM AND GIRDER DESIGN W W3 11 W2 4 4x 9 x169 22 W33 x183 01 W18x211 x17 8 x2 34 W40 17 21 x2 W40 7x W 18 0x2 W2 W 18 W40x W 24 167 x1 W21x182 92 W 24 x2 07 W36 x170 W2 7x 19 18 4 W x1 92 W40 x149 W3 0x1 16 W 18 x1 W 58 18 x1 75 AMERICAN INSTITUTE OF STEEL CONSTRUCTION x2 58 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 121 W2 79 35 W36 7x2 4x2 W2 x245 W 18 x2 83 W2 4x 25 0 W3 0x1 91 W2 4x 22 W 9 W36 x210 W 24 x2 07 W 21 x2 01 W 18 x2 34 W 24 x1 92 W 18 x1 92 W x1 7x1 21 W2 W 18 x2 11 94 82 W 24 x1 76 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 18 x2 58 4 - 122 BEAM AND GIRDER DESIGN W30x1 32 W1 15 W1 8x 8x 8 17 5 W 3 3 x1 3 0 W30x90 W24x103 W27 x94 W 36 x1 60 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 123 W21 x20 1 W1 W 36 x1 70 8x 21 1 W1 8x1 W 33 x1 69 92 W1 8x1 75 W21 x18 2 W1 8x1 58 W 36 x1 60 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 124 BEAM AND GIRDER DESIGN W14x132 W 14 x1 32 W30 x90 W27 x90 x94 W30 W12x120 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 125 W1 8x 78 5 17 W27x1 W1 8x 15 8 W W24x 14 x1 32 117 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 126 BEAM AND GIRDER DESIGN W x1 20 W30x9 12 0 W12x106 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 127 W 14 x1 32 W 12 x1 20 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 128 BEAM AND GIRDER DESIGN W12x96 W 12 x9 6 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 129 W 12 x1 20 W 12 x1 06 W 10 x1 12 W 12 x9 6 W 10 x1 00 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 130 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 131 W AMERICAN INSTITUTE OF STEEL CONSTRUCTION 10 x1 00 4 - 132 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 133 W 10 x6 8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 134 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 135 W 8x 48 W1 0x4 5 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 136 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp M12x1 0 .8 M10 x8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 137 4 - 138 BEAM AND GIRDER DESIGN M10 x8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 139 4 - 140 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 141 4 - 142 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 143 4 - 144 BEAM AND GIRDER DESIGN W24x250 0x2 61 x3 0x2 18 W4 x183 W W27x217 W3 x235 4 W40 x19 x211 W40 W40 W36 W40x174 15 11 W40x167 W 24 x2 79 W2 7x2 21 58 3x2 5 83 W3 23 x2 7x 18 W2 W W4 W x2 0x1 24 99 29 W4 0x1 74 W18x258 0x W33x W3 W40x149 3 241 17 W 07 3x2 x2 W3 24 01 W24x192 W18x234 W21x201 W18x211 W21x182 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 30 92 7x 0x2 W2 W3 7 W 24 x3 35 W3 0x 26 1 W2 7x 25 8 W 18 x3 11 W 24 x2 79 W 50 235 x x2 24 W27 W1 8x 28 3 W 18 x2 83 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 145 4 - 146 BEAM AND GIRDER DESIGN W x2 W 7 11 20 x2 4x 34 18 W2 18 W21x182 W2 1x 20 1 W18x192 W2 4x1 x149 W18x158 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 92 W40 W18x175 DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 147 W2 07 29 4x2 4x2 W2 W 18 x2 58 W 18 x2 34 W2 4x 19 2 W 18 x2 11 W 21 x2 01 W 21 x1 82 W 18 x1 92 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 148 BEAM AND GIRDER DESIGN W 18 x1 75 W 18 x1 58 W30x90 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 149 W W2 18 1x x2 2 11 18 W 18 x1 92 W 18 x1 75 W 18 x1 58 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 150 BEAM AND GIRDER DESIGN W30 x90 W 27 x9 4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 151 4 - 152 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 153 W 14 x1 32 W 12 x1 20 W 12 x1 06 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 154 BEAM AND GIRDER DESIGN W1 2x 96 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp W1 2x 10 6 W1 2x 96 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 155 4 - 156 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 157 W 12 x9 6 W 10 x1 00 W1 2x 72 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 158 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp W 10 x7 7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 159 4 - 160 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp 4 - 161 W 8x 67 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 162 BEAM AND GIRDER DESIGN W8 x48 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 163 4 - 164 BEAM AND GIRDER DESIGN M12x10 .8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION DESIGN FLEXURAL STRENGTH OF BEAMS WITH UNBRACED LENGTH > Lp M12x1 0 .8 M10x 8 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 165 4 - 166 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 167 PLATE GIRDER DESIGN General Notes The distinction between a beam and a plate girder, according to Chapter G of the LRFD Specification, must be made before the design can be undertaken. A beam can be a rolled or welded shape, but its web width-thickness ratio h / tw must be less than or equal to 970 / √ Fyf. For doubly symmetric plate girders h / tw is greater than 970 / √ Fyf. The limit states that must be considered in plate girder design include: flexural strength, bearing under concentrated loads, shear strength, and flexure-shear interaction (for tension field action only). From these checks, the adequacy of the design and the need for stiffeners can be determined. This section contains design examples to explain these items from the LRFD Specification. A flowchart covering plate girder design has been published (Zahn, 1987). Flexural and Shear Strength General In the design of welded girders, the flexural strength of the trial section must be determined to ensure that an adequate section modulus is provided. Although there are preliminary steps, flexural strength, using elastic design, is determined from LRFD Specification Section F1 if the section is compact. For sections with more slender webs, either LRFD Specification Appendix F1 or Appendix G2 is used, depending on the section’s classification as a beam or plate girder. A shear strength calculation is required to ascertain if there is a need for intermediate stiffeners. The applicable formulas are found in LRFD Specification Section F2, or Appendix G3 if tension field action is implemented. Note, however, that Appendix G cannot be used if h / tw exceeds the limits given in Appendix G1. Table of Dimensions and Properties of Built-up Wide Flange sections This table serves as a guide for selecting welded built-up I sections of economical proportions. It provides dimensions and properties for a wide range of sections with nominal depths from 45 to 92 inches. No preference is intended for the tabulated flange plate dimensions, as compared to other flange plates having the same area. Substitution of wider but thinner flange plates, without a change in flange area, will result in a slight reduction in section modulus. In analyzing overall economy, weight savings must be balanced against higher fabrication costs incurred in splicing the flanges. In some cases, it may prove economical to reduce the size of flange plates at one or more points near the girder ends, where the bending moment is substantially less. Economy through reduction of flange plate sizes is most likely to be realized with long girders, where flanges must be spliced in any case. Only one thickness of web plate is given for each depth of girder. When the design is dominated by shear in the web, rather than flexural strength, overall economy may dictate selection of a thicker web plate. The resultant increase in elastic section modulus can be obtained by multiplying the value S′, given in the table, by the number of sixteenths of an inch increase in web thickness, and adding the value obtained to the section modulus value S for the girder profile shown in the table. The increase in plastic section modulus Z can be calculated in the same way with Z′. Overall economy may often be obtained by using a web plate of such thickness that intermediate stiffeners are not required. This is not always the case, however. The girder AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 168 BEAM AND GIRDER DESIGN section listed in the table will provide a “balanced” design with respect to bending moment and web shear without excessive use of intermediate stiffeners. The maximum design end shear strength without transverse stiffeners is given in the table column labeled φvVn. These values come from the equation, φvVn = 0.6φvAwFywCv where Cv = 44,000k with k = 5.0 (h / tw)2Fyw It is evident from this formula that a thicker web plate increases the design shear strength. Design Examples Design of a plate girder should begin with a preliminary design or selection of a trial section. The initial choice may require one or more adjustments before arriving at a final cross section that satisfies all the provisions of the LRFD Specification with maximum economy. In the following design examples, applicable provisions of the LRFD Specification are indicated at the left of each page. In addition, references to Tables 9 and 10 in the LRFD Specification are listed. These tables may be used in place of the equations for φvVn. Values for φvVn / Aw are given in ksi for plate girders. Tables 9-36 and 9-50 do not include the tension field action equation and, therefore, are based on LRFD Specification Section F2. For design with tension field action, Tables 10-36 and 10-50, based on Appendix G3, are applicable. Table 10 also includes the required gross area of pairs of stiffeners, as a percent of (h × tw), from LRFD Specification Formula A-G4-1. Example 4-10 illustrates a recommended procedure for designing a welded plate girder of constant depth. The selection of a suitable trial cross section is obtained by the flange area method, and then checked by the moment of inertia method. Example 4-11 shows a recommended procedure for designing a welded hybrid girder of constant depth. Example 4-12 illustrates use of the Table of Dimensions and Properties of Built-up Wide-Flange Sections to obtain an efficient trial profile. The 52-in. depth specified for this example demonstrates how tabular data may be used for girder depths intermediate to those listed. Another design requirement in this example is the omission of intermediate web stiffeners. EXAMPLE 4-10 Design a welded plate girder to support a factored uniform load of 7 kips per foot and two concentrated factored loads of 150 kips located 17 feet from each end. The compression flange of the girder will be laterally supported only at points of concentrated load. (See Figure 4-3.) Given: Maximum bending moment: 4,566 kip-ft Maximum vertical shear: 318 kips Span: 48 feet Maximum depth: 72 inches Steel: Fy = 50 ksi AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN Solution: LRFD Specification Reference Section B5 & Table B5.1 4 - 169 A. Preliminary web design: 1. Assume web depth, h = 70 inches. For noncompact web, 640 / √ Fy < h / tw ≤ 970 / √ Fy = 137 Corresponding thickness of web = 70 / 137 = 0.51 in. (A-G1-2) 2. Assuming a / h > 1.5, minimum thickness of web = 70 / 243 = 0.29 in. Choose thinnest web. Try web plate 5⁄16×70: Aw = 21.9 in.2 h / tw = 70 / 0.313 = 224 Since 0.31 < 0.51 in. as calculated above, expect RPG to be less than 1.0 B. Preliminary flange design: 1. Required flange area: An approximate formula for the area of one flange is: Af ≈ Mu 4,566(12) = = 15.7 in.2 Fy h 50(70) Try 1×16 plate. Af = 16 in.2 150 kips 150 kips 7 kips/ft 17 ft. 14 ft. 17 ft. 318 kips 318 kips 199 kips 318 kips 49 kips 318 kips M max = 4566 kip-ft M1 = 4395 kip-ft M1 = 4395 kip-ft Figure 4-3 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 170 Table B5.1 BEAM AND GIRDER DESIGN 2. Check for compactness for no reduction in critical stress: bf 16 = = 8 ≤ 65 / √ 50 = 9.2 o.k. 2tf 2(1) C. Trial girder section: Web 5⁄16×70; two flange plates 1×16 1. Find section modulus by moment of inertia method: Section A in.2 1 web 5⁄16×70 21.9 1 flange 1×16 1 flange 1×16 16 16 y in. 35.5 ΣA2y in.4 Io in.4 Igr in.4 8,932 8,932 3 40,331 40,328 Moment of inertia 49,263 Section modulus furnished: 49,263 / 36.0 = 1,368 in.3 Section F1 & Appendix G2 2. Check flexural strength using elastic design: Fyf, Appendix G2 applies. Since h / tw > 970 / √ Moment of inertia of flange plus 1⁄6 web about Y-Y axis: Ioy = 1 × (16)3 / 12 = 341 in.4 Af + 1⁄6Aw = 16.0 + 1⁄6(21.9) = 19.65 in.2 rT = √ 341 / 19.65 = 4.17 in. a. Check limitations of Appendix G: Assume a / h ≤ 1.5 (A-G1-1) (h / tw) max = 2,000 = 283 > 224 o.k. Fyf √ b. Check strength of 14-ft panel: Mu = 4,566 kip-ft The moment in the 14-ft unbraced segment is nearly constant. Section F1.2a Therefore, Cb ≈ 1.0 Appendix G2 For the limit state of lateral-torsional buckling: (A-G2-7) λ= (A-G2-8) λp = 300 / √ Fyf = 42.4 (A-G2-9) λr = 756 / √ Fyf = 106.9 (A-G2-4) Since λ ≤ λp, Fcr = Fyf = 50 ksi Lb 14 × 12 = = 36.0 4.67 rT AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 171 For the limit state of flange local buckling: (A-G2-11) λ = bf / 2tf = 16 / (2 × 1.0) = 8.0 (A-G2-12) λp = 65 / √ Fyf = 9.2 (A-G2-13) λr = (A-G2-4) Since λ ≤ λp, Fcr = Fyf = 50 ksi 230 √ Fyf / kc Design flexural strength: ar (A-G2-3) = 21.9 / 16 = 1.37 RPG = 1 − 1.37 1,200 + 300(1.37) 70 970 = 0.927 0.313 − √50 With Fcr = 50 ksi use Equation A-G2-1 or A-G2-2 as applicable: (A-G2-1) or (A-G2-2) Mn = 1,368(1 / 12)(0.927)(1.0)(50) = 5,284 kip-ft Therefore, φMn = 0.90(5,284) = 4,756 kip-ft > 4,566 kip-ft req’d o.k. c. Check strength of 17-ft panels: Mu = 4,395 kip-ft Appendix G2 and (F1-3) For moment increasing approximately linearly from zero at one end of the unbraced segment to a maximum value at the other end, Cb ≈ 1.67. For the limit state of lateral-torsional buckling: (A-G2-7) λ = (A-G2-8) λp = 300 / √ Fyf = 42.4 (A-G2-9) λr = 756 / √ Fyf = 106.9 (A-G2-5) Lb 17(12) = = 48.9 4.17 rT 1 λ − λp Since λp ≤ λ ≤ λr, Fcr = CbFyf 1 − ≤F 2 λr − λp yf As the middle term exceeds Fyf, Fcr = Fyf = 50.0 ksi. For the limit state of flange local buckling: (A-G2-4) Fcr = Fyf = 50 ksi (as for the 14-ft panel) (A-G2-3) RPG = 0.927 (as for the 14-ft panel) Again, with Fcr = 50 ksi use Equation A-G2-1 or A-G2-2 as applicable: Mn = 5,284 kip-ft (see Step C.2a) AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 172 (A-G2-1) or (A-G2-2) BEAM AND GIRDER DESIGN φbMn = 0.90 × 5,284 = 4,756 kip-ft > 4,395 kip-ft req’d. o.k. Use: Web: One plate 5⁄16×70 Use: Flanges: Two plates 7⁄8×18 D. Stiffener requirements: 1. Bearing stiffeners: Section K1 a. Check bearing at end reactions: Assume point bearing (N = 0) and 5⁄16-in. web-to-flange welds. Check local web yielding: (K1-2) Rn = (5k + N)Fywtw; k = 7⁄8 + 5⁄16 = 1.188 in. φRn = 1.0[5(1.188) + 0](50)(5⁄16) = 92.8 kips < 318 n.g. Therefore, provide bearing stiffeners at unframed girder ends. (Note: If local web yielding criteria are satisfied, criteria set forth in Section K1.4 and K1.5 should also be checked.) b. Bearing stiffeners are also required at concentrated load points since 92.8 < 150 n.g. 2. Intermediate stiffeners: Appendix G3 a. Check shear strength in unstiffened end panel: h / tw = 224 > 418 / √ Fyw = 59.1 a / h = 17 × 12 / 70 = 2.9 Vu / Aw = 318 / 21.9 = 14.5 ksi Appendix G3 Tension field action is not permitted for end panels, or when a / h > 3.0 or [260 / (h / tw)]2. Here, 2.9 > (260 / 224)2 = 1.35. In either of these cases, Equations A-G3-3 and F2-3 are both applicable, as they are equivalent formulas. Section F2.2 Using Equation F2-3, (F2-3) or (A-G3-3) or Table 9-50 φvVn 0.9(132,000) = = 2.4 < 14.5 ksi Aw (224)2 Therefore, provide intermediate stiffeners. b. End panel stiffener spacing (F2-3) or (A-G3-3) or Table 9-50 Let φvVn = 14.5 ksi and solve for a / h. Aw Result: a / h = 0.45 AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 173 a ≤ (0.45)(70) = 31.5 in. Use: 30 in. c. Check for additional stiffeners: Shear at first intermediate stiffener: Vu = 318 − [7(30 / 12)] = 301 kips Vu 301 = = 13.7 ksi Aw 21.9 Distance between first intermediate stiffener and concentrated load: a (A-G3-4) = (17)(12) − 30 = 174 in. a / h = 174 / 70 = 2.5 Then k = 5.8, and the shear strength is inadequate. Therefore, provide intermediate stiffeners spaced at 174 / 2 = 87 in. a / h = 87 / 70 = 1.24 Appendix G3 Maximum a / h for tension field action: 2 2 260 = 260 = 1.35 > 1.24 (h / t ) 224 w Design for tension field action: For a / h = 1.24 and h / tw = 224, (A-G3-4) Appendix G3 (A-G3-6) (A-G3-2) or Table 10-50 k =5+ 5 = 8.2 (1.24)2 h / tw = 224 > 234 √ 8.2 / 50 = 95 Cv = 44,000(8.2) = 0.14 (224)2(50) 1 − 0.14 φvVn = (0.9)(0.6)(50) 0.14 + 2 Aw 1.15√ 1 + (1.24) = 16.5 ksi > 13.7 ksi o.k. d. Check center 14-ft panel: h / tw = 224 a / h = (14)(12) / 70 = 2.4 > 1.35 k = 5.0 Cv = 0.12 (A-G3-3) or Table 9-50 φvVn = 2.4 ksi Aw Vu 49 = = 2.2 ksi < 2.4 ksi o.k. 21.9 Aw AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 174 BEAM AND GIRDER DESIGN 3. Flexure-shear interaction: Appendix G5 Check Vu / φVn and Mu / φMn at intermediate stiffener and concentrated load locations in tension field panel: Location Vu φVn Vu / φVn Mu φMn Mu / φMn 2.5 ft 9.75 ft 17.0 ft 301 250 199 318 361 361 0.95 0.69 0.55 744 2769 4395 4756 4756 4756 0.16 0.58 0.92 Vu Mu ≤ 1.0 and 0.75 ≤ ≤ 1.0 (with φ = 0.9 for both φVn φMn shear and bending) do not occur simultaneously at 2.5 ft, 9.75 ft, and 17.0 ft, Interaction Equation A-G5-1 need not be checked. Since 0.6 ≤ Summary: space stiffeners as shown in Figure 4-4: E. Stiffener design: Let stiffener Fyst = 36 ksi. 1. For intermediate stiffeners: a. Area required (single plate stiffener): Vu < 1, use Equation A-G4-2 For a single plate stiffener, or when φVn instead of Table 10. Fyw Vu 0.15Dhtw(1 − Cv) − 18t2w ≥ 0 Fyst φV n where (A-G4-1) Ast = h = 70 in. tw = 0.3125 in. D = 2.4 Cv = 0.14 Vu = 250 kips φVn = 361 kips 250 50 0.15(2.4)(70)(0.3125)(10.14) − 18(0.3125)2 36 361 = 4.07 in.2 Ast = Try one bar 5⁄8×7 2 ′-6 ′ 2@7 -3 14 ′-0 ′ 2@7 -3 Figure 4-4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2 ′-6 PLATE GIRDER DESIGN 4 - 175 Ast = 4.38 in.2 > 4.07 in.2 req’d. o.k. b. Check width-thickness ratio: Table B5.1 7 / 0.625 = 11.2 < 95 / √ Fy = 15.8 o.k. c. Check moment of inertia: Appendix F2.3 Ireq’d = at3wj (A-F2-4) 2.5 − 2 = −0.4 < 0.5; take j = 0.5 (1.24)2 Ireq’d = 87(5⁄16)3(0.5) = 1.33 in.4 Ifurn = 1⁄3(0.625)(7)3 = 71.5 in.4 j = 71.5 in.4 > 1.33 in.4 o.k. d. Minimum length required: Section F3 It is suggested that intermediate stiffeners be stopped short of the tension flange and the weld by which they are attached to the web not closer than four times nor more than six times the web thickness from the near toe of the web-to-flange weld.* 70 − 5⁄16 − (4)(5⁄16) = 68.4 in. 70 − 5⁄16 − (6)(5⁄16) = 67.8 in. Use for intermediate stiffeners: One plate 5⁄8×7×5′-8, fillet-welded to the compression flange and web. 2. For bearing stiffeners: At end of girder, design for end reaction. Try two 5⁄8×8-in. bars (see Figure 4-5). a. Check width-thickness ratio (local buckling check): Table B5.1 8 / 0.625 = 12.8 < 95 / √ Fy = 15.8 o.k. b. Check compressive strength: (16.31)3 = 226 in.4 12 Aeff = (2)(8)(5⁄8) + [(12)(5⁄16)2] = 11.17 in.2 I = (5⁄8) r = √ 226 = 4.50 in. 11.17 *When single stiffeners are used, they shall be attached to the compression flange, if it consists of a rectangular plate, to resist any uplift tendency due to torsion in the plate. When lateral bracing is attached to a stiffener, or a pair of stiffeners, these, in turn, shall be connected to the compression flange to transmit one percent of the total flange stress, unless the flange is composed only of angles. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 176 BEAM AND GIRDER DESIGN Section K1.9 KL = 0.75h = (0.75)70 = 52.5 in. Kl 52.5 = = 11.7 r 4.50 λc = 0.13 (E2-2) or Table 3-36 Design stress: φFcr = 30.38 Design strength: φPn = φFcr Ag= (30.38)11.17 = 339 kips 339 kips > 318 kips req’d o.k. Section J8 c. Check bearing criterion Design strength: φRn = (0.75)1.8Fy Apb Apb = 2(16 − 0.5)(5⁄8) = 19.4 in.2 (The 0.5 accounts for cutout for welds.) φRn = 943 kips > 318 kips req’d. o.k. Use for bearing stiffeners: Two plates 5⁄8×8×5′-93⁄4 with close bearing on flange receiving reaction or concentrated loads. Use same size stiffeners for bearing under concentrated loads.* EXAMPLE 4-11 Design a hybrid girder to support a factored uniform load of three kips per foot and three concentrated factored loads of 300 kips located at the quarter points. The girder depth must be limited to five feet. The compression flange will be laterally supported throughout its length. (See Figure 4-6.) Given: Maximum bending moment: 14,400 kip-ft *In this example, bearing stiffeners were designed for end bearing; however, 25tw may be used in determining effective area of web for bearing stiffeners under concentrated loads at interior panels (Section K1-9). 5/ 8 x8 End bearing stiffeners tw 12t w Web 5/ 8 x8 Figure 4-5 AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 177 Maximum vertical shear: 570 kips Span: 80 ft Maximum depth: 60 in. Steel: Flanges: Fy = 50 ksi Steel: Web: Fy = 36 ksi Solution: A. Preliminary web design: LRFD Specification Reference Assume web depth, h = 54 in. (A-G1-2) For a / h > 1.5 minimum thickness of web: 54 / 243 = 0.22 in. (A-G2-3) For RPG = 1.0, h / tw ≤ 970 / √ Fyf = 137 (F2-1) or Table 9-36 Corresponding web thickness = 54 / 137 = 0.39 φvVn Minimum tw required for maximum of 19.4 ksi: Aw tw = Vn 570 = = 0.54 in. 19.4h 19.4 × 54 Try web plate 5⁄8×54; Aw = 33.75 in.2 Vu Aw Table B5.1 = 570 / 33.75 = 16.9 ksi < 19.4 ksi o.k. h / tw = 54 / 0.625 = 86.4 < (640 / √ Fyf = 90.5) o.k. Web is compact. 300 kips 300 kips 300 kips 3 kips/ft 20 ft. 20 ft. 20 ft. 20 ft. 80 ft. 570 kips 570 kips 510 kips 570 kips 210 kips 150 kips 230 kips 14400 kip-ft 10800 kip-ft 10800 kip-ft Figure 4-6 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 178 BEAM AND GIRDER DESIGN B. Preliminary flange design: 1. An approximate formula for the area of one flange is: Af ≈ Mu 14,400(12) = = 64.0 in.2 Fyf h (50)(54) 2. Check adequacy against local buckling: Table B5.1 bf / 2tf = 24 / (2)(2.625) = 4.6 < (65 / √ Fy = 9.2) o.k. Flange is compact. C. Trial girder section: Web 5⁄8×54; two flange plates 25⁄8×24 1. Determine plastic section moduli: 54 2.625 3 Zf = 2 (2.625)(24) + = 3.567 in. 2 2 54 54 Zw = 2 (5⁄8) = 456 in.3 2 4 2. Check flexural strength: Compression flange is supported laterally for its full length and the section is compact. Appendix F1 Mn = Mp = Fyf Zf + FywZw Mn = [(50)(3,567) + (36)(456)] 1 / 12 = 16,230 kip-ft φbMn = (0.90)16,230 = 14,610 kip-ft > 14,400 kip-ft o.k. Use: Web: One plate 5⁄8×54 (Fy = 36 ksi) Use: Flanges: Two plates 25⁄8×24 (Fy = 50 ksi) D. Stiffener requirements: 1. Bearing stiffeners Section K1 a. Check bearing at end reactions: Assume point bearing (N = 0) and 5⁄16-in. web-to-flange welds. Check local web yielding: (K1-2) Rn = (5k + N)Fywtw; k = 25⁄8 + 5⁄16 = 215⁄16-in. φRn = 1.0[(5)(215⁄16) + 0](36)(5⁄8) = 330 kips 330 kips < 570 kips n.g. Note: If local web yielding criteria are satisfied, applicable criteria set for in Sections K1.4 and K1.5 should also be checked. b. Bearing stiffeners at points of concentrated loads are also required. AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 179 2. Intermediate stiffeners: The LRFD Specification does not permit design of hybrid girders on the basis of tension field action. Therefore, determine the need for intermediate stiffeners by use of Equations F2-1, F2-2, F2-3, Table 9-36. a. Check shear strength without intermediate stiffeners: Section F2 h / tw = 86.4, a / h exceeds 3.0 Therefore, k = 5.0 Vu 570 = = 16.9 ksi Aw 33.75 Since h / tw = 86.4 > 523 / √ 36 = 87, but h / tw = 86.4 < 418 / √ 36 = 70, use Equation F2-2: (F2-2) or Table 9-36 φvVn Vu = 15.5 ksi < = 16.9 ksi Aw Aw Therefore, intermediate stiffeners required. b. End panel stiffener spacing (F2-2) or Table 9-36 φvVn = 16.9 ksi Aw Therefore, a / h = 2.5 for h / tw = 86.4. Max. a1 = 2.5(54) = 135 in. (Use 10 ft = 120 in.) c. Check need for stiffeners between concentrated loads: h / tw = 86.4, a / h is over 3, k = 5 Vu Aw (F2-3) or Table 9-36 = 210 = 6.2 ksi 33.75 φvVn = 15.5 ksi > 6.2 ksi o.k. Aw Therefore, intermediate stiffeners not required between the concentrated loads. Summary (see Figure 4-7): E. Stiffener design: 1. Bearing stiffeners: See Step E.2, Example 4-10, for design procedure. Use for bearing stiffeners: Two plates 3⁄4×11×4′-53⁄4 with close bearing on flange receiving reaction or concentrated loads. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 180 BEAM AND GIRDER DESIGN 2. Intermediate stiffeners: Assume 5⁄16×4 in., Fy = 36 ksi, on each side of web. a. Check width-thickness ratio: 4 / 0.313 = 12.8 < 95 / √ Fy = 15.8 o.k. Table B5.1 b. Check moment of inertia: Ireq’d = 120(5⁄8)3(0.5) = 14.6 in.4 Ifurn = 1⁄12(0.313)(8.63)3 = 16.8 in.4 16.8 in.4 > 14.6 in.4 o.k. Appendix F2.3 c. Length required (see Step E.1.d. Example 4-10): 54 − 5⁄16 − (6)(9⁄16) = 505⁄16 54 − 5⁄16 − (4)(9⁄16) = 517⁄16 (use 51 in.) Use for intermediate stiffeners: Two plates 5⁄16×4×4′-3, fillet-welded to the compression flange and web, one on each side of the web. EXAMPLE 4-12 Design the section of a nominal 52-in. deep welded girder with no intermediate stiffeners to support a factored uniform load of 5.0 kips per linear foot on an 85-ft span. The girder will be framed between columns and its compression flange will be laterally supported for its entire length. Required bending moment: 4,516 kip-ft Required vertical shear: 213 kips Span: 85 ft Nominal depth: 52 in. Steel: Fy = 50 ksi Given: For compact web and flange, Mn = Fy Z Solution: 20 ′-0 20 ′-0 Bearing stiffener Bearing stiffeners 4 ′-9 5 ′-1 5 ′-1 Intermediate stiffeners 5 ′-1 40 ′-0 Figure 4-7 AMERICAN INSTITUTE OF STEEL CONSTRUCTION Sym. about cL PLATE GIRDER DESIGN LRFD Specification Reference 4 - 181 Design for a compact web and flange: Design for plastic moment, Fy Z: Required plastic section modulus: Zreq’d = Mu 4,516 × 12 = = 1,204 in.3 φFy 0.90 × 50 Enter Table of Built-up Wide-Flange Sections, Dimensions and Properties: For girder having 3⁄8×48 web with 11⁄4×16 flange plates: Z = 1,200 in.3 < 1,204 in.3 For girder having 3⁄8×52 web with 11⁄4×18 flange plates: Z = 1,450 in.3 > 1,204 in.3 A. Determine web required: Table B5.1 For compact web, h / tw ≤ 640 / √ Fyf = 91 Assume h = 50 in. Minimum tw = 50 / 91 = 0.55 in. Try: web = 9⁄16×50; Aw = 28.1 in.2 h / tw = 50 / 0.56 = 89 < 91 The web is compact. Intermediate stiffeners can be avoided if the design shear strength Fyf, of the web is adequate. (For plate girders with h / tw > 970 / √ refer to Appendix G4 of the LRFD Specification.) (F2-3) φvVn = φv(132,000Aw) / (h / tw)2 = 0.9(132,000 × 28.1) / (89)2 = 421 kips > 213 kips req’d. o.k. Therefore, no intermediate stiffeners are necessary. B. Determine flange required. Af ≈ (4,516)(12) = 21.7 in.2 50 × 50 Try 1×18 plate: Af = 18.0 in.2 Table B5.1 bf / 2tf = 18 / (2)(1.0) = 9.0 < 65 / √ Fy = 9.2 o.k. Flange is compact. C. Check plastic section modulus: AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 182 BEAM AND GIRDER DESIGN 51.0 9 50 50 Zx = 2 (18)(1.0) + = 1,270 in.3 2 16 2 4 3 3 1,270 in. > 1,204 in. req’d. o.k. Use: Web: One plate 9⁄16×50 Use: Flanges:* Two plates 1×18 Section K1.8 Note: Because this girder will be framed between columns, the usual end bearing stiffeners are not required. *Because this girder is longer than 60 feet, some economy may be gained by decreasing the flange size in areas of smaller moment, i.e., near ends of girder. AMERICAN INSTITUTE OF STEEL CONSTRUCTION PLATE GIRDER DESIGN 4 - 183 bf tf Nominal Size (h / tw) Wt. per Ft Area Depth In. Lb. In.2 92× 30 (131) 823 721 619 568 517 466 415 86× 28 (134) 80× 26 (125) 74× 24 (128) 68× 22 (132) d Flange Web In. In. In. In. 242 212 182 167 152 137 122 96.00 95.00 94.00 93.50 93.00 92.50 92.00 30 30 30 30 30 30 30 3 21⁄2 2 13⁄4 11⁄2 11⁄4 1 90 90 90 90 90 90 90 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 11⁄ 16 750 654 559 512 464 416 369 220 192 164 150 136 122 108 90.00 89.00 88.00 87.50 87.00 86.50 86.00 28 28 28 28 28 28 28 3 21⁄2 2 13⁄4 11⁄2 11⁄4 1 84 84 84 84 84 84 84 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 696 609 519 475 431 387 343 320 205 179 153 140 127 114 101 94.2 84.00 83.00 82.00 81.50 81.00 80.50 80.00 79.75 26 26 26 26 26 26 26 26 3 21⁄2 2 13⁄4 11⁄2 11⁄4 1 78 78 78 78 78 78 78 78 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 5⁄ 8 627 546 464 423 382 342 301 280 184 160 136 124 112 100 88.5 82.5 78.00 77.00 76.00 75.50 75.00 74.50 74.00 73.75 24 24 24 24 24 24 24 24 3 21⁄2 2 13⁄4 11⁄2 11⁄4 1 72 72 72 72 72 72 72 72 9⁄ 16 9⁄ 16 9⁄ 16 9⁄ 16 9⁄ 16 9⁄ 16 9⁄ 16 9⁄ 16 561 486 411 374 337 299 262 243 224 165 143 121 110 99.0 88.0 77.0 71.5 66.0 72.00 71.00 70.00 69.50 69.00 68.50 68.00 67.75 67.50 22 22 22 22 22 22 22 22 22 3 21⁄2 2 13⁄4 11⁄2 11⁄4 1 66 66 66 66 66 66 66 66 66 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 1⁄ 2 7⁄ 8 8 7⁄ 8 3⁄ 4 X X h tw f Axis X-X Width Thick Depth Thick bf tf h tw 7⁄ d=h+2t f BUILT-UP WIDE-FLANGE SECTIONS Dimensions and properties In. Z In.3 In.3 In.3 431000 363000 296000 263000 230000 198000 166000 8980 7640 6290 5620 4950 4280 3610 79.1 79.9 80.8 81.2 81.7 82.1 82.5 9760 8330 6910 6210 5510 4810 4120 127 127 127 127 127 127 127 428.9 428.9 428.9 428.9 428.9 428.9 428.9 349000 293000 238000 211000 184000 158000 132000 7750 6580 5410 4820 4240 3650 3070 68.6 69.4 70.2 70.6 71.0 71.4 71.8 8410 7160 5920 5300 4690 4090 3480 110 110 110 110 110 110 110 345.3 345.3 345.3 345.3 345.3 345.3 345.3 281000 235000 191000 169000 148000 127000 106000 95500 6680 5670 4660 4160 3650 3150 2650 2390 58.8 59.6 60.3 60.7 61.0 61.4 61.8 62.0 7270 6180 5110 4580 4050 3530 3000 2750 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1 371.8 371.8 371.8 371.8 371.8 371.8 371.8 371.8 220000 184000 149000 132000 115000 98000 81400 73300 5640 4780 3920 3490 3060 2630 2200 1990 49.8 50.5 51.2 51.5 51.8 52.2 52.5 52.7 6130 5200 4280 3830 3380 2930 2480 2260 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 293.7 293.7 293.7 293.7 293.7 293.7 293.7 293.7 169000 141000 114000 100000 87000 74000 61000 55000 49000 4700 3970 3250 2890 2530 2170 1800 1620 1440 41.6 42.2 42.8 43.1 43.4 43.7 44.0 44.2 44.4 5100 4310 3540 3150 2770 2390 2020 1830 1650 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 S In.4 a AMERICAN INSTITUTE OF STEEL CONSTRUCTION Z′ φvVn S′ I b c In.3 Kips 4 - 184 BEAM AND GIRDER DESIGN bf d=h+2t f tf X X h tw f BUILT-UP WIDE-FLANGE SECTIONS Dimensions and properties Flange Web Axis X-X Nominal Size (h / tw) Wt. per Ft Area Depth In. Lb. In.2 In. In. In. In. In. 61× 20 (137) 429 361 327 293 259 225 208 191 126 106 96.2 86.2 76.2 66.2 61.2 56.2 65.00 64.00 63.50 63.00 62.50 62.00 61.75 61.50 20 20 20 20 20 20 20 20 21⁄2 2 13⁄4 11⁄2 11⁄4 1 60 60 60 60 60 60 60 60 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 389 328 298 267 236 206 190 175 160 115 96.5 87.5 78.5 69.5 60.5 56.0 51.5 47.0 61.00 60.00 59.50 59.00 58.50 58.00 57.75 57.50 57.25 18 18 18 18 18 18 18 18 18 21⁄2 2 13⁄4 11⁄2 11⁄4 1 56 56 56 56 56 56 56 56 56 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 7⁄ 16 342 311 280 250 219 189 173 158 143 100 91.5 82.5 73.5 64.5 55.5 51.0 46.5 42.0 56.50 56.00 55.50 55.00 54.50 54.00 53.75 53.50 53.25 18 18 18 18 18 18 18 18 18 21⁄4 2 13⁄4 11⁄2 11⁄4 1 52 52 52 52 52 52 52 52 52 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 306 279 252 224 197 170 156 143 129 90.0 82.0 74.0 66.0 58.0 50.0 46.0 42.0 38.0 52.50 52.00 51.50 51.00 50.50 50.00 49.75 49.50 49.25 16 16 16 16 16 16 16 16 16 21⁄4 2 13⁄4 11⁄2 11⁄4 1 48 48 48 48 48 48 48 48 48 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 3⁄ 8 237 210 183 69.8 61.8 53.8 47.50 47.00 46.50 16 16 16 13⁄4 11⁄2 11⁄4 44 44 44 5⁄ 16 5⁄ 16 5⁄ 16 57× 18 (128) 53× 18 (138) 49× 16 (128) 45× 16 (141) d Width Thick Depth Thick bf tf h tw 7⁄ 8 3⁄ 4 7⁄ 8 3⁄ 4 5⁄ 8 7⁄ 8 3⁄ 4 5⁄ 8 7⁄ 8 3⁄ 4 5⁄ 8 S′ Z In.3 In.3 106000 84800 74600 64600 54800 45100 40300 35600 3250 2650 2350 2050 1750 1450 1310 1160 83500 67000 58900 51000 43300 35600 31900 28100 24400 Z′ φvVn b c In.3 In.3 Kips 34.6 35.2 35.4 35.7 36.0 36.3 36.4 36.6 3520 2870 2560 2240 1930 1610 1460 1310 56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3 165.8 165.8 165.8 165.8 165.8 165.8 165.8 165.8 2740 2230 1980 1730 1480 1230 1100 979 854 30.0 30.5 30.7 31.0 31.3 31.5 31.7 31.8 32.0 2980 2430 2160 1900 1630 1370 1240 1110 980 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 177.6 64000 56900 49900 43000 36300 29700 26400 23200 20000 2270 2030 1800 1570 1330 1100 983 866 750 25.9 26.2 26.4 26.6 26.9 27.1 27.2 27.4 27.5 2450 2200 1950 1700 1450 1210 1090 966 846 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 120.5 120.5 120.5 120.5 120.5 120.5 120.5 120.5 120.5 48900 43500 38100 32900 27700 22700 20200 17700 15300 1860 1670 1480 1290 1100 910 811 716 620 21.9 22.2 22.4 22.6 22.8 23.0 23.2 23.3 23.4 2030 1820 1610 1400 1200 1000 900 801 702 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 130.5 31500 27100 22700 1330 1150 976 18.7 18.9 19.1 1430 1240 1060 30.3 30.3 30.3 82.4 82.4 82.4 I S In.4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION a PLATE GIRDER DESIGN 4 - 185 bf tf Flange Nominal Size (h / tw) Wt. per Ft Area Depth In. Lb. In.2 In. In. 45× 16 (141) 156 142 129 116 45.8 41.8 37.8 33.8 46.00 45.75 45.50 45.25 16 16 16 16 d Web In. In. In. 1 44 44 44 44 5⁄ 16 5⁄ 16 5⁄ 16 5⁄ 16 8 3⁄ 4 5⁄ 8 X X h tw f Axis X-X Width Thick Depth Thick bf tf h tw 7⁄ d=h+2t f BUILT-UP WIDE-FLANGE SECTIONS Dimensions and properties S′ Z In.3 In.3 801 713 626 538 19.3 19.4 19.5 19.6 I S In.4 18400 16300 14200 12200 a Z′ φvVn b c In.3 In.3 Kips 871 780 688 598 30.3 30.3 30.3 30.3 82.4 82.4 82.4 82.4 a S′ = Additional section modulus corresponding to 1⁄16″ increase in web thickness. b Z′ = Additional plastic section modulus corresponding to 1⁄16″ increase in web thickness. c φvVn = Maximum design end shear strength permissible without transverse stiffeners for tabulated web plate (LRFD Specification Section F2). φv = 0.90. Notes: Based on their width-thickness ratios the girders in this table are noncompact shapes in accordance with LRFD Specification Section B5 for Fy = 36 ksi steel. For steels of higher yield strengths, check flanges for compliance with this section. This table does not consider local effects on the web due to concentrated loads. (See LRFD Specification Section K1.) See LRFD Specification Appendix G4 for design of stiffeners. Welds are not included in the tabulated weight per foot. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 186 BEAM AND GIRDER DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 187 BEAM DIAGRAMS AND FORMULAS Nomenclature E = modulus of elasticity of steel at 29,000 ksi I = moment of inertia of beam (in.4) L = total length of beam between reaction points (ft) Mmax = maximum moment (kip-in.) M1 = maximum moment in left section of beam (kip-in.) M2 = maximum moment in right section of beam (kip-in.) M3 = maximum positive moment in beam with combined end moment conditions (kip-in.) Mx = moment at distance x from end of beam (kip-in.) P = concentrated load (kips) P1 = concentrated load nearest left reaction (kips) P2 = concentrated load nearest right reaction, and of different magnitude than P1 (kips) R = end beam reaction for any condition of symmetrical loading (kips) R1 = left end beam reaction (kips) R2 = right end or intermediate beam reaction (kips) R3 = right end beam reaction (kips) V = maximum vertical shear for any condition of symmetrical loading (kips) V1 = maximum vertical shear in left section of beam (kips) V2 = vertical shear at right reaction point, or to left of intermediate reaction point of beam (kips) V3 = vertical shear at right reaction point, or to right of intermediate reaction point of beam (kips) Vx = vertical shear at distance x from end of beam (kips) W = total load on beam (kips) a = measured distance along beam (in.) b = measured distance along beam which may be greater or less than a (in.) l = total length of beam between reaction points (in.) w = uniformly distributed load per unit of length (kips per in.) w1 = uniformly distributed load per unit of length nearest left reaction (kips per in.) w2 = uniformly distributed load per unit of length nearest right reaction, and of different magnitude than w1 (kips per in.) x = any distance measured along beam from left reaction (in.) x1 = any distance measured along overhang section of beam from nearest reaction point (in.) ∆max = maximum deflection (in.) ∆a = deflection at point of load (in.) ∆x = deflection at any point x distance from left reaction (in.) ∆x1 = deflection of overhang section of beam at any distance from nearest reaction point (in.) AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 188 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS Frequently Used Formulas The formulas given below are frequently required in structural designing. They are included herein for the convenience of those engineers who have infrequent use for such formulas and hence may find reference necessary. Variation from the standard nomenclature on page 4-187 is noted. BEAMS Flexural stress at extreme fiber: f = Mc / I = M / S Flexural stress at any fiber: f = My / I y = distance from neutral axis to fiber Average vertical shear (for maximum see below): v = V / A = V / dt (for beams and girders) Horizontal shearing stress at any section A-A: v = VQ / Ib Q = statical moment about the neutral axis of that portion of the cross section lying outside of section A-A b = width at section A-A (Intensity of vertical shear is equal to that of horizontal shear acting normal to it at the same point and both are usually a maximum at mid-height of beam.) Shear and deflection at any point: x and y are abscissa and ordinate respectively of a point on the neutral d 2y EI 2 = M axis, referred to axes of rectangular coordinates through a selected dx point of support. (First integration gives slopes; second integration gives deflections. Constants of integration must be determined.) CONTINUOUS BEAMS (the theorem of three moments) Uniform load: w1l31 w2l32 l1 l2 l1 l2 Ma + 2Mb + + Mc = − 1⁄4 + I1 I2 I2 I1 I1 I2 Concentrated loads: l1 l2 l1 l2 P1a1b1 a1 p2a2b2 b2 Ma + 2Mb + + Mc = − 1 + − 1 + I1 I2 I1 l1 I2 I2 I1 I2 Considering any two consecutive spans in any continuous structure: Ma, Mb, Mc = moments at left, center, and right supports respectively, of any pair of adjacent spans = length of left and right spans, respectively, of the pair l1 and l2 = moment of inertia of left and right spans, respectively I1 and I2 w1 and w2 = load per unit of length on left and right spans, respectively = concentrated loads on left and right spans, respectively P1 and P2 a1 and a2 = distance of concentrated loads from left support, in left and right spans, respectively = distance of concentrated loads from right support, in left and right spans, b1 and b2 respectively The above equations are for beam with moment of inertia constant in each span but differing in different spans, continuous over three or more supports. By writing such an equation for each successive pair of spans and introducing the known values (usually zero) of end moments, all other moments can be found. AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 189 BEAM DIAGRAMS AND FORMULAS Table of Concentrated Load Equivalents n Loading P 2 P 3 P 4 P P P 5 P P P Beam Fixed One End, Supported at Other Beam Fixed Both Ends a b c d e f g 0.125 — 0.500 — 0.013 1.000 1.000 0.070 0.125 0.375 0.625 0.005 1.000 0.415 0.042 0.083 — 0.500 0.003 0.667 0.300 a b c d e f g 0.250 — 0.500 — 0.021 2.000 0.800 0.156 0.188 0.313 0.688 0.009 1.500 0.477 0.125 0.125 — 0.500 0.005 1.000 0.400 a b c d e f g 0.333 — 1.000 — 0.036 2.667 1.022 0.222 0.333 0.667 1.333 0.015 2.667 0.438 0.111 0.222 — 1.000 0.008 1.778 0.333 a b c d e f g 0.500 — 1.500 — 0.050 4.000 0.950 0.266 0.469 1.031 1.969 0.021 3.750 0.428 0.188 0.313 — 1.500 0.010 2.500 0.320 a b c d e f g 0.600 — 2.000 — 0.063 4.800 1.008 0.360 0.600 1.400 2.600 0.027 4.800 0.424 0.200 0.400 — 2.000 0.013 3.200 0.312 Coeff. ∞ P Simple Beam P Maximum positive moment (kip-ft): aPL Maximum negative moment (kip-ft): bPL Pinned end reaction (kips): cP Fixed end reaction (kips): dP Maximum deflection (in): ePl3 / EI Equivalent simple span uniform load (kips): f P Deflection coefficient for equivalent simple span uniform load: g Number of equal load spaces: n Span of beam (ft): L Span of beam (in): l AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 190 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load . . . . . . = wl l wl x R R l 2 l 2 V . . . . . . . . . . . . . . . . . = Vx . . . . . . . . . . . . . . . . . = w − x M max Shear V Mx l 2 ∆x Moment wl 2 (at center) . . . . . . . . . . . . = 8 wx . . . . . . . . . . . . . . . . . = (l − x) 2 ∆ max (at center) . . . . . . . . . . . . Mmax wl 2 R=V . . . . . . . . . . . . . . . . . 5wl 4 384 EI wx = (l2 − 2lx 2 + x3 ) 24EI = 2. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO ONE END Total Equiv. Uniform Load . . . . . . = l x R 1 = V1 . . . . . . . . . . . . . . . . . W R2 R1 V1 Shear V2 max Vx . . . . . . . . . . . . . . . . . = . . . . . . . . . . . . . . . M max (at x = Mx M max l = .5774 l) . . . . . . . √3 √ 158 √ ∆x W Wx 2 − 2 3 l 2Wl = = .1283 Wl 9√ 3 . . . . . . . . . . . . . . . . . = ∆ max (at x = l 1 − Moment W 3 2W = 3 = R 2 = V2 .5774 l = .5193 l) . . 16W = 1.0264W 9√ 3 Wx 3l2 (l2 − x2 ) = 0.1304 . . . . . . . . . . . . . . . . . = Wl 3 EI Wx 180 EIl2 (3x4 − 10l2 x2 + 7l4 ) 3. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO CENTER 4W 3 W = 2 W Total Equiv. Uniform Load . . . . . . = l x W R R=V R l 2 Vx l 2 V . . . . . . . . . . . . . . . . . l 2 (when x < ) . . . . . . . . . . = M max (at center) . . . . . . . . . . . . Shear V Mx M max ∆x (l2 − 4x2) 1 l 2 (when x < ) . . . . . . . . . . = Wx − ∆ max (at center) . . . . . . . . . . . . Moment 2l2 Wl = 6 l 2 2 = (when x < ) . . . . . . . . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION Wl 3 60EI Wx 480 EIl2 2x 2 3l2 (5l2 − 4x2 )2 BEAM DIAGRAMS AND FORMULAS 4 - 191 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 4. SIMPLE BEAM—UNIFORMLY LOAD PARTIALLY DISTRIBUTED l b wb a R 1 R2 x V1 wb (2c + b) 2l wb (2a + b) R 2 = V2 (max. when a > c) . . . . . . . = 2l R 1 = V1 (max. when a < c) . . . . . . . = c Vx (when x > a and < (a + b)) . . . = R 1 − w(x − a) M max Mx R1 R1 at x = a + w . . . . . . . . = R 1 a + 2w (when x < a) . . . . . . . . . = R 1x Mx (when x > a and < (a + b)) . . . = R 1x − Mx (when x > (a + b)) . . . . . . . = R 2(l − x) Shear V2 R1 a+ w M max Moment w (x − a)2 2 5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END R 1 = V1 max . . . . . . . . . . . . . . .= l a wa R 2 = V2 R 1 R2 x V1 R1 w M max wa 2 2l Vx (when x < a) . . . . . . . . . = R 1 − wx M max R at x = 1 w Mx (when x < a) . . . . . . . . . = R 1x − Mx (when x > a) . . . . . . . . . = R 2 (l − x) ∆x (when x < a) . . . . . . . . . = wx (a 2 (2l − a)2 − 2ax 2 (2l − a) + lx 3 ) 24EIl ∆x (when x > a) . . . . . . . . . = wa 2 (l − x) (4xl − 2x2 − a 2 ) 24EIl V2 Shear . . . . . . . . . . . . . . . .= wa (2l − a) 2l . . . . . . . . . .= Moment R 21 2w wx 2 2 6. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END l a w1 a R1 b c w2 c R2 x R 1 = V1 . . . . . . . . . . . . . . . .= w 1a(2l − a) + w 2 c2 2l R 2 = V2 . . . . . . . . . . . . . . . .= w 2c(2l − c) + w 1 a2 2l Vx (when x < a) . . . . . . . . . = R 1 − w 1x Vx (when x > a and < (a + b)) Vx (when x > (a + b)) . . . . . . . = R 2 − w 2 (l − x) = R 1 − w 1a R1 R1 = at x = w when R 1 < w 1a 2w 1 1 R 22 R1 at x = l − w when R 2 < w 2 c = 2w 2 2 2 V1 Shear R1 w1 V2 M max M max M max Mx Moment Mx Mx w 1x2 2 w1a (when x > a and < (a + b)) . . . = R 1x − (2x − a) 2 (when x < a) . . . . . . . . . = R 1x − (when x > (a + b)) . . . . . . . = R 2(l − x) − AMERICAN INSTITUTE OF STEEL CONSTRUCTION w 2(l − x)2 2 4 - 192 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER Total Equiv. Uniform Load . . . . . . . . . . = 2P l P x R l 2 R=V . . . . . . . . . . . . . . . . . . . . = P 2 M max (at point of load) . . . . . . . . . . . = Pl 4 Mx Px 1 when x < . . . . . . . . . . . . . = 2 2 ∆ max (at point of load) . . . . . . . . . . . = ∆x 1 Px (3l2 − 4x2 ) when x < . . . . . . . . . . . . . = 2 48EI R l 2 V Shear V M max Moment Pl 3 48EI 8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT Total Equiv. Uniform Load . . . . . . . . . . = l x P R 1 a Pb l R 2 = V2 (max when a > b ) . . . . . . . . . . . = Pa l M max (at point of load) . . . . . . . . . . . = Pab l Mx (when x < a ) . . . . . . . . . . . . . . = Pbx l ∆ max at x = Pab (a + 2b)√ 3a(a + 2b) 27EIl ∆a (at point of load) . . . . . . . . . . . = Pa 2b 2 3EIl ∆x (when x < a ) . . . . . . . . . . . . . . = Pbx 2 (l − b 2 − x2 ) 6EIl V1 V2 Shear M max Moment l2 R 1 = V1 (max when a < b ) . . . . . . . . . . . = R2 b 8Pab a(a + 2b) √ when a > b 3 . . . = 9. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED Total Equiv. Uniform Load . . . . . . . . . . = l x P P R R a a V Shear V M max Moment 8Pa l R=V . . . . . . . . . . . . . . . . . . . . =P M max (between loads) . . . . . . . . . . . . = Pa Mx (when x < a ) . . . . . . . . . . . . . . = Px ∆ max (at center) . . . . . . . . . . . . . . . = Pa (3l2 − 4a2 ) 24EI ∆x (when x < a ) . . . . . . . . . . . . . . = Px (3la − 3a 2 − x2 ) 6EI ∆x (when x > a and < (l − a)) . . . . . . . = Pa (3lx − 3x2 − a 2) 6EI AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 193 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 10. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED l P x P R 1 a b R2 V1 V2 Shear M2 M1 Moment R 1 = V1 (max. when a < b ) . . . . . . . . . = P (l − a + b) l R 2 = V2 (max. when a > b ) . . . . . . . . . = P (l − b + a) l Vx (when x > a and < (l − b)) . . . . . = P (b − a) l M1 (max. when a > b ) . . . . . . . . . = R 1 a M2 (max. when a < b ) . . . . . . . . . = R 2 b Mx (when x < a ) . . . . . . . . . . . . = R 1 x Mx (when x > a and < (l − b)) . . . . . = R 1 x − P(x − a) 11. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED l x P1 P2 R 1 a b R2 V1 V2 Shear M2 M1 Moment R 1 = V1 . . . . . . . . . . . . . . . . . . = P1 (l − a) + P2 b l R 2 = V2 . . . . . . . . . . . . . . . . . . = P1 a + P2 (l − b) l Vx (when x > a and < (l − b)) . . . . . = R 1 − P1 M1 (max. when R 1 < P1) . . . . . . . . = R 1 a M2 (max. when R 2 < P2) . . . . . . . . = R 2 b Mx (when x < a ) . . . . . . . . . . . . = R 1 x Mx (when x > a and < (l − b)) . . . . . = R 1 x − P(x − a) 12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load . . . . . . . . . . = wl R 1 = V1 . . . . . . . . . . . . . . . . . . = 3wl 8 R 2 = V2 max . . . . . . . . . . . . . . . . . . = 5wl 8 Vx . . . . . . . . . . . . . . . . . . = R 1 − wx M max . . . . . . . . . . . . . . . . . . = l wl R 1 R2 x V1 Shear V2 3 l 8 l 4 M1 Moment M max wl 2 8 Mx 9 3 wl 2 at x = l . . . . . . . . . . . . . = 128 8 Mx . . . . . . . . . . . . . . . . . . = R1x − ∆ max ∆x wx 2 2 l wl 4 33 ) = .4215 l . . . = at x = (1 + √ 16 185 EI . . . . . . . . . . . . . . . . . . AMERICAN INSTITUTE OF STEEL CONSTRUCTION wx 3 (l − 3lx + 2x3 ) 48EI 4 - 194 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT CENTER l l 2 1 3P 2 R 1 = V1 . . . . . . . . . . . . . . . . . . = 5P 15 R 2 = V2 max . . . . . . . . . . . . . . . . = 11P 16 M max (at fixed end) . . . . . . . . . . . = 3Pl 16 (at point of load) . . . . . . . . . . = 5Pl 32 P x R Total Equiv. Uniform Load . . . . . . . = l 2 R 2 M1 V1 Shear V2 Mx Mx M1 ∆ max Moment M max 3 11 l ∆x ∆x ∆x l 5Px when x < . . . . . . . . . . . . = 2 16 l 11x l when x > . . . . . . . . . . . . = P − 2 2 16 3 3 at x = l√ 15 = .4472 l . . . . . . . = Pl = .009317 PlEI 48EI√ 5 (at point of load) . . . . . . . . . . = 7PL 3 768 EI Px l (3l2 − 5x2 ) when x < . . . . . . . . . . . . = 96EI 2 l P (x − l)2(11x − 2l) when x > . . . . . . . . . . . . = 2 96EI 14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT ANY POINT R 1 = V1 . . . . . . . . . . . . . . . . . . = R 2 = V2 . . . . . . . . . . . . . . . . . . = l P x R 1 a b R2 V1 Shear Pa 2l3 (a + 2l) (3l2 − a2 ) (at point of load) . . . . . . . . . . = R 1 a M2 (at fixed end) . . . . . . . . . . . = Mx (when x < a ) . . . . . . . . . . . . = R 1 x Mx (when x > a ) . . . . . . . . . . . . = R 1 x − P(x − a) ∆ max when a < .414 l at x = l ∆ max when a > .414 l at x = l Moment Pa R2 2l3 M V2 M1 Pb 2 M2 ∆a Pab 2l2 (a + l) Pa(l2 + a2 )3 (l2 + a 2) = 2 2 (3l − a ) 3EI(3l2 − a2 )2 .......... √ 2l + a a = (at point of load) . . . . . . . . . . = ∆ (when x < a ) . . . . . . . . . . . . = ∆x (when x > a ) . . . . . . . . . . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION Pab 2 6EI 2l+ a √ Pa 2 b3 12EIl3 2 Pb x 12EIl3 Pa 12EIl2 a (3l + a) (3al 2 − 2lx 2 − ax 2) (l − x)2 (3l2 x − a 3 x − 2a 2l) BEAM DIAGRAMS AND FORMULAS 4 - 195 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 15. BEAM FIXED AT BOTH ENDS—UNIFORMLY DISTRIBUTED LOADS 2wl 3 wl . . . . . . . . . . . . . . . . . . = 2 Total Equiv. Uniform Load . . . . . . . . = l x R=V wl R R l 2 l 2 V V Shear .2113 l M1 Moment M max M max Vx M max (at ends) . . . . . . . . . . . . . = M1 (at center) . . . . . . . . . . . . . = Mx . . . . . . . . . . . . . . . . . . = ∆ max ∆x l 2 wl 2 12 wl 2 24 w (6lx − l2 − 6x2 ) 12 wl 4 384 EI wx 2 (l − x)2 24EI . . . . . . . . . . . . . . . . . . = w − x (at center) . . . . . . . . . . . . . = . . . . . . . . . . . . . . . . . . = 16. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT CENTER l R Total Equiv. Uniform Load . . . . . . . . = P P x l 2 R=V R l 2 V V Shear M max Mx ∆ max l 4 M max Moment M max M max ∆x P 2 Pl (at center and ends) . . . . . . . . = 8 . . . . . . . . . . . . . . . . . . = when x < P l . . . . . . . . . . . = (4x − l) 8 2 Pl 3 (at center) . . . . . . . . . . . . . = 192 EI when x < l Px 2 (3l − 4x) . . . . . . . . . . . = 2 48EI 17. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT ANY POINT R 1 = V1 (max. when a < b ) . . . . . . . . = R 2 = V2 (max. when a > b ) . . . . . . . . = l P x R1 b a R2 V1 Ma M1 Moment M2 l3 Pa 2 (3a + b) (a + 3b) l3 Pab 2 M1 (max. when a < b ) . . . . . . . . = M2 (max. when a > b ) . . . . . . . . = Ma (at point of load) . . . . . . . . . = Mx (when x < a ) . . . . . . . . . . . = R 1 x − ∆ max 2Pa 3b 2 2al . . . . = when a > b at x = 3a + b 3EI(3a + b)2 ∆a (at point of load) . . . . . . . . . = ∆x (when x < a ) . . . . . . . . . . . = V2 Shear Pb 2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION l2 Pa 2 b l2 2Pa 2b 2 l3 Pab 2 l2 Pa 3 b3 3EIl3 Pb 2 x2 6EIl2 (3al − 3ax − bx) 4 - 196 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 18. CANTILEVER BEAM—LOAD INCREASING UNIFORMLY TO FIXED END 8 3 Total Equiv. Uniform Load . . . . . . . . = W l R=V . . . . . . . . . . . . . . . . . . . =W W Vx R x2 . . . . . . . . . . . . . . . . . . . =W l2 x M max (at fixed end) . . . . . . . . . . . . = V Shear Mx M max Moment . . . . . . . . . . . . . . . . . . . = ∆ max (at free end) . . . . . . . . . . . . . = ∆x . . . . . . . . . . . . . . . . . . . = Wl 3 Wx 3 3l2 Wl 3 15EI W 60EIl2 (x5 − 5l4 x + 4l5 ) 19. CANTILEVER BEAM—UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load . . . . . . . . = 4wl l R = V . . . . . . . . . . . . . . . . . . . = wl wl Vx R x V M max Moment M max (at fixed end) . . . . . . . . . . . . = wl 2 2 . . . . . . . . . . . . . . . . . . . = wx 2 2 ∆ max (at free end) . . . . . . . . . . . . . = wl 4 8EI ∆x w (x 4 − 4l3 x + 3l4 ) 24EI Mx Shear . . . . . . . . . . . . . . . . . . . = wx . . . . . . . . . . . . . . . . . . . = 20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD Total Equiv. Uniform Load . . . . . . . . = l R = V . . . . . . . . . . . . . . . . . . . = wl wl M R Vx . . . . . . . . . . . . . . . . . . . = wx x M max (at fixed end) . . . . . . . . . . . . = V Shear Mx . . . . . . . . . . . . . . . . . . . = .4227 l M1 Moment 8 wl 3 wl 2 3 w 2 (l − 3x2 ) 6 ∆ max (at deflected end) . . . . . . . . . . = wl 4 24EI ∆x w(l2 − x2 )2 24EI M max . . . . . . . . . . . . . . . . . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 197 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 21. CANTILEVER BEAM—CONCENTRATED LOAD AT ANY POINT Total Equiv. Uniform Load . . . . . . . . = R=V 8Pb l . . . . . . . . . . . . . . . . . . . =P l M max (at fixed end) . . . . . . . . . . . . = Pb P x a (when x > a) . . . . . . . . . . . . = P(x − a) R Mx V ∆ max (at free end) . . . . . . . . . . . . . = Pb 2 (3l − b) 6EI ∆a (at point of load) . . . . . . . . . . = Pb 3 3EI ∆x (when x < a) . . . . . . . . . . . . = Pb 2 (3l − 3x − b) 6EI ∆x (when x > a) . . . . . . . . . . . . = P(l − x)2 (3b − l + x) 6EI b Shear Mmax Moment 22. CANTILEVER BEAM—CONCENTRATED LOAD AT FREE END l Total Equiv. Uniform Load . . . . . . . . = 8P P R=V . . . . . . . . . . . . . . . . . . . =P R x M max (at fixed end) . . . . . . . . . . . . = Pl Mx V Shear M max Moment . . . . . . . . . . . . . . . . . . . = Px ∆ max (at free end) . . . . . . . . . . . . . = Pl 3 3EI ∆x P (2l3 − 3l2x + x3 ) 6EI . . . . . . . . . . . . . . . . . . . = 23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—CONCENTRATED LOAD AT DEFLECTED END Total Equiv. Uniform Load . . . . . . . . = 4P l R=V P M x . . . . . . . . . . . . . . . . . . . =P R M max (at both ends) . . . . . . . . . . . . = V Mx l 2 l 2 Moment M max . . . . . . . . . . . . . . . . . . . = P − x Shear M max Pl 2 3 ∆ max (at deflected end) . . . . . . . . . . = pl 12EI ∆x P(l − x)2 (l + 2x) 12EI . . . . . . . . . . . . . . . . . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 198 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 24. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD l x R1 w(l +a) a2 l 1 – 2) 2 ( l a x1 R 2 = V2 + V3 . . . . . . . . . . . = w (l + a)2 2l V2 . . . . . . . . . . . . . . . = wa V3 . . . . . . . . . . . . . . . = V3 Moment (between supports) . . . . . = R 1 − wx M2 a 2 w l 2 2 1 − 2 . . . . . = 2 (l + a) (l − a) 2 l 8l wa 2 (at R 2) . . . . . . . . . . . . = 2 M 1 at x = M2 M1 a2 l (1 – 2 ) l w 2 (l + a2 ) 2l Vx 1 (for overhang) . . . . . . . = w(a − x 1) V2 Shear w 2 (l − a2 ) 2l Vx R2 V1 R 1 = V1 . . . . . . . . . . . . . . = M x (between supports) . . . . . = wx 2 (l − a 2 − xl) 2l M x1 (for overhang) . . . . . . . = w (a − x1 )2 2 ∆x wx (l4 − 2l2 x2 + lx 3 − 2a 2l2 + 2a 2x 2) 24EIl (between supports) . . . . . = ∆ x 1 (for overhang) . . . . . . . = wx 1 (4a2 l − l3 + 6a 2 x1 − 4ax 21 + x31 ) 24EI 25. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD ON OVERHANG R 1 = V1 . . . . . . . . . . . . . . = R2 V1 + V2 . . . . . . . . . . . . = x a x1 Vx 1 (for overhang) . . . . . . . = w(a − x 1) wa R1 R2 M max (at R 2) . . . . . . . . . . . = wa 2 2 M x (between supports) . . . . . = wa 2 x 2l M x1 (for overhang) . . . . . . . = w (a − x 1)2 2 V2 V1 Shear ∆ max between supports at x = Moment wa (2l + a) 2l . . . . . . . . . . . . . . . = wa V2 l wa 2 2l M max wa 2 l2 l wa 2 l2 = 0.03208 = EI 18√ 3 EI √3 ∆ max (for overhang at x1 = a ) . . . = wa 3 (4l + 3a) 24EI ∆x wa 2x 2 (l − x 2) 12EIl (between supports) . . . . . = ∆ x 1 (for overhang) . . . . . . . = wx 1 (4a2 l + 6a 2x 1 − 4ax 21 + x31) 24EI AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 199 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 26. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT END OF OVERHANG Pa l P = (l + a) l =P = Pa Pax = l = P(a − x 1) R 1 = V1 . . . . . . . . . . . . . . . . . . . . . = a x1 l x R 2 = V1 + V2 . . . . . . . . . . . . . . . . . . . P R2 R1 V2 V2 M max . . . . . . . . . . . . . . . . . . . . . (at R 2) . . . . . . . . . . . . . . . . . Mx (between supports) . . . . . . . . . . M x1 (for overhang) . . . . . . . . . . . . . l Pal 2 Pal 2 = .06415 . . . . . = between supports at x = EI √3 9√ 3 EI ∆ max V1 Shear ∆ max M max Moment ∆x ∆ x1 Pa 2 (l + a) 3EI Pax 2 (between supports) . . . . . . . . . . = (l − x2) 6EIl Px 1 (for overhang) . . . . . . . . . . . . . = (2al + 3ax 1 − x21 ) 6EI (for overhang at x1 = a) . . . . . . . . = 27. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS Total Equiv. Uniform Load . . . . . . . . . . = wl a l x R l 2 . . . . . . . . . . . . . . . . . . . . . = Vx . . . . . . . . . . . . . . . . . . . . . = w − x x1 wl l 2 R M max Mx V V Shear M max wl 2 R=V ∆ max (at center) . . . . . . . . . . . . . . . = . . . . . . . . . . . . . . . . . . . . . = (at center) . . . . . . . . . . . . . . . = ∆x . . . . . . . . . . . . . . . . . . . . . = ∆ x1 . . . . . . . . . . . . . . . . . . . . . = Moment l 2 wl 2 8 wx (l − x) 2 5wl 4 384 EI wx 2 (l − 2lx 2 + x3) 24EI 3 wl x1 24EI 28. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS Total Equiv. Uniform Load . . . . . . . . . . = R 1 = V1 (max. when a < b ) . . . . . . . . . . . = l x R1 R 2 = V2 (max. when a > b ) . . . . . . . . . . . = x1 P R2 a b V1 V2 Shear M max Moment M max (at point of load) . . . . . . . . . . . . = Mx (when x < a ) . . . . . . . . . . . . . . = ∆ max at x = ∆a (at point of load) . . . . . . . . . . . . = ∆x (when x < a ) . . . . . . . . . . . . . . = ∆x (when x > a ) . . . . . . . . . . . . . . = ∆ x1 . . . . . . . . . . . . . . . . . . . . . = a(a + 2b) √ when a > b 3 . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION 8Pab l2 Pb l Pa l Pab l Pbx l Pab (a + 2b)√ 3a(a + 2b) 27EIl Pa 2b 2 3EIl Pbx 2 (l − b 2 − x2 ) 6EIl Pa(l − x) (2lx − x 2 − a2 ) 6EIl Pabx1 (l + a) 6EIl 4 - 200 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 29. CONTINUOUS BEAM—TWO EQUAL SPANS—UNIFORM LOAD ON ONE SPAN x Total Equiv. Uniform Load = 49 wl 64 R 1 = V1 . . . . . . . . . . . = 7 wl 16 R 2 = V2 + V3 . . . . . . . . . = 5 wl 8 R 3 = V3 . . . . . . . . . . . =− wl R1 R2 l R3 l V1 V3 V2 7l 16 Shear V2 . . . . . . . . . . . . = M max at x = M max M1 7 l 16 . . . . . = 1 wl 16 9 wl 16 49 wl 2 512 M1 (at support R 2) . . . . = 1 wl 2 16 Mx (when x < l) . . . . . = wx (7l − 8x) 16 Moment ∆ max (at 0.472 l from R 1 ) . . = .0092 wl 4 / EI 30. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT CENTER OF ONE SPAN P l 2 l 2 R2 R1 l R3 Total Equiv. Uniform Load = 13 P 8 R 1 = V1 . . . . . . . . . . . = 13 P 32 R 2 = V2 + V3 . . . . . . . . . = 11 P 16 R 3 = V3 . . . . . . . . . . . =− l V1 V3 Shear V2 V2 . . . . . . . . . . . . = M1 M1 Moment 19 P 32 = 13 Pl 64 (at support R 2) . . . . = 3 Pl 32 M max (at point of load) . . . M max 3 P 32 ∆ max (at 0.480 l from R 1 ) . . = .015 Pl 3 / EI 31. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT ANY POINT P a R1 b R2 l R3 l V1 Shear V2 M max = R 2 = V2 + V3 . . . . . . . . . = R 3 = V3 . . . . . . . . . . . =− V3 V2 . . . . . . . . . . . . = M max (at point of load) . . . M1 Moment Pb R 1 = V1 . . . . . . . . . . . M1 = (at support R 2) . . . . = AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4l3 Pa 2l3 (4l2 − a(l + a)) (2l2 + b(l + a)) Pab 4l3 Pa 4l3 (4l2 + b(l + a)) Pab 4l3 Pab 4l2 (l + a) (4l2 − a(l + a)) (l + a) BEAM DIAGRAMS AND FORMULAS 4 - 201 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 32. BEAM—UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS R 1 = V1 . . . . . . . . . . . = wl M 1 − M 2 + 2 l R 2 = V2 . . . . . . . . . . . = wl M 1 − M 2 − 2 l l x M1 wl M 1 l 2 R2 2 V 1 Shear V2 l M 1 − M 2 M 3 at x = + . . wl 2 = M3 M2 M1 b . . . . . . . . . . . . . = w − x + Vx M >M R1 2 . . . . . . . . . . . . . = Mx M1 − M2 l 2 wl 2 M 1 + M 2 (M 1 − M 2) − + 8 2 2wl 2 wx (l − x) + 2 M − M 2 1 x − M1 l b Moment M + M M − M l √ − + 4 w wl 2 b (to locate inflection points) = ∆x = wx 24EI 1 2 1 2 2 8M 1l 4M 2l 4M 1 4M 2 2 12M 1 3 2 x − 2l + wl − wl x + w x + l − w − w 33. BEAM—CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS M1 l P x R 1 l 2 M1 >M 2 M2 l R 1 = V1 . . . . . . . . . . . = P M1 − M2 + 2 l R 2 = V2 . . . . . . . . . . . = P M1 − M2 − 2 l R2 2 Pl M 1 + M 2 − 4 2 M 3 (at center) . . . . . . . . = l M x when x < . . . . . . 2 P M1 − M2 x − M1 = + l 2 l M x when x > . . . . . . 2 = V 1 V2 Shear M3 Moment M1 M2 (M 1 − M 2)x P (l − x) + − M1 2 l 8(l − x) l Px 2 3l − 4x2 − ∆ x when x < = [M 1 (2l − x) + M 2 (l + x)] 2 48EI Pl AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 202 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 34. CONTINUOUS BEAM—THREE EQUAL SPANS—ONE END SPAN UNLOADED wl A wl B l RA = 0.383 w l C l 0.583 w l 0.383 w l D l RC = 0.450 w l RB = 1.20 w l RD = –0.033 w l 0.033 w l 0.617 w l Shear 0.033 w l 0.417 w l –0.1167 w l 2 +0.0735 w l 2 –0.0333 wl 2 +0.0534 w l 2 Moment 0.383 l 0.583 l ∆max (0.430 l from A) = 0.0059 wl 4/ El 35. CONTINUOUS BEAM—THREE EQUAL SPANS—END SPANS LOADED wl A wl B l RA = 0.450 w l C l RB = 0.550 wl D l RC = 0.550 w l RD = 0.450 w l 0.550 wl 0.450 wl 0.450 w l 0.550 w l Shear –0.050 w l 2 +0.1013 w l 2 +0.1013 w l 2 Moment 0.450 l 0.450 l ∆max (0.479 l from A or D) = 0.0099 wl 4/ El 36. CONTINUOUS BEAM—THREE EQUAL SPANS—ALL SPANS LOADED wl A wl B l wl C l RB = 1.10 w l RA = 0.400 w l 0.500 w l 0.400 w l 0.400 w l 0.500 w l –0.100 w l 2 –0.100 w l 2 +0.080 w l 2 RD = 0.400 w l 0.600 w l 0.600 w l Shear D l R C = 1.10 w l +0.080 w l 2 +0.025w l 2 Moment 0.400 l 0.500 l 0.500 l 0.400 l ∆max (0.446 l from A or D) = 0.0069 w / El l4 AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 203 BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 37. CONTINUOUS BEAM—FOUR EQUAL SPANS—THIRD SPAN UNLOADED wl wl A B l RA = 0.380 w l wl C l RE = 0.442 w l 0.558 w l 0.620 w l Shear 0.442 w l 0.040 w l 0.397 w l –0.058 w l 2 –0.0179 w l 2 –0.1205 w l 2 +0.0977 w l 2 +0.0611 w l 2 2 +0.072 w l E l R D = 0.598 w l 0.603 w l 0.380 w l D l RC = 0.357 w l RB = 1.223 w l Moment 0.603 l 0.442 l 0.380 l ∆ max (0.475 l from E) = 0.0094 wl 4/ El 38. CONTINUOUS BEAM—FOUR EQUAL SPANS—LOAD FIRST AND THIRD SPANS wl wl A B l RA = 0.446 w l C l RC = 0.464 w l RB = 0.572 w l RE = –0.054 w l 0.054 w l 0.518 w l –0.0536 w l 2 –0.0357 w l 2 –0.0536 w l 2 +0.0996 w l E 0.054 w l 0.554 w l Shear l R D = 0.572 w l 0.482 w l 0.018 w l 0.446 w l D l +0.0805 w l 2 2 Moment 0.518 l 0.446 l ∆ max (0.477 l from A) = 0.0097 wl 4/ El 39. CONTINUOUS BEAM—FOUR EQUAL SPANS—ALL SPANS LOADED wl wl A B l 0.607 w l Shear +0.0772 D l l RD = 1.143 w l +0.0364 w l 2 0.393 w l 0.536 w l –0.1071 w l 2 +0.0364 w l 2 +0.0772 w l 2 Moment 0.536 l E RE = 0.393 w l 0.607 w l 0.464 w l –0.0714 w l 2 –0.1071 w l 2 wl 2 wl RC = 0.928 w l 0.464 w l 0.536 w l 0.393 w l C l RB = 1.143 w l RA = 0.393 w l wl 0.536 l 0.393 l 0.393 l ∆ max (0.440 l from A and D) = 0.0065 w l 4/ El AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 204 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS For Various Static Loading Conditions For meaning of symbols, see page 4-187 40. SIMPLE BEAM—ONE CONCENTRATED MOVING LOAD x P R2 R1 l R 1 max = V1 max (at x = 0) . . . . . . . . . . . =P 1 M max at point of load, when x = . . . . . 2 = Pl 4 41. SIMPLE BEAM—TWO EQUAL CONCENTRATED MOVING LOADS R 1 max = V1 max (at x = 0) . . . . . . . . . . . a l = P 2 − when a <, (2 − √ 2 ) l . . . . . = .586 l x a P R1 under load 1 at x P R2 2 1 M max 1 l − 2 a . . 2 = P l − 2l a 2 2 when a > (2 − √ 2 )l . . . . . = .586 l l with one load at center of span = Pl 4 (Case 40) 42. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED MOVING LOADS R 1 max = V1 max (at x = 0) . . . . . . . . . . . under P1 , at x = P1 > P2 x a P1 R1 P2 R2 M max P 2a 1 l− 2 P1 + P2 = P1 + P2 l−a l = (P1 + P2 ) x2 l M max may occur with larger load at center of span and other l load off span (Case 40) . . . = P1 l 4 GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS l P1 a C.G. R1 P2 R2 x b l 2 M Moment The maximum shear due to moving concentrated loads occurs at one support when one of the loads is at that support. With several moving loads, the location that will produce maximum shear must be determined by trial. The maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support. In the accompanying diagram, the maximum bending moment occurs under load P1 when x = b . It should also be noted that this condition occurs when the centerline of the span is midway between the center of gravity of loads and the nearest concentrated load. AMERICAN INSTITUTE OF STEEL CONSTRUCTION BEAM DIAGRAMS AND FORMULAS 4 - 205 BEAM DIAGRAMS AND FORMULAS Design properties of cantilevered beams Equal loads, equally spaced No. Spans System a 2 M1 M1 M1 A B 3 A b b M3 M3 M2 M2 M3 C D c c C D M1 M1 M1 M1 M4 A E 4 A E d M1 M1 b D M1 D M1 M1 A F H f f H M3 C M1 M5 H G 3 F A 4 P 2 P P 5 P P 2 P 2 P P P P Moments P P 2 M1 M2 M3 M4 M5 0.086PL 0.096PL 0.063PL 0.039PL 0.051PL 0.167PL 0.188PL 0.125PL 0.083PL 0.104PL 0.250PL 0.278PL 0.167PL 0.083PL 0.139PL 0.333PL 0.375PL 0.250PL 0.167PL 0.208PL 0.429PL 0.480PL 0.300PL 0.171PL 0.249PL Reactions P D M1 M3 H M2 d e A B C D E F G H 0.414P 1.172P 0.438P 1.063P 1.086P 1.109P 0.977P 1.000P 0.833P 2.333P 0.875P 2.125P 2.167P 2.208P 1.958P 2.000P 1.250P 3.500P 1.333P 3.167P 3.250P 3.333P 2.917P 3.000P 1.667P 4.667P 1.750P 4.250P 4.333P 4.417P 3.917P 4.000P 2.071P 5.857P 2.200P 5.300P 5.429P 5.557P 4.871P 5.000P Cantilever Dimensions P H M3 P 2 M3 M3 M3 M3 P 2 b M3 M3 M3 2 P 2 P C f M3 M3 G ∞ D f M3 M5 M2 H M3 H e M3 d M3 M3 f M3 M3 b M3 M3 H f M3 A f f M3 G b C M1 F M3 F D M1 G M5 M2 d M5 e M3 M1 C e M3 G d Typical Span Loading H M3 F M2 M3 H e M3 d M5 A b M3 M3 M3 M1 A C f M3 M3 M1 n D f M3 M2 C M2 G F 5 ≥7 (odd) M3 M3 M5 A ≥6 (even) b e M3 a b c d e f 0.172L 0.125L 0.220L 0.204L 0.157L 0.147L 0.250L 0.200L 0.333L 0.308L 0.273L 0.250L 0.200L 0.143L 0.250L 0.231L 0.182L 0.167L 0.182L 0.143L 0.222L 0.211L 0.176L 0.167L 0.176L 0.130L 0.229L 0.203L 0.160L 0.150L AMERICAN INSTITUTE OF STEEL CONSTRUCTION P 2 4 - 206 BEAM AND GIRDER DESIGN BEAM DIAGRAMS AND FORMULAS CONTINUOUS BEAMS MOMENT AND SHEAR COEFFICIENTS EQUAL SPANS, EQUALLY LOADED MOMENT in terms of wl2 UNIFORM LOAD SHEAR in terms of wl +.07 +.07 –.125 +.08 +.025 0 3 8 +.08 –.10 –.10 –.073 –.105 0 15 38 +.078 +.078 –.106 –.077 –.077 –.086 –.106 0 41 104 +.078 +.078 –.106 –.077 –.085 –.085 –.077 –.106 0 36 142 MOMENT in terms of Pl +.156 23 20 38 63 55 104 86 75 142 18 19 38 67 70 142 4 0 10 15 17 28 19 18 38 53 53 104 72 71 142 CONCENTRATED LOADS at center +.156 5 6 10 13 13 28 43 51 104 0 8 6 5 10 17 15 28 0 11 28 +.078 –.073 3 5 8 0 4 10 +.077 +.036 +.036 +.077 –.107 –.071 –.107 +.078 –.105 5 11 0 28 20 23 38 51 49 104 71 72 142 P 15 0 38 55 63 104 70 67 142 41 0 104 75 86 142 36 0 142 SHEAR in terms of P P +.157 .31 +.178 +.10 P +.175 –.15 +.13 +.11 –.119 –.119 +.222 +.111 +.111 .65 P +.171 P .50 .50 P .65 .35 P P P –.158 .34 MOMENT in terms of Pl .31 –.15 +.11 –.138 .69 P .35 +.171 .69 +.222 .66 .54 .46 .50 .50 .46 .54 CONCENTRATED LOADS at 1⁄3 points .66 .34 SHEAR in terms of P P P P P –.333 .67 +.156 +.244 +.066 –.267 +.066 +.156 –.267 +.244 P .73 +.24 +.146 +.076 –.281 +.099 +.122 –.211 +.122 +.099 –.211 +.076 +.146 –.281 +.24 P .72 MOMENT in terms of Pl +.258 +.267 +.267 +.022 +.022 +.258 -.465 P 1.28 P P 1.0 1.0 +.155 +.303 +.204 +.155 +.303 +.079 +.006 +.054 +.079 +.079 +.054 +.277 +.006 +.079 -.394 -.296 -.296 -.394 1.97 P P P P P P 1.11 1.89 P P .93 .73 1.07 P P 1.28 .72 1.87 1.40 P P P 1.97 P P P 1.50 P P P 1.60 P SHEAR in terms of P P P P +.314 +.128 +.314 +.097 +.003 +.003 +.097 +.282 -.372 -.372 P 1.27 CONCENTRATED LOADS at 1⁄4 points 1.13 +.277 1.0 P .93 .67 P 1.0 P 1.03 +.282 1.33 P 1.27 P 1.07 1.33 1.50 P P P 1.50 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 1.50 1.03 P P P 1.87 1.13 P P P 1.40 1.60 P P P 1.89 1.11 FLOOR DEFLECTIONS AND VIBRATIONS 4 - 207 FLOOR DEFLECTIONS AND VIBRATIONS Serviceability Serviceability checks are necessary in design to provide for the satisfactory performance of structures. Chapter L of the LRFD Specification and Commentary contains general guidelines on serviceability. In contrast with the factored forces used to determine the required strength, the (unfactored) working loads are used in serviceability calculations. The primary concern regarding the serviceability of floor beams is the prevention of excessive deflections and vibrations. The use of higher strength steels and composite construction has resulted in shallower and lighter beams. Serviceability has become a more important consideration than in the past, as the design of more beams is governed by deflection and vibration criteria. Deflections and Camber Criteria for acceptable vertical deflections have traditionally been set by the design engineer, based on the intended use of the given structure. What is appropriate for an office building, for example, may not be satisfactory for a hospital. An illustration of deflection criteria is the following: 1. Live load deflections shall not exceed a specified fraction of the span (e.g., 1⁄360) nor a specific quantity (e.g., one inch). A deeper and/or heavier beam shall be selected, if necessary, to meet these requirements. 2. Under dead load, plus a given portion of the design live load (say, 10 psf), the floor shall be theoretically level. Where feasible and necessary, upward camber of the beam shall be specified. Regarding camber, the engineer is cautioned that: 1. It is unrealistic to expect precision in cambering. The limits and tolerances given in Part 1 of of this Manual for cambering of rolled beams are typical for mill camber. Kloiber (1989) states that camber tolerances are dependent on the method used (hot or cold cambering) and whether done at the mill or the fabrication shop. According to the AISC Code of Standard Practice, Section 6.4.5: “When members are specified on the contract documents as requiring camber, the shop fabrication tolerance shall be −0 / +1⁄2 in. for members 50 ft and less in length, or −0 / + (1⁄2 in. + 1⁄8 in. for each 10 ft or fraction thereof in excess of 50 ft in length) for members over 50 ft. Members received from the rolling mill with 75 percent of the specified camber require no further cambering. For purposes of inspection, camber must be measured in the fabricator’s shop in the unstressed condition.” Some of the camber may be lost in transportation prior to placement of the beam, due to vibration. 2. There are two methods for erection of floors: uniform slab thickness and level floor. As a consequence of possible overcamber, the latter may result in a thinner concrete slab for composite action and fire protection at midspan, and may cause the shear studs to protrude above the slab. 3. Due to end restraint at the connections, actual beam deflections are often less than the calculated values. 4. The deflections of a composite beam (under live load for shored construction, and under dead and live loads for unshored) cannot be determined as easily and accurately as the deflections of a bare steel beam. Equation C-I3-6 in Section I3.2 of the AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 208 BEAM AND GIRDER DESIGN Commentary on the LRFD Specification provides an approximate effective moment of inertia for partially composite beams. 5. Cambers of less than 3⁄4-in. should not be specified, and beams less than 24 ft in length should not be cambered (Kloiber, 1989). Vibrations Annoying floor motion may be caused by the normal activities of the occupants. Remedial action is usually very difficult and expensive and not always effective. The prevention of excessive and objectionable floor vibration should be part of the design process. Several researchers have developed procedures to enable structural engineers to predict occupant acceptability of proposed floor systems. Based on field measurement of approximately 100 floor systems, Murray (1991) developed the following acceptability criterion: D > 35Ao f + 2.5 (4-1) where D = damping in percent of critical Ao = maximum initial amplitude of the floor system due to a heel-drop excitation, in. f = first natural frequency of the floor system, hz Damping in a completed floor system can be estimated from the following ranges: Bare Floor: 1–3 percent Lower limit for thin slab of lightweight concrete; upper limit for thick slab of normal weight concrete. Ceiling: 1–3 percent Lower limit for hung ceiling; upper limit for sheetrock on furring attached to beams or joists. Ductwork and Mechanical: 1–10 percent Depends on amount and attachment. Partitions: 10–20 percent If attached to the floor system and not spaced more than every five floor beams or the effective joist floor width. Note: The above values are based on observation only. Beam or girder frequency can be estimated from 1⁄2 gEIt f = K 3 WL where f = first natural frequency, hz K = 1.57 for simply supported beams = 0.56 for cantilevered beams = from Figure 4-8 for overhanging beams g = acceleration of gravity = 386 in./sec2 AMERICAN INSTITUTE OF STEEL CONSTRUCTION (4-2) FLOOR DEFLECTIONS AND VIBRATIONS 4 - 209 E = modulus of elasticity, psi It = transformed moment of inertia of the tee-beam model, Figure 4-9, in.4 (to be used for both composite and noncomposite construction) W= total weight supported by the tee beam, dead load plus 10–25 percent of design live load, lbs L = tee-beam span, in. System frequency is estimated using 1 1 1 = + fs2 fb2 fg2 1.6 1.4 L Frequency Coefficient, K 1.2 H 1.0 .8 gElt f=K WL3 .6 .4 .2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Cantilever - Backspan Ratio, H / L Fig. 4-8. Frequency coefficients for overhanging beams. Beam spacing S Beam spacing S Slab Deck de Actual Model Fig. 4-9. Tee-beam model for computing transformed moment of inertia. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 2.4 4 - 210 BEAM AND GIRDER DESIGN where fs = system frequency, hz fb = beam or joist frequency, hz fg = girder frequency, hz Amplitude from a heel-drop impact can be estimated from Ao = Aot Neff (4-3) where Ao = initial amplitude of the floor system due to a heel-drop impact, in. Neff = number of effective tee beams Aot = initial amplitude of a single tee beam due to a heel-drop impact, in. = (DLF)maxds (4-4) where (DLF)max = maximum dynamic load factor, Table 4-2 ds = static deflection caused by a 600 lbs force, in. See (Murray, 1975) for equations for (DLF)max and ds For girders, Neff = 1.0. For beams: 1. S < 2.5ft, usual steel joist-concrete slab floor systems. πx for x ≤ xo Neff = 1 + 2Σ cos 2xo where x = distance from the center joist to the joist under consideration, in. xo = distance from the center joist to the edge of the effective floor, in. = 1.06εL L = joist span, in. ε = (Dx / Dy)0.25 Dx = flexural stiffness perpendicular to the joists = Ect3 / 12 Dy = flexural stiffness parallel to the joists = EIt / S Ec = modulus of elasticity of concrete, psi E = modulus of elasticity of steel, psi t = slab thickness, in. It = transformed moment of inertia of the tee beam, in.4 S = joist spacing, in. 2. S > 2.5 ft, usual steel beam-concrete slab floor systems. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (4-5) BEAMS: OTHER SUBJECTS 4 - 211 Neff = 2.97 − S L4 + 17.3de 135EIT (4-6) where E is defined above and S = beam spacing, in. de = effective slab depth, in. L = beam span, in. Limitations: 15 ≤ (S / de) < 40; 1 × 106 ≤ (L4 / IT) ≤ 50 × 106 The amplitude of a two-way system can be estimated from Aos = Aob + Aog / 2 where Aos = system amplitude Aob = Aot for beam Aog = Aot for girder Additional information on building floor vibrations can be obtained from the abovereferenced paper by Murray (1991) and the references cited therein. BEAMS: OTHER SUBJECTS Other topics related to the design of flexural members covered elsewhere in this Manual include: Beam Bearing Plates, in Part 11 (Volume II); Beam Web Penetrations, in Part 12 (Volume II). AMERICAN INSTITUTE OF STEEL CONSTRUCTION 4 - 212 BEAM AND GIRDER DESIGN Table 4-2. Dynamic Load Factors for Heel-Drop Impact f, hz DLF F, hz DLF F, hz DLF 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 5.30 5.40 0.1541 0.1695 0.1847 0.2000 0.2152 0.2304 0.2456 0.2607 0.2758 0.2908 0.3058 0.3207 0.3356 0.3504 0.3651 0.3798 0.3945 0.4091 0.4236 0.4380 0.4524 0.4667 0.4809 0.4950 0.5091 0.5231 0.5369 0.5507 0.5645 0.5781 0.5916 0.6050 0.6184 0.6316 0.6448 0.6578 0.6707 0.6835 0.6962 0.7088 0.7213 0.7337 0.7459 0.7580 0.7700 5.50 5.60 5.70 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00 9.10 9.20 9.30 9.40 9.50 9.60 9.70 9.80 9.90 0.7819 0.7937 0.8053 0.8168 0.8282 0.8394 0.8505 0.8615 0.8723 0.8830 0.8936 0.9040 0.9143 0.9244 0.9344 0.9443 0.9540 0.9635 0.9729 0.9821 0.9912 1.0002 1.0090 1.0176 1.0261 1.0345 1.0428 1.0509 1.0588 1.0667 1.0744 1.0820 1.0895 1.0969 1.1041 1.1113 1.1183 1.1252 1.1321 1.1388 1.1434 1.1519 1.1583 1.1647 1.1709 10.00 10.10 10.20 10.30 10.40 10.50 10.60 10.70 10.80 10.90 11.00 11.10 11.20 11.30 11.40 11.50 11.60 11.70 11.80 11.90 12.00 12.10 12.20 12.30 12.40 12.50 12.60 12.70 12.80 12.90 13.00 13.10 13.20 13.30 13.40 13.50 13.60 13.70 13.80 13.90 14.00 14.10 14.20 14.30 14.40 1.1770 1.1831 1.1891 1.1949 1.2007 1.2065 1.2121 1.2177 1.2231 1.2285 1.2339 1.2391 1.2443 1.2494 1.2545 1.2594 1.2643 1.2692 1.2740 1.2787 1.2834 1.2879 1.2925 1.2970 1.3014 1.3058 1.3101 1.3143 1.3185 1.3227 1.3268 1.3308 1.3348 1.3388 1.3427 1.3466 1.3504 1.3541 1.3579 1.3615 1.3652 1.3688 1.3723 1.3758 1.3793 AMERICAN INSTITUTE OF STEEL CONSTRUCTION REFERENCES 4 - 213 REFERENCES Allison, H., 1991, Low- and Medium-Rise Steel Buildings, AISC Steel Design Guide Series No. 5, American Institute of Steel Construction, Chicago, IL. American Institute of Steel Construction, 1983, Torsional Analysis of Steel Members, AISC, Chicago. Fisher, J. M. and M. A. West, 1990, Serviceability Design Considerations for Low-Rise Buildings, AISC Steel Design Guide Series No. 3, AISC, Chicago. Kloiber, L. A., 1989, “Cambering of Steel Beams,” Steel Structures: Proceedings of Structures Congress ’89, American Society of Civil Engineers (ASCE), New York. Murray, T. M., 1991, “Building Floor Vibrations,” Proceedings of the 1991 National Steel Construction Conference, AISC, Chicago. Zahn, C. J., 1987, “Plate Girder Design Using LRFD,” Engineering Journal, 1st Qtr., AISC, Chicago. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5-1 PART 5 COMPOSITE DESIGN OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 COMPOSITE BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Design Flexural Strength (Positive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Concrete Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 Shear Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Strength During Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 Lateral Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Design Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Lower Bound Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 Composite Beam Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Preliminary Section Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 Floor Deflections and Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 Lower Bound Elastic Moment of Inertia Tables . . . . . . . . . . . . . . . . . . . . . . 5-50 COMPOSITE COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67 Combined Axial Compression and Bending (Interaction) . . . . . . . . . . . . . . . . . 5-69 COMPOSITE COLUMNS—W SHAPES ENCASED IN CONCRETE . . . . . . . . . . 5-73 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73 Tables: fc′ = 3.5 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-74 Tables: fc′ = 5 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-86 Tables: fc′ = 8 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-98 COMPOSITE COLUMNS—CONCRETE-FILLED STEEL PIPE AND STRUCTURAL TUBING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 Steel Pipe Filled with Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 Structural Tubing Filled with Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110 Tables: Steel Pipe (fc′ = 3.5 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-111 Tables: Steel Pipe (fc′ = 5 ksi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-113 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5-2 COMPOSITE DESIGN Tables: Square Structural Tubing (fc′ = 3.5 ksi) . . . . . . . . . . . . . . . . . . . . . 5-115 Tables: Square Structural Tubing (fc′ = 5 ksi) . . . . . . . . . . . . . . . . . . . . . . . 5-122 Tables: Rectangular Structural Tubing (fc′ = 3.5 ksi) . . . . . . . . . . . . . . . . . . . 5-129 Tables: Rectangular Structural Tubing (fc′ = 5 ksi) . . . . . . . . . . . . . . . . . . . . 5-136 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-143 AMERICAN INSTITUTE OF STEEL CONSTRUCTION OVERVIEW 5-3 OVERVIEW Tables are given for the design of composite beams and columns. Composite Beam tables are located as follows: Selection Tables, Fy = 36 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 Selection Tables, Fy = 50 ksi, begin on . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34 Lower Bound Elastic Moment of Inertia Tables begin on . . . . . . . . . . . . . . . . . 5-50 Composite Column tables are located as follows: W Shapes Encased in Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-74 Concrete-Filled Steel Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-111 Concrete-Filled Structural Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-115 AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5-4 COMPOSITE DESIGN AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5-5 COMPOSITE BEAMS General Notes The Composite Beam Tables can be used for the design and analysis of simple composite steel beams. Values for the design flexural strength φMn for rolled I-shaped beams with yield strengths of 36 ksi and 50 ksi are tabulated, as well as lower bound moments of inertia. The values tabulated are independent of the concrete flange properties. The strength evaluation of the concrete flange portion of the composite section is left to the design engineer. The preparation of these tables is based upon the fact that the location of the plastic neutral axis (PNA) is uniquely determined by the horizontal shear force ΣQn at the interface between the steel section and the concrete slab. With the knowledge of the location of the PNA and the distance to the centroid of the concrete flange force ΣQn, the design flexural strengths φMn for the rolled section can be computed. Design Flexural Strength (Positive) The design flexural strength of simple steel beams with composite concrete flanges is computed from the equilibrium of internal forces using the plastic stress distribution as shown in Figure 5-1: φMn = φTTot y = φCToty where φ = 0.85 TTot = sum of tensile forces = Fy × (tensile force beam area) CTot = sum of compressive forces = concrete flange force + Fy × (compressive force beam area) y = moment arm between centroid of tensile force and the resultant compressive force The model used in the calculation of the design strengths tabulated herein is given in Figure 5-2. A summary of the model properties follows: As = area of steel cross section, in.2 Af = flange area = bf × tf, in.2 Aw = web area = (d − 2k)tw, in.2 0.85fc ′ b Cconc a Cstl PNA Fy TTot = Tstl Fy Fig. 5-1. Plastic stress distribution. AMERICAN INSTITUTE OF STEEL CONSTRUCTION C Tot = Cconc + Cstl y 5-6 COMPOSITE DESIGN Kdep = k − tf, in. Karea = (As − 2Af − Aw) / 2, in.2 Limitations for the tabulated values include the following: Fy (d − 2k) / tw ≤ 640 / √ and ΣQn (min.) = 0.25AsFy The limitation of ΣQn (min.) is not required by the Specification, but is deemed to be a practical minimum value. Design strength moment values are tabulated for plastic neutral axis (PNA) locations at the top and intermediate quarter points through the thickness of the steel beam top flange. In addition, PNA locations are computed at the point where ΣQn equals 0.25AsFy, and the point where ΣQn is the average of the minimum value of (0.25AsFy) and the value of ΣQn when the PNA is at the bottom of the top flange (see Figure 5-3). To use the tables, select a valid value of ΣQn, determine the appropriate value of Y2 and read the design flexural strength moment φMn directly. Values for Y1 are also tabulated for convenience. The parameters Y1 and Y2 are defined as follows: Y1 = distance from PNA to beam top flange Y2 = distance from concrete flange force to beam top flange Valid values for ΣQn are the smaller of the following three expressions (LRFD Specification Section I5): 0.85fc′Ac AsFy nQn bf tf K dep k K area K dep tw d d – 2k K dep tf k Fig. 5-2. Composite beam model. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5-7 where fc′ Ac As Fv n = specified compressive strength of concrete, ksi = area of concrete slab within effective width, in.2 = area of steel cross section, in.2 = specified minimum yield stress, ksi = number of shear connectors between the point of maximum positive moment and the point of zero moment to either side Qn = shear capacity of single shear connector, kips Concrete Flange According to LRFD Specification Section I3.1 the effective width of the concrete slab on each side of the beam centerline shall not exceed: a. one-eighth of the beam span, center to center, of supports; b. one-half the distance to the centerline of the adjacent beams; or c. the distance to the edge of the slab. The maximum concrete flange force is equal to 0.85 fc′Ac where Ac is based on the actual slab thickness, tc. However, often the maximum concrete flange force exceeds the maximum capacity of the specified steel beam. In that case, the effective concrete flange force is determined from a value of ΣQn, which will be the smaller of AsFy or nQn. The effective concrete flange force is: b Ycon Location of effective concrete flange force (∑Qn) a/ 2 a Y2 TFL (pt. 1) BFL (pt. 5) 6 7 Y1 (varies—see figure below) Y1 = Distance from top of steel flange to any of the seven tabulated PNA locations ∑ Qn (@ pt. 5) + ∑Q n (@ pt. 7) ∑ Qn (@ point 6 )= ∑ Qn (@ point 7 ) = .25A sFy Beam top flange 2 4 Equal spaces 1 2 3 4 5 PNA FLANGE LOCATIONS Fig. 5-3. Composite beam table parameters. AMERICAN INSTITUTE OF STEEL CONSTRUCTION TFL tf BFL 5-8 COMPOSITE DESIGN ΣQn = Cconc = 0.85fc′ba where Cconc = effective concrete flange force, kips b = effective concrete flange width, in. a = effective concrete flange thickness, in. The basis of the design of most composite beams will be the relationship: a= ΣQn 0.85fc′b From this relationship, the value of Y2 can be computed as: Y2 = Ycon − a / 2 where Ycon = distance from top of steel beam to top of concrete, in. Shear Connectors Shear connectors must be headed steel studs, not less than four stud diameters in length after installation, or hot-rolled steel channels. Shear connectors must be embedded in concrete slabs made with ASTM C33 aggregate or with rotary kiln produced aggregates conforming to ASTM C330, with concrete unit weight not less than 90 pcf. The nominal strength of one stud shear connector embedded in a solid concrete slab is: Qn = 0.5Asc √ fc′Ec ≤ AscFu (I5-1) where Asc = cross-sectional area of a stud shear connector, in.2 fc′ = specified concrete compressive strength, ksi Fu = minimum specified tensile strength of stud, ksi Ec = modulus of elasticity of concrete, ksi = (w1.5)√ fc ′ w = unit weight of concrete, lb/cu ft The nominal shear strengths of 3⁄4-in. headed studs embedded in concrete slabs are listed in Table 5-1. Note the effective shear strengths of studs used in conjunction with composite or non-composite metal forms may be affected by the shape of the deck and spacing of the studs. See LRFD Specification Sections I3.5 and I5.6. Strength During Construction When temporary shores are not used during construction, the steel section must have sufficient strength to support the applied loads prior to the concrete attaining 75 percent of the specified concrete strength fc′ (LRFD Specification Section I3.4). The effect of deflection on unshored steel beams during construction should be considered. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5-9 Table 5-1. Nominal Stud Shear Strength Qn (kips) for 3⁄4-in Headed Studs fc′ (ksi) w (lbs/cu. ft) Qn (kips) 3.0 3.0 3.5 3.5 4.0 4.0 115 145 115 145 115 145 17.7 21.0 19.8 23.6 21.9 26.1 Lateral Support Adequate lateral support for the compression flange of the steel section will be provided by the concrete slab after hardening. During construction, however, lateral support must be provided, or the design strength must be reduced in accordance with Section F1 of the LRFD Specification. Steel deck with adequate attachment to the compression flange will usually provide the necessary lateral support. For construction using fully encased beams, particular attention should be given to lateral support during construction. Design Shear Strength The design shear strength of composite beams is determined by the strength of the steel web, in accordance with the requirements of Section F2 of the LRFD Specification. Lower Bound Moment of Inertia With regard to serviceability, a table of lower bound moments of inertia of composite sections is included to assist in the evaluation of deflection. If calculated deflections using the lower bound moment of inertia are acceptable, a complete elastic analysis of the composite section can be avoided. The lower bound moment of inertia is based on the area of the beam and an equivalent concrete area of ΣQn / Fy. The analysis includes only the horizontal shear force transferred by the shear connectors supplied; and, thus, neglects the contribution of the concrete flange not considered in the plastic distribution of forces (see Figure 5-4). The lower bound moment of inertia, therefore, is the moment of inertia of the section at the factored (ultimate) load. This is smaller than the moment of inertia at service loads where deflection is calculated. The value for the lower bound moment of inertia can be calculated as follows: ILB = Ix + As YENA − 2 d ΣQn + (d + Y2 − YENA)2 2 Fy where YENA = distance from bottom of beam to elastic neutral axis (ENA) AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 10 COMPOSITE DESIGN = Asd ΣQn 2 + F (d + Y2) y ΣQn As + F y Composite Beam Reactions Design reactions for symmetrically loaded composite beams may be computed using the Composite Beam Tables. Two situations will be considered. First, an upper bound value for a beam reaction may be computed neglecting the composite concrete flange properties other than concrete strength. Second, a more refined value for a beam reaction can be computed if the properties of the composite concrete flange are determined initially. When the properties of the composite concrete flange have not been computed, a conservative value for the maximum horizontal shear between the composite concrete slab and the steel section (ΣQn) may be taken as the smaller of AsFs or nQn. Here, n is the number of headed studs between the reaction point and point of maximum moment. The value of Qn may be taken from Table 5-1 or determined from LRFD Specification Section I5. A value for φMn of the composite section may be obtained from the Composite Beam Tables using the sum of horizontal shear ΣQn as described above. In this case, Y2 is defined as the distance from the top of the steel beam to the top of the concrete slab. The design reaction may be determined from the value of φMn as discussed in the following paragraph. When the properties of the concrete flange have been computed (effective width and depth), a slightly different method is used to find φMn. The stud efficiency can be determined in accordance with Section I5 of the LRFD Specification, or Table 5-1 can be used for 3⁄4-in. diameter stud shear connectors. The value for the sum of the horizontal shear force ΣQn can be taken as the smaller of nQn, AsFy, or 0.85fc′Ac, where fc′ is the concrete cylinder strength (ksi) and Ac is the maximum permitted concrete flange area (LRFD Specification Section I5.2). The distance Y2 is the distance from the top of the steel beam to the top of the concrete slab less [ΣQn / (0.85fc′b)] / 2. Using these values for ΣQn and Y2, the value for φMn can be selected from the Composite Beam Tables. Equivalent concrete area = ∑Qn Fy Y2 d + Y2 – YENA ENA d YENA Fig. 5-4. Moment of inertia. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 11 The design beam reaction for a symmetrically loaded composite beam may be computed from known values of φMn and the span length as: R = CcφMn / L where R = design beam reaction, kips Cc = coefficient from Figure 5-5 φMn = composite beam flexural design strength, kip-ft L = span length, ft Preliminary Section Selection When using the Composite Beam Tables, the approximate beam weight per unit length required for several different beam depths may be calculated as follows: Mu(12) Beam weight (lb/ft) = 3.4 (d / 2 + Y − a / 2 )φ F con y where Mu = required flexural strength, kip-ft d = nominal beam depth, in. Ycon = distance from top of steel beam to top of concrete slab, in. a = effective concrete slab thickness, in. Fy = steel yield stress, ksi φ = 0.85 3.4 = ratio of the weight of a beam to its area, lb/in.2 For convenience in the preliminary selection phase the nominal depth may be used. A value for a/2 must also be selected. For relatively light sections and loads, this value can be assumed to be one inch. With the PNA at the top of the steel beam, i.e., ΣQn = AsFy, the flexural design strength is: φMn = φAsFy (d / 2 + Ycon − a / 2) / 12 where φMn = flexural design strength, kip-ft As = steel beam cross-sectional area, in.2 Uniform load R Pu R Cc = 4 R Pu R Pu R Cc = 2 Pu Pu Pu R Cc = 3 R= Cc φM n L Fig. 5-5. Beam reaction coeficients. AMERICAN INSTITUTE OF STEEL CONSTRUCTION R R Cc = 3 5 - 12 COMPOSITE DESIGN Floor Deflections and Vibrations Refer to the discussion of Floor Deflections and Vibrations at the end of Part 4 of this LRFD Manual. EXAMPLE 5-1 Given: Determine the beam, with Fy = 50 ksi, required to support a service live load of 1.3 kips/ft and a service dead load of 0.9 kips/ft. The beam span is 30 ft and the beam spacing 10 ft. The slab is 31⁄4-in. 1ight weight concrete (fc′ = 3.5 ksi, 115 pcf) supported by a 3-in. deep composite metal deck with an average rib width of six inches. The ribs are oriented perpendicular to the beam. Shored construction is specified. Also, determine the number of 3⁄4-in. diameter headed studs required and the service live load deflection. Solution: A. Load tabulation: LL DL Total Service load (kips/ft) 1.3 0.9 2.2 (L.F.) (1.6) (1.2) Factored load (kips/ft) 2.1 1.1 3.2 B. Flexural design strength: Beam moments Mu = 3.2(30)2/8 = 360 kip-ft MLL = 1.3(30)2/8 = 146 kip-ft C. Select section and determine properties: At this point, go directly to the Composite Beam Tables and select a section or compute a preliminary trial section size using the formula: Mu(12) Beam weight = 3.4 (d / 2 + Y − a /2)φF con y where Ycon = 3 + 3.25 = 6.25 in. a / 2= 1 in. (estimate) φ = 0.85 Fy = 50 ksi Mu(12)(3.4) d/2 φFy 16 346 8 d 18 346 9 (Ycon − a / 2) Beam Weight 5.25 26 5.25 24 AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 13 From the results above, a W16×26 would be the most appropriate selection. Let ΣQn = AsFy = 7.68(50) = 384 kips. The effective width of the concrete flange is ≤ 2 × L / 8 = 2 × 30 ft / 8 = 7.5 ft = 90 in. (gover ns) 10 ft spacing ΣQn 384 areq’d = = = 1.43 in. 0.85fc′b 0.85(3.5)(90) Y2 = 6.25 − 1.43 / 2 = 5.53 in. b By interpolation from the Composite Beam Tables for a W16×26 and a value of Y2 equal to 5.53 in., φMn = 363 + (0.03 / 0.50)(377 − 363) = 364 kip-ft > 360 kip-ft req’d o.k. The selected section is adequate for Y2 = 5.5 in. and Y1 = 0.0 in., for which φMn = 363 kip-ft D. Compute number of studs required: The stud reduction is calculated to be: Reduction factor = 0.85 (wr / hr)(Hs / hr − 1.0) ≤ 1.0 Nr √ Reductionfactor= 0.85 (6 / 3)(5.5 / 3 − 1.0) = 1.0 2 √ (I3-1) where Nr = number of stud connectors in one rib; not to exceed three in computations, although more than three may be installed wr = average width of rib, in. hr = nominal rib height, in. Hs = length of stud connector after welding, in.; not to exceed the value (hr + 3) in computations, although actual length may be greater. Also must not be less than four stud diameters The value for Hs = 5.5 was selected to ensure the stud capacity reduction factor is 1.0. The number of studs required is: with Qn = 19.8 kips (Table 5-1) 2(ΣQn) / Qn = 2(384) / 19.8 = 38.8, say 40 studs AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 14 COMPOSITE DESIGN E. Check deflection: For the selected section, a W16×26, Fy = 50 ksi, Y2 = 5.5 in. and Y1 = 0.0 in.; from the Elastic Moment of Inertia Tables one can find the lower bound moment of inertia is 985 in.4 Thus, the service live load deflection can be calculated as follows (see LRFD Manual Part 4): ∆LL = MLLL2 146(30)2 L L = = 0.83 in. = < o.k. 434 360 161ILB 161(985) F. Shear check: Vu = 3.2(15) = 48 kips φVn = φ0.6FywAw = (0.9)(0.6)(50)(15.69 × 0.250) = 106 kips > 48 kips req’d o.k. EXAMPLE 5-2 Given: Determine the beam, with Fy = 50 ksi, required to support a service live load of 250 psf and a service dead load of 90 psf. The beam span is 40 ft and the beam spacing is 10 ft. Assume 3 in. metal deck is used with a 4.5 in. slab of 4 ksi normal weight concrete (145 pcf). The stud reduction factor is 1.0. Unshored construction is specified. Determine the beam size and service dead and live load deflections. Also select a non-composite section (no shear connectors). Solution: A. Load tabulation: LL DL Total Service load (kips/ft) 2.5 0.9 3.4 (L.F.) (1.6) (1.2) Factored load (kips/ft) 4.0 1.1 5.1 B. Beam moments: Mu = 5.1(40)2 / 8 = 1,020 kip-ft MLL = 2.5(40)2 / 8 = 500 kip-ft MDL = 0.9(40)2 / 8 = 180 kip-ft C. Select section and determine properties: Assume a = 2 in.; therefore, take Y2 = 7.5 − 2 / 2 = 6.5 in. From the Composite Beam Tables, for Fy = 50 ksi and Y2 = 6.5 in., W21×62, W24×55, and W24×62 are possible sizes. Try a W24×55: Fy = 50 ksi Y2 = 6.5 in. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 15 Y1 = 0.0 in. Qn = 810 kips φMn = 1,050 kip-ft Compute Y2 for ΣQn = 810 kips: 2 × L / 8 = 2 × 40 ft / 8 = 10 ft b ≤ 10 ft spacing = 120 in. ΣQn 810 = = 1.99 a = 0.85fc′b 0.85(4)(120) Y2 = 7.5 − 1.99 / 2 = 6.5 in. D. Compute the number of studs required: Qn = 26.1 kips (Table 5-1) Number of studs = (2)ΣQn / Qn = 2(810) / 26.1 = 62.1, say 64 studs E. Construction phase strength check: A construction live load of 20 psf will be assumed. From the LRFD Specification (Section A4.1), the relevant load combinations are 1.4D = 1.4 × 0.9 = 1.26 k/ft 1.2D + 1.6L = 1.2 × 0.9 + 1.6 × 0.2 = 1.40 k/ft = 1.40 × (40)2 / 8 = 280 kip-ft Mu From the Composite Beam Tables for a W24×55 with Fy = 50 ksi, and assuming adequate lateral support is provided by the attachment of the steel deck to the compression flange, φMn = φMp = 503 kip-ft > 280 kip-ft F. Service load deflections: Assume that the wet concrete load moment is equal to the service dead load moment. With Ix = 1,350 in.4 for a W24×55, ∆DL = 180(40)2 = 1.33 in. 161(1,350) For the W24×55 with Y2 = 6.5 in. and Y1 = 0.0 in., the lower bound moment of inertia can be found in the Lower Bound Elastic Moment of Inertia Tables; ILB = 4,060 in.4 500(40)2 = 1.22 in. 161(4,060) L L < o.k. = ∆LL = 393 360 Specify a beam camber of 11⁄4-in. to overcome the dead load deflection. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 16 COMPOSITE DESIGN G. Check shear: Vu = 5.1(40) / 2 = 102 kips φV = φ(0.6)FywAw = (0.9)(0.6)(50)(23.57 × 0.395) = 251 kips > 102 kips o.k. H. Final section selection: Use: W24×55, Fy = 50 ksi, camber 11⁄4-in., 64 studs, 3⁄4-in. diameter (32 each side of midspan) I. Noncomposite section: Considering the given problem without shear connectors (i.e., noncomposite), a steel section can be selected from the φMp values tabulated under each section in either the Composite Beam Tables or the Load Factor Design Selection Tables. For Mu = 1,020 kip-ft, select a W27×94, Fy = 50 ksi, with a φMp flexural design strength equal to 1,040 kip-ft. ∆DL = 180(40)2 = 0.55 in. 161(3,270) ∆LL = 500(40)2 = 1.52 in. > L / 360 161(3,270) For ∆ = L / 360 = 1.33 in. Ireq’d = 500(40)2 = 3,736 in.4 161(1.33) Use: W30×99, Fy = 50 ksi, φMn = φbMp = 1,170 kip-ft EXAMPLE 5-3 Given: A W21×44, Fy = 50 ksi, steel girder spans 30 feet and supports intermediate beams at the third points. A total of fifty 3⁄4-in. diameter headed studs are applied to the beam as follows: 24 between each support and the beams at the one-third points, and two between the intermediate beams. The slab consists of 31⁄4-in. light-weight concrete (115 pcf) with a specified design strength of 3.5 ksi over a 3-in. deep composite metal deck with an average rib width of six inches. The ribs are oriented parallel to the beam centerline. Determine the design beam reactions. Solutions: For studs in a single row the spacing between the support and first intermediate beam would be 10(12) / 24 = 5.0 in. which is greater than the specified minimum of six stud diameters (LRFD Specification Section I5.6). Since wr / hr = 6 / 3 = 2 is greater than 1.5, the stud AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 17 reduction factor is not necessary (LRFD Specification I3.5c). Therefore, from Table 5.1, the stud shear strength is: ΣQn = nQn = 24(19.8) = 475 kips For ΣQn = 475 kips, the required effective concrete flange thickness can be calculated to be: a = 475 = 1.77 in. 0.85(3.5)(7.5)(12) Y2 = 3 + 3.25 − 1.77 / 2 = 5.36 in. Beam reaction: From the Composite Beam Selection Table, for a W21×44, Fy = 50 ksi, ΣQn = 475 kips places the PNA at Y1 = 0.27 in. For Y2 = 5.36 in. and Y1 = 0.27 in., φMn = 655 kip-ft R = CcφMn / L = 3(655) / 30 = 65.5 kips where R = design reaction, kips Cc = coefficient from Figure 5-5 φMn = flexural design strength of beam, kip-ft L = span length, ft Note: The beam weight was neglected in this example. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 18 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) Kip-ft W40×297 3590 W 40 X 278 3210 In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 0.00 0.41 0.83 1.24 1.65 4.59 8.17 3150 2680 2210 1740 1270 1030 787 4890 4810 4720 4620 4510 4420 4280 5000 4910 4800 4690 4550 4460 4310 5110 5000 4880 4750 4600 4500 4340 5220 5100 4960 4810 4640 4540 4370 5330 5190 5040 4870 4690 4570 4390 5440 5290 5120 4930 4730 4610 4420 5550 5380 5190 4990 4780 4640 4450 5670 5480 5270 5050 4820 4680 4480 5780 5570 5350 5120 4870 4720 4500 5890 5660 5430 5180 4910 4750 4530 6000 5760 5510 5240 4960 4790 4560 TFL 0.00 2 0.45 3 0.91 4 1.36 BFL 1.81 6 5.64 7 10.06 2940 2550 2160 1770 1380 1060 736 4610 4540 4470 4380 4280 4160 3930 4710 4630 4550 4450 4330 4190 3960 4810 4730 4620 4510 4380 4230 3980 4920 4820 4700 4570 4430 4270 4010 5020 4910 4780 4640 4480 4310 4040 5130 5000 4850 4700 4530 4340 4060 5230 5090 4930 4760 4580 4380 4090 5340 5180 5010 4820 4630 4420 4110 5440 5270 5080 4890 4680 4460 4140 5540 5360 5160 4950 4730 4490 4170 5650 5450 5240 5010 4780 4530 4190 TFL 2 3 4 BFL 6 7 W40×277 3380 TFL 2 3 4 BFL 6 7 0.00 0.39 0.79 1.18 1.58 4.25 7.60 2930 2480 2030 1580 1130 932 732 4530 4460 4380 4280 4170 4110 3990 4630 4550 4450 4340 4210 4140 4020 4740 4630 4520 4390 4250 4170 4050 4840 4720 4590 4450 4290 4210 4070 4940 4810 4660 4510 4330 4240 4100 5050 4900 4740 4560 4370 4270 4120 5150 4990 4810 4620 4410 4300 4150 5250 5070 4880 4670 4450 4340 4180 5360 5160 4950 4730 4490 4370 4200 5460 5250 5020 4790 4540 4400 4230 5570 5340 5100 4840 4580 4440 4250 W40×264 3050 TFL 2 3 4 BFL 6 7 0.00 0.43 0.87 1.30 1.73 5.49 9.90 2790 2420 2050 1680 1310 1000 698 4350 4300 4230 4140 4050 3930 3730 4450 4380 4300 4200 4100 3970 3750 4550 4470 4370 4260 4140 4000 3780 4650 4550 4440 4320 4190 4040 3800 4750 4640 4520 4380 4240 4070 3820 4850 4720 4590 4440 4280 4110 3850 4950 4810 4660 4500 4330 4150 3870 5050 4900 4730 4560 4380 4180 3900 5140 4980 4810 4620 4420 4220 3920 5240 5070 4880 4680 4470 4250 3950 5340 5150 4950 4740 4510 4290 3970 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 19 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W40×249 Kip-ft 3020 TFL 2 3 4 BFL 6 7 0.00 0.36 0.71 1.07 1.42 4.06 7.47 2640 2240 1830 1430 1030 844 660 4050 3990 3920 3840 3750 3690 3580 4150 4070 3980 3890 3780 3720 3610 4240 4150 4050 3940 3820 3750 3630 4330 4230 4110 3990 3850 3770 3650 4430 4310 4180 4040 3890 3800 3680 4520 4390 4240 4090 3930 3830 3700 4610 4470 4310 4140 3960 3860 3720 4710 4550 4370 4190 4000 3890 3750 4800 4630 4440 4240 4040 3920 3770 4900 4700 4500 4290 4070 3950 3790 4990 4780 4570 4340 4110 3980 3820 W40×235 2730 TFL 2 3 4 BFL 6 7 0.00 0.39 0.79 1.18 1.58 5.18 9.47 2480 2140 1810 1470 1130 876 620 3840 3790 3720 3650 3570 3480 3310 3930 3860 3790 3700 3610 3510 3330 4010 3940 3850 3760 3650 3540 3350 4100 4010 3920 3810 3690 3570 3370 4190 4090 3980 3860 3730 3600 3400 4280 4170 4040 3910 3770 3630 3420 4370 4240 4110 3960 3810 3660 3440 4450 4320 4170 4020 3850 3690 3460 4540 4390 4240 4070 3890 3730 3480 4630 4470 4300 4120 3930 3760 3510 4720 4540 4360 4170 3970 3790 3530 W40×215 2600 TFL 2 3 4 BFL 6 7 0.00 0.31 0.61 0.92 1.22 3.84 7.32 2280 1930 1590 1240 895 733 570 3470 3420 3360 3290 3210 3160 3080 3550 3480 3410 3330 3240 3190 3100 3630 3550 3470 3380 3280 3210 3120 3710 3620 3520 3420 3310 3240 3140 3790 3690 3580 3460 3340 3270 3160 3870 3760 3640 3510 3370 3290 3180 3950 3830 3690 3550 3400 3320 3200 4030 3900 3750 3600 3440 3340 3220 4110 3960 3810 3640 3470 3370 3240 4200 4030 3860 3680 3500 3400 3260 4280 4100 3920 3730 3530 3420 3280 W40×211 2440 TFL 2 3 4 BFL 6 7 0.00 0.35 0.71 1.06 1.42 4.99 9.35 2230 1930 1630 1330 1030 793 558 3430 3380 3330 3270 3200 3110 2960 3510 3450 3390 3310 3230 3140 2980 3590 3520 3440 3360 3270 3170 3000 3670 3590 3500 3410 3310 3200 3020 3740 3660 3560 3460 3340 3230 3040 3820 3720 3620 3500 3380 3250 3060 3900 3790 3670 3550 3420 3280 3080 3980 3860 3730 3600 3450 3310 3100 4060 3930 3790 3640 3490 3340 3120 4140 4000 3850 3690 3530 3370 3140 4220 4070 3910 3740 3560 3400 3160 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 20 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W40×199 Kip-ft 2340 TFL 2 3 4 BFL 6 7 0.00 0.27 0.53 0.80 1.07 4.16 8.10 2100 1800 1500 1200 895 710 526 3180 3130 3080 3020 2960 2900 2800 3250 3200 3130 3070 2990 2930 2820 3330 3260 3190 3110 3020 2950 2830 3400 3320 3240 3150 3060 2980 2850 3480 3390 3290 3190 3090 3000 2870 3550 3450 3350 3240 3120 3030 2890 3620 3510 3400 3280 3150 3050 2910 3700 3580 3450 3320 3180 3080 2930 3770 3640 3500 3360 3210 3100 2950 3850 3710 3560 3400 3250 3130 2960 3920 3770 3610 3450 3280 3150 2980 W40×183 2110 TFL 2 3 4 BFL 6 7 0.00 0.31 0.61 0.92 1.22 4.76 9.16 1930 1670 1410 1160 896 690 483 2940 2900 2860 2810 2750 2680 2550 3010 2960 2910 2850 2780 2710 2570 3080 3020 2960 2890 2810 2730 2580 3150 3080 3010 2930 2850 2750 2600 3220 3140 3060 2970 2880 2780 2620 3290 3200 3110 3010 2910 2800 2640 3350 3260 3160 3050 2940 2830 2650 3420 3320 3210 3090 2970 2850 2670 3490 3380 3260 3130 3000 2880 2690 3560 3440 3310 3180 3040 2900 2700 3630 3500 3360 3220 3070 2930 2720 W40×174 1930 TFL 2 3 4 BFL 6 7 0.00 0.21 0.42 0.62 0.83 4.59 9.27 1840 1600 1370 1130 898 679 460 2750 2710 2680 2630 2590 2520 2380 2810 2770 2720 2670 2620 2540 2400 2880 2830 2770 2710 2650 2570 2410 2940 2880 2820 2750 2680 2590 2430 3010 2940 2870 2790 2720 2620 2450 3080 3000 2920 2830 2750 2640 2460 3140 3060 2970 2870 2780 2660 2480 3210 3110 3020 2910 2810 2690 2490 3270 3170 3060 2960 2840 2710 2510 3340 3230 3110 3000 2870 2740 2530 3400 3280 3160 3040 2910 2760 2540 W40×167 1870 TFL 2 3 4 BFL 6 7 0.00 0.26 0.51 0.77 1.03 5.00 9.85 1770 1550 1330 1110 896 669 442 2670 2630 2600 2560 2510 2430 2280 2730 2690 2640 2600 2540 2460 2300 2790 2740 2690 2630 2570 2480 2310 2850 2800 2740 2670 2610 2510 2330 2920 2850 2790 2710 2640 2530 2350 2980 2910 2830 2750 2670 2550 2360 3040 2960 2880 2790 2700 2580 2380 3100 3020 2930 2830 2730 2600 2390 3170 3070 2970 2870 2760 2620 2410 3230 3130 3020 2910 2800 2650 2420 3290 3180 3070 2950 2830 2670 2440 W40×149 1610 TFL 0.00 2 0.21 3 0.42 4 0.62 BFL 0.83 6 5.15 7 10.41 1580 1400 1220 1050 871 633 394 2360 2330 2300 2270 2240 2160 1990 2410 2380 2340 2310 2270 2180 2010 2470 2430 2390 2340 2300 2200 2020 2520 2480 2430 2380 2330 2220 2030 2580 2530 2470 2420 2360 2250 2050 2640 2580 2520 2460 2390 2270 2060 2690 2630 2560 2490 2420 2290 2070 2750 2680 2600 2530 2450 2310 2090 2800 2730 2650 2570 2480 2340 2100 2860 2780 2690 2600 2510 2360 2120 2920 2830 2730 2640 2540 2380 2130 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 21 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 36×300 Kip-ft 3400 TFL 2 3 4 BFL 6 7 0.00 0.42 0.84 1.26 1.68 3.97 6.69 3180 2680 2170 1670 1160 979 795 4590 4510 4410 4310 4180 4120 4020 4700 4600 4490 4360 4220 4150 4050 4810 4700 4570 4420 4260 4190 4080 4920 4790 4640 4480 4310 4220 4110 5040 4890 4720 4540 4350 4260 4140 5150 4980 4800 4600 4390 4290 4160 5260 5080 4880 4660 4430 4330 4190 5370 5170 4950 4720 4470 4360 4220 5490 5270 5030 4780 4510 4400 4250 5600 5360 5110 4840 4550 4430 4280 5710 5460 5180 4900 4590 4470 4300 W 36×280 3160 TFL 2 3 4 BFL 6 7 0.00 0.39 0.79 1.18 1.57 3.88 6.62 2970 2500 2030 1560 1090 916 742 4260 4180 4100 4000 3890 3830 3740 4360 4270 4170 4050 3930 3860 3770 4470 4360 4240 4110 3960 3890 3790 4570 4450 4310 4160 4000 3930 3820 4680 4540 4390 4220 4040 3960 3850 4780 4630 4460 4280 4080 3990 3870 4890 4710 4530 4330 4120 4020 3900 4990 4800 4600 4390 4160 4060 3920 5100 4890 4670 4440 4200 4090 3950 5200 4980 4740 4500 4230 4120 3980 5310 5070 4820 4550 4270 4150 4000 W 36×260 2920 TFL 2 3 4 BFL 6 7 0.00 0.36 0.72 1.08 1.44 3.86 6.75 2750 2330 1900 1470 1040 863 689 3930 3860 3780 3700 3600 3540 3450 4020 3940 3850 3750 3630 3570 3470 4120 4030 3920 3800 3670 3600 3500 4220 4110 3980 3850 3710 3630 3520 4320 4190 4050 3900 3740 3660 3550 4410 4270 4120 3960 3780 3690 3570 4510 4350 4190 4010 3820 3720 3600 4610 4440 4250 4060 3850 3750 3620 4710 4520 4320 4110 3890 3780 3640 4800 4600 4390 4160 3930 3820 3670 4900 4680 4450 4210 3960 3850 3690 W 36×245 2730 TFL 2 3 4 BFL 6 7 0.00 0.34 0.68 1.01 1.35 3.81 6.77 2600 2190 1790 1390 991 820 649 3680 3620 3550 3470 3380 3330 3240 3780 3700 3620 3520 3420 3360 3260 3870 3780 3680 3570 3450 3380 3280 3960 3860 3740 3620 3490 3410 3310 4050 3930 3810 3670 3520 3440 3330 4140 4010 3870 3720 3560 3470 3350 4240 4090 3930 3770 3590 3500 3380 4330 4170 4000 3820 3630 3530 3400 4420 4240 4060 3870 3660 3560 3420 4510 4320 4120 3910 3700 3590 3440 4600 4400 4190 3960 3730 3620 3470 W 36×230 2550 TFL 2 3 4 BFL 6 7 0.00 0.32 0.63 0.95 1.26 3.81 6.83 2430 2060 1690 1310 939 774 608 3440 3380 3320 3240 3160 3110 3020 3530 3450 3380 3290 3190 3140 3040 3610 3530 3440 3340 3230 3160 3070 3700 3600 3500 3380 3260 3190 3090 3780 3670 3560 3430 3290 3220 3110 3870 3750 3620 3480 3330 3250 3130 3960 3820 3670 3520 3360 3270 3150 4040 3890 3730 3570 3390 3300 3170 4130 3970 3790 3610 3430 3330 3200 4210 4040 3850 3660 3460 3360 3220 4300 4110 3910 3710 3490 3380 3240 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 22 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 36×210 Kip-ft 2250 TFL 2 3 4 BFL 6 7 0.00 0.34 0.68 1.02 1.36 5.06 9.04 2220 1930 1630 1330 1030 794 556 3210 3160 3110 3050 2980 2890 2740 3280 3230 3170 3090 3020 2920 2760 3360 3300 3220 3140 3050 2950 2780 3440 3370 3280 3190 3090 2980 2800 3520 3430 3340 3240 3130 3010 2820 3600 3500 3400 3280 3160 3030 2840 3680 3570 3450 3330 3200 3060 2860 3760 3640 3510 3380 3240 3090 2880 3840 3710 3570 3420 3270 3120 2900 3920 3770 3630 3470 3310 3150 2920 3990 3840 3680 3520 3350 3170 2940 W 36×194 2070 TFL 2 3 4 BFL 6 7 0.00 0.32 0.63 0.95 1.26 4.94 8.93 2050 1780 1500 1230 953 733 513 2940 2900 2850 2800 2740 2660 2520 3020 2960 2910 2840 2770 2690 2540 3090 3030 2960 2890 2810 2710 2560 3160 3090 3010 2930 2840 2740 2580 3230 3150 3070 2970 2870 2760 2590 3310 3220 3120 3020 2910 2790 2610 3380 3280 3170 3060 2940 2820 2630 3450 3340 3220 3100 2970 2840 2650 3520 3400 3280 3150 3010 2870 2670 3600 3470 3330 3190 3040 2890 2680 3670 3530 3380 3230 3080 2920 2700 W 36×182 1940 TFL 2 3 4 BFL 6 7 0.00 0.29 0.59 0.89 1.18 4.89 8.92 1930 1670 1420 1160 904 693 482 2760 2720 2670 2620 2570 2490 2360 2820 2780 2720 2660 2600 2520 2380 2890 2840 2770 2710 2630 2540 2400 2960 2890 2820 2750 2660 2570 2410 3030 2950 2870 2790 2700 2590 2430 3100 3010 2920 2830 2730 2620 2450 3170 3070 2970 2870 2760 2640 2460 3230 3130 3020 2910 2790 2670 2480 3300 3190 3070 2950 2820 2690 2500 3370 3250 3120 2990 2860 2720 2520 3440 3310 3170 3030 2890 2740 2530 W 36×170 1800 TFL 2 3 4 BFL 6 7 0.00 0.28 0.55 0.83 1.10 4.84 8.89 1800 1560 1320 1090 847 649 450 2560 2520 2480 2440 2390 2320 2200 2620 2580 2530 2480 2420 2340 2210 2690 2640 2580 2520 2450 2370 2230 2750 2690 2620 2550 2480 2390 2240 2820 2750 2670 2590 2510 2410 2260 2880 2800 2720 2630 2540 2440 2280 2940 2860 2770 2670 2570 2460 2290 3010 2910 2810 2710 2600 2480 2310 3070 2970 2860 2750 2630 2500 2320 3130 3020 2910 2780 2660 2530 2340 3200 3080 2950 2820 2690 2550 2360 W 36×160 1680 TFL 2 3 4 BFL 6 7 0.00 0.26 0.51 0.77 1.02 4.82 8.97 1690 1470 1250 1030 811 617 423 2400 2360 2330 2290 2240 2170 2050 2460 2420 2370 2320 2270 2200 2070 2520 2470 2420 2360 2300 2220 2080 2580 2520 2460 2400 2330 2240 2100 2640 2570 2500 2430 2360 2260 2110 2700 2630 2550 2470 2380 2280 2130 2760 2680 2590 2510 2410 2310 2140 2820 2730 2640 2540 2440 2330 2160 2880 2780 2680 2580 2470 2350 2170 2940 2830 2730 2610 2500 2370 2190 3000 2890 2770 2650 2530 2390 2200 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 23 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) 5 5.5 6 6.5 7 W 36×150 Kip-ft 1570 TFL 2 3 4 BFL 6 7 0.00 1590 2250 2300 2360 2410 2470 2530 0.24 1390 2220 2260 2310 2360 2410 2460 0.47 1190 2180 2220 2270 2310 2350 2390 0.71 983 2140 2180 2210 2250 2280 2320 0.94 781 2100 2130 2160 2190 2210 2240 4.83 589 2040 2060 2080 2100 2120 2140 9.08 398 1920 1930 1950 1960 1970 1990 In. Kips 2 2.5 3 3.5 4 4.5 2580 2510 2430 2350 2270 2160 2000 2640 2560 2480 2390 2300 2190 2020 2700 2610 2520 2420 2330 2210 2030 2750 2660 2560 2460 2350 2230 2040 2810 2710 2600 2490 2380 2250 2060 W 36×135 1370 TFL 2 3 4 BFL 6 7 0.00 1430 2000 2050 2100 2150 2200 2260 0.20 1260 1980 2020 2070 2110 2160 2200 0.40 1090 1950 1990 2030 2060 2100 2140 0.59 919 1920 1950 1980 2020 2050 2080 0.79 749 1890 1910 1940 1970 1990 2020 4.96 553 1820 1840 1860 1880 1900 1920 9.50 357 1690 1710 1720 1730 1740 1760 2310 2240 2180 2110 2050 1940 1770 2360 2290 2220 2150 2070 1960 1780 2410 2330 2260 2180 2100 1980 1790 2460 2380 2300 2210 2130 2000 1810 2510 2420 2330 2240 2150 2020 1820 W 33×221 2310 TFL 2 3 4 BFL 6 7 0.00 0.32 0.64 0.96 1.28 3.76 6.48 2340 1980 1610 1250 889 737 585 3140 3090 3020 2950 2870 2820 2750 3230 3160 3080 3000 2900 2850 2770 3310 3230 3140 3040 2940 2880 2790 3390 3300 3200 3090 2970 2900 2810 3470 3370 3250 3130 3000 2930 2830 3560 3440 3310 3170 3030 2960 2850 3640 3510 3370 3220 3060 2980 2870 3720 3580 3420 3260 3090 3010 2890 3810 3650 3480 3310 3120 3030 2910 3890 3720 3540 3350 3160 3060 2930 3970 3790 3600 3400 3190 3090 2960 W 33×201 2080 TFL 2 3 4 BFL 6 7 0.00 0.29 0.58 0.86 1.15 3.67 6.51 2130 1800 1480 1150 824 678 532 2840 2790 2730 2670 2600 2560 2480 2910 2850 2790 2710 2630 2580 2500 2990 2920 2840 2750 2660 2600 2520 3070 2980 2890 2790 2690 2630 2540 3140 3050 2940 2830 2720 2650 2560 3220 3110 2990 2870 2750 2680 2580 3290 3170 3050 2920 2780 2700 2600 3370 3240 3100 2960 2810 2720 2620 3440 3300 3150 3000 2830 2750 2630 3520 3360 3200 3040 2860 2770 2650 3590 3430 3260 3080 2890 2800 2670 W 33×141 1390 TFL 2 3 4 BFL 6 7 0.00 1500 1980 2030 2080 2140 2190 2240 0.24 1300 1950 1990 2040 2090 2130 2180 0.48 1100 1920 1950 1990 2030 2070 2110 0.72 900 1880 1910 1940 1970 2010 2040 0.96 700 1840 1860 1890 1910 1940 1960 4.31 537 1790 1810 1820 1840 1860 1880 8.05 374 1690 1710 1720 1730 1740 1760 2300 2220 2150 2070 1990 1900 1770 2350 2270 2190 2100 2010 1920 1780 2400 2320 2230 2130 2040 1940 1800 2460 2360 2270 2170 2060 1960 1810 2510 2410 2300 2200 2090 1980 1820 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 24 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) 5 5.5 6 6.5 7 W 33×130 Kip-ft 1260 TFL 2 3 4 BFL 6 7 0.00 1380 1810 1860 1910 1960 2010 2060 0.21 1200 1780 1830 1870 1910 1950 2000 0.43 1020 1760 1790 1830 1860 1900 1940 0.64 847 1720 1750 1780 1810 1840 1870 0.86 670 1690 1710 1740 1760 1780 1810 4.39 507 1640 1660 1670 1690 1710 1730 8.29 345 1540 1550 1570 1580 1590 1600 In. Kips 2 2.5 3 3.5 4 4.5 2100 2040 1970 1900 1830 1750 1610 2150 2080 2010 1930 1860 1760 1630 2200 2130 2050 1960 1880 1780 1640 2250 2170 2080 1990 1900 1800 1650 2300 2210 2120 2020 1930 1820 1660 W 33×118 1120 TFL 2 3 4 BFL 6 7 0.00 1250 1630 1680 1720 1760 1810 1850 0.19 1100 1610 1650 1690 1720 1760 1800 0.37 943 1580 1620 1650 1680 1720 1750 0.56 790 1560 1580 1610 1640 1670 1700 0.74 638 1530 1550 1570 1600 1620 1640 4.44 475 1480 1490 1510 1530 1540 1560 8.54 312 1380 1390 1400 1410 1420 1430 1900 1840 1780 1720 1660 1580 1450 1940 1880 1820 1750 1690 1590 1460 1980 1920 1850 1780 1710 1610 1470 2030 1960 1880 1810 1730 1630 1480 2070 2000 1920 1840 1750 1650 1490 W 30×116 1020 TFL 2 3 4 BFL 6 7 0.00 1230 1480 1530 1570 1610 1660 1700 0.21 1070 1460 1500 1530 1570 1610 1650 0.43 910 1430 1460 1500 1530 1560 1590 0.64 749 1400 1430 1460 1480 1510 1540 0.85 589 1370 1390 1410 1440 1460 1480 3.98 448 1330 1350 1360 1380 1390 1410 7.44 308 1250 1260 1270 1290 1300 1310 1740 1690 1630 1560 1500 1430 1320 1790 1720 1660 1590 1520 1440 1330 1830 1760 1690 1620 1540 1460 1340 1880 1800 1720 1640 1560 1470 1350 1920 1840 1750 1670 1580 1490 1360 W 30×108 934 TFL 2 3 4 BFL 6 7 0.00 1140 1370 1410 1450 1490 1530 1570 0.19 998 1350 1380 1420 1450 1490 1520 0.38 855 1320 1350 1380 1410 1440 1470 0.57 711 1300 1320 1350 1370 1400 1420 0.76 568 1270 1290 1310 1330 1350 1370 4.04 427 1230 1240 1260 1270 1290 1300 7.64 285 1150 1160 1170 1180 1190 1200 1610 1560 1500 1450 1390 1320 1210 1650 1590 1530 1470 1410 1330 1220 1690 1630 1570 1500 1430 1350 1230 1730 1660 1600 1520 1450 1360 1240 1770 1700 1630 1550 1470 1380 1250 W 30×99 842 TFL 2 3 4 BFL 6 7 0.00 1050 1250 1290 1320 1360 1400 1430 0.17 922 1230 1260 1300 1330 1360 1390 0.34 796 1210 1240 1270 1290 1320 1350 0.50 670 1190 1210 1240 1260 1280 1310 0.67 543 1170 1180 1200 1220 1240 1260 4.07 403 1120 1140 1150 1170 1180 1190 7.83 262 1040 1050 1060 1070 1080 1090 1470 1430 1380 1330 1280 1210 1100 1510 1460 1410 1350 1300 1220 1110 1550 1490 1440 1380 1320 1240 1120 1580 1520 1460 1400 1340 1250 1130 1620 1560 1490 1430 1360 1270 1140 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 25 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) 5 5.5 6 6.5 7 W 27×102 Kip-ft 824 TFL 2 3 4 BFL 6 7 0.00 1080 1190 1230 1270 1300 1340 1380 0.21 930 1170 1200 1230 1270 1300 1330 0.42 781 1140 1170 1200 1230 1250 1280 0.62 631 1120 1140 1160 1180 1210 1230 0.83 482 1090 1100 1120 1140 1160 1170 3.41 376 1060 1070 1080 1100 1110 1120 6.26 270 1010 1010 1020 1030 1040 1050 In. Kips 2 1420 1360 1310 1250 1190 1140 1060 1460 1400 1340 1270 1210 1150 1070 1500 1430 1360 1290 1220 1160 1080 1530 1460 1390 1320 1240 1180 1090 1570 1500 1420 1340 1260 1190 1100 W 27×94 751 TFL 2 3 4 BFL 6 7 0.00 0.19 0.37 0.56 0.75 3.39 6.39 997 863 729 595 461 355 249 1300 1260 1210 1150 1100 1050 974 1340 1290 1230 1170 1120 1060 982 1370 1320 1260 1200 1130 1070 991 1410 1350 1280 1220 1150 1090 1000 1450 1380 1310 1240 1170 1100 1010 W 27×84 659 TFL 2 3 4 BFL 6 7 0.00 0.16 0.32 0.48 0.64 3.44 6.62 893 778 663 549 434 329 223 971 1000 1030 1070 1100 1130 1160 1190 1220 954 982 1010 1040 1060 1090 1120 1150 1170 936 959 983 1010 1030 1050 1080 1100 1120 916 936 955 975 994 1010 1030 1050 1070 896 911 926 942 957 972 988 1000 1020 866 878 890 901 913 925 936 948 960 814 822 830 838 846 854 861 869 877 1260 1200 1150 1090 1030 971 885 1290 1230 1170 1110 1050 983 893 W 24×76 540 TFL 2 3 4 BFL 6 7 0.00 0.17 0.34 0.51 0.68 3.00 5.60 806 696 586 476 366 284 202 797 781 764 745 724 703 666 826 806 784 762 737 713 673 855 830 805 778 750 723 680 883 855 826 795 763 733 687 912 880 847 812 776 743 694 940 904 867 829 789 753 702 969 929 888 846 802 763 709 997 1030 1050 1080 954 978 1000 1030 909 930 950 971 863 880 896 913 815 828 841 854 773 783 793 803 716 723 730 737 W 24×68 478 TFL 2 3 4 BFL 6 7 0.00 0.15 0.29 0.44 0.59 3.05 5.81 724 629 535 440 346 263 181 711 697 682 666 649 628 590 736 719 701 682 662 637 596 762 741 720 697 674 646 603 788 764 739 713 686 656 609 813 786 758 729 698 665 616 839 808 777 744 711 674 622 864 830 796 760 723 684 628 890 853 815 775 735 693 635 1090 1070 1050 1030 1000 972 921 2.5 1130 1100 1080 1050 1020 985 929 3 1160 1130 1100 1070 1030 997 938 3.5 1200 1160 1130 1090 1050 1010 947 4 1230 1190 1150 1110 1070 1020 956 4.5 1270 1230 1180 1130 1080 1040 965 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 916 875 833 791 747 702 641 941 897 852 807 760 712 648 967 920 871 822 772 721 654 5 - 26 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 24×62 Kip-ft 413 TFL 2 3 4 BFL 6 7 0.00 0.15 0.29 0.44 0.59 3.47 6.58 655 580 506 431 356 260 164 644 633 621 608 595 568 520 667 653 639 624 608 577 526 690 674 657 639 620 587 532 713 694 675 654 633 596 538 737 715 693 669 646 605 543 760 736 711 685 658 614 549 783 756 728 700 671 623 555 806 777 746 715 683 633 561 829 797 764 731 696 642 567 853 818 782 746 709 651 572 876 838 800 761 721 660 578 W 24×55 362 TFL 2 3 4 BFL 6 7 0.00 0.13 0.25 0.38 0.51 3.45 6.66 583 520 456 392 328 237 146 569 560 550 540 529 504 458 590 579 566 554 540 512 463 611 597 583 568 552 520 468 631 615 599 582 564 529 474 652 634 615 595 575 537 479 673 652 631 609 587 546 484 693 671 647 623 599 554 489 714 689 663 637 610 562 494 735 707 679 651 622 571 499 755 726 696 665 634 579 505 776 744 712 679 645 588 510 W 21×62 389 TFL 2 3 4 BFL 6 7 0.00 0.15 0.31 0.46 0.62 2.53 4.78 659 568 476 385 294 229 165 583 570 555 540 523 507 482 606 590 572 553 534 516 487 630 610 589 567 544 524 493 653 630 606 581 555 532 499 676 650 623 594 565 540 505 700 670 640 608 575 548 511 723 690 656 622 586 556 517 746 710 673 635 596 564 522 770 730 690 649 607 572 528 793 751 707 663 617 581 534 816 771 724 676 628 589 540 W 21×57 348 TFL 2 3 4 BFL 6 7 0.00 0.16 0.33 0.49 0.65 2.90 5.38 601 525 448 371 294 222 150 534 522 510 497 483 464 433 555 541 526 510 493 472 438 576 559 542 523 504 480 443 597 578 558 536 514 488 449 619 597 574 550 525 496 454 640 615 589 563 535 504 459 661 634 605 576 546 511 465 683 652 621 589 556 519 470 704 671 637 602 566 527 475 725 689 653 615 577 535 481 747 708 669 628 587 543 486 W 21×50 297 TFL 2 3 4 BFL 6 7 0.00 0.13 0.27 0.40 0.54 2.92 5.58 529 466 403 341 278 205 132 465 456 446 436 425 406 374 484 473 461 448 435 413 379 503 489 475 460 445 421 383 522 506 489 472 454 428 388 540 522 504 484 464 435 393 559 539 518 496 474 442 397 578 555 532 508 484 450 402 597 572 546 520 494 457 407 615 588 561 532 504 464 411 634 605 575 545 513 472 416 653 621 589 557 523 479 421 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 27 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 21×44 Kip-ft 258 TFL 2 3 4 BFL 6 7 0.00 0.11 0.23 0.34 0.45 2.90 5.69 468 415 363 310 257 187 117 409 401 393 384 376 358 326 425 416 406 395 385 364 331 442 430 419 406 394 371 335 458 445 432 417 403 378 339 475 460 444 428 412 384 343 492 475 457 439 421 391 347 508 489 470 450 430 398 351 525 504 483 461 439 404 355 541 519 496 472 448 411 360 558 533 509 483 458 417 364 574 548 521 494 467 424 368 W 18×60 332 TFL 2 3 4 BFL 6 7 0.00 0.17 0.35 0.52 0.70 2.19 3.82 634 539 445 350 256 207 158 499 485 470 454 436 424 407 522 504 486 466 445 432 413 544 523 501 478 454 439 418 566 542 517 491 463 446 424 589 561 533 503 472 454 430 611 581 549 516 481 461 435 634 600 564 528 491 468 441 656 619 580 540 500 476 447 679 638 596 553 509 483 452 701 657 612 565 518 490 458 723 676 627 578 527 498 463 W 18×55 302 TFL 2 3 4 BFL 6 7 0.00 0.16 0.32 0.47 0.63 2.16 3.86 583 498 412 327 242 194 146 457 444 431 416 401 389 372 477 462 445 428 409 396 377 498 479 460 439 418 403 383 519 497 474 451 426 410 388 539 515 489 462 435 417 393 560 532 504 474 443 424 398 581 550 518 486 452 430 403 601 568 533 497 461 437 408 622 585 547 509 469 444 414 643 603 562 520 478 451 419 663 620 577 532 486 458 424 W 18×50 273 TFL 2 3 4 BFL 6 7 0.00 0.14 0.29 0.43 0.57 2.07 3.82 529 452 375 299 222 177 132 412 401 389 376 362 352 336 431 417 402 387 370 358 341 450 433 415 397 378 365 346 468 449 429 408 386 371 350 487 465 442 418 394 377 355 506 481 455 429 402 383 360 525 497 469 439 409 390 365 543 513 482 450 417 396 369 562 529 495 461 425 402 374 581 545 508 471 433 408 379 600 561 522 482 441 415 383 W 18×46 245 TFL 2 3 4 BFL 6 7 0.00 0.15 0.30 0.45 0.61 2.40 4.34 486 420 354 288 222 172 122 380 370 360 348 337 324 305 397 385 372 359 345 330 310 414 400 385 369 352 336 314 431 415 397 379 360 343 318 449 430 410 389 368 349 322 466 444 422 399 376 355 327 483 459 435 410 384 361 331 500 474 447 420 392 367 335 517 489 460 430 400 373 340 535 504 472 440 407 379 344 552 519 485 450 415 385 348 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION 5 - 28 COMPOSITE DESIGN Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 18×40 Kip-ft 212 TFL 2 3 4 BFL 6 7 0.00 0.13 0.26 0.39 0.53 2.26 4.27 425 368 311 254 197 152 106 329 321 312 303 293 282 265 345 334 323 312 300 288 269 360 347 334 321 307 293 273 375 360 345 330 314 298 277 390 373 356 339 321 304 280 405 386 367 348 328 309 284 420 399 378 357 335 315 288 435 412 389 366 342 320 292 450 425 400 375 349 325 295 465 438 411 384 356 331 299 480 451 423 393 363 336 303 W 18×35 180 TFL 2 3 4 BFL 6 7 0.00 0.11 0.21 0.32 0.43 2.37 4.56 371 325 279 233 187 140 92.7 285 278 271 264 256 245 227 298 290 281 272 263 250 230 311 301 291 280 269 255 233 324 313 301 289 276 260 237 338 324 311 297 283 265 240 351 336 321 305 289 270 243 364 347 331 313 296 275 246 377 359 340 322 303 280 250 390 370 350 330 309 285 253 403 382 360 338 316 290 256 416 393 370 346 323 295 260 W 16×36 173 TFL 2 3 4 BFL 6 7 0.00 0.11 0.22 0.32 0.43 1.79 3.44 382 328 273 219 165 130 95.4 268 261 252 244 234 227 215 282 272 262 251 240 232 219 295 284 272 259 246 236 222 309 295 281 267 252 241 226 322 307 291 275 258 245 229 336 319 301 282 264 250 232 349 330 310 290 270 255 236 363 342 320 298 275 259 239 377 353 330 306 281 264 243 390 365 339 314 287 268 246 404 377 349 321 293 273 249 W 16×31 146 TFL 2 3 4 BFL 6 7 0.00 0.11 0.22 0.33 0.44 2.00 3.79 328 285 241 197 153 118 82.1 231 225 218 211 204 196 183 243 235 227 218 209 200 186 254 245 235 225 214 204 189 266 255 244 232 220 208 192 278 265 252 239 225 212 195 289 275 261 246 231 217 198 301 285 269 253 236 221 201 313 295 278 260 242 225 204 324 305 286 267 247 229 207 336 315 295 274 253 233 209 347 326 303 281 258 237 212 W 16×26 119 TFL 2 3 4 BFL 6 7 0.00 0.09 0.17 0.26 0.35 2.04 4.01 276 242 208 174 140 104 69.1 193 188 183 177 172 164 151 203 196 190 184 177 168 154 212 205 197 190 182 171 156 222 214 205 196 187 175 159 232 222 212 202 192 179 161 242 231 220 208 197 182 164 252 239 227 214 202 186 166 261 248 234 220 206 190 169 271 257 242 227 211 194 171 281 265 249 233 216 197 173 291 274 256 239 221 201 176 aY1 = distance from top of the steel beam to plastic neutral axis. bY2 = distance from top of the steel beam to concrete flange force. cSee Figure 5-3 for PNA locations. AMERICAN INSTITUTE OF STEEL CONSTRUCTION COMPOSITE BEAMS 5 - 29 Fy = 36 ksi COMPOSITE DESIGN COMPOSITE BEAM SELECTION TABLE W Shapes φ = 0.85 φb = 0.90 Shape φb M p PNAc Y1a ΣQ n φM n (kip-ft) Y2b (in.) In. Kips 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 W 14×38 Kip-ft 166 TFL 2 3 4 BFL 6 7 0.00 0.13 0.26 0.39 0.52 1.38 2.53 403 340 278 215 152 126 101 258 249 240 229 218 213 206 273 261 249 237 224 218 209 287 273 259 244 229 222 213 301 285 269 252 234 226 217 316 298 279 260 240 231 220 330 310 289 267 245 235 224 344 322 299 275 251 240 227 358 334 308 283 256 244 231 373 346 318 290 261 249 234 387 358 328 298 267 253 238 401 370 338 305 272 258 242 W 14×34 147 TFL 2 3 4 BFL 6 7 0.00 0.11 0.23 0.34 0.46 1.41 2.60 360 305 250 194 139 115 90.0 229 221 213 204 194 189 182 242 232 222 211 199 193 186 255 243 230 218 204 197 189 267 254 239 224 209 202 192 280 264 248 231 214 206 195 293 275 257 238 219 210 198 306 286 266 245 224 214 202 318 297 275 252 229 218 205 331 308 283 259 234 222 208 344 318 292 266 239 226 211 357 329 301 273 244 230 214 W 14×30 128 TFL 2 3 4 BFL 6 7 0.00 0.10 0.19