Subido por JHOAN JHONCLER BOCANEGRA PONCE

xdfars543

Anuncio
Estado cuántico
40 idiomas
Artículo
Discusión
Leer
Editar
Ver historial





Herramientas














Apariencia
ocultar
Texto

Pequeño
Estándar
Grande
El estado cuántico es el estado físico que en un momento dado tiene un sistema
físico descrito por la mecánica cuántica.
En física clásica, teóricamente, al medir una magnitud física en un sistema varias
veces, obtendríamos un mismo valor. Sin embargo, en física cuántica al medir una
magnitud física podríamos obtener un valor diferente en mediciones diferentes
sobre estados cuánticos idénticos (o si la medida es repetible, cada vez que se
mida la magnitud puede aparecer un valor diferente). Por tanto, para estudiar los
resultados de una medición cuántica, se recurre a una distribución de probabilidad.
Introducción[editar]
La física cuántica es una rama de la física en la que el proceso de medida no
es determinista, esto significa que dados dos sistemas físicos con el mismo estado
cuántico, al medir sobre ellos una cierta magnitud no tiene por qué obtenerse el
mismo valor. Esto contrasta fuertemente con la noción de medición en la mecánica
clásica. La mecánica cuántica es una teoría que da cuenta de la naturaleza
probabilista del proceso de medida y tanto su formalismo, como la noción de
estado cuántico, son abstracciones para poder explicar el hecho experimental de
indeterminación de la medida.
En el formalismo de la mecánica cuántica los sistemas físicos se representan
matemáticamente por un vector de estado para estados puros o mediante
una matriz densidad para estados mixtos. Equivalentemente el vector de estado
es representable también como función de ondas (en representaciones de base
continua). Tanto el vector de estado como la matriz densidad permiten predecir
valores posibles de los experimentos asociados a la medición
de observables físicos.
El estado cuántico es una representación matemática abstracta, por lo que existe
una fuente de dificultades al tratar este formalismo de la teoría por primera vez ya
que no existen buenos análogos clásicos que resulten intuitivos. Especialmente,
que el estado cuántico no es el estado en el que se puede encontrar, ya que al
observar un objeto cuántico se obtiene siempre un valor propio para ese
observable, aunque el estado del sistema no sea un estado propio para ese
observable.
Ejemplos[editar]
Partícula en un estado ligado y sin espín[editar]
Dada una partícula de pequeñas dimensiones, cuya presencia se circunscribe a
una región bastante localizada del espacio, como por ejemplo un electrón de
átomo, su estado cuántico puede representarse adecuadamente mediante una
función de onda. En ese caso el estado cuántico es una función de cuadrado
integrable definida en todo el espacio tridimensional. Naturalmente la función sólo
tomará valores significativamente diferentes de cero en una región alrededor del
núcleo atómico del tamaño aproximado del átomo. El módulo de dicha función al
cuadrado está asociado a la densidad de probabilidad de encontrar a la partícula
en un determinado punto, de tal manera que:
El conjunto de todas las funciones que potencialmente pueden representar el
estado cuántico de un electrón en un átomo constituye un espacio vectorial de
dimensión infinita. El interés de ese espacio de funciones es que permite
definir operadores lineales que representan el efecto de una posible medida, así el
valor medio de una posible medida viene dado por:
mientras que los posibles valores para la misma magnitud coincide con el espectro
del operador. La distribución de probabilidad de los diferentes valores viene dada
por el tercer postulado de la mecánica cuántica.
Un estado ligado, es un estado cuántico de un sistema físico que es combinación
lineal de estados estacionarios correspondientes a valores de la energía
del espectro puntual de hamiltoniano del sistema.
Partícula en un estado de colisión[editar]
La definición matemáticamente precisa de estado no ligado es compleja.
Intuitivamente una partícula que ejecuta un movimiento en una región finita del
espacio tiempo o que con probabilidad uno está localizada en una región finita es
un estado ligado. Los estados de colisión son estados no ligados y por tanto
carecen de esas propiedades. El ejemplo más sencillo de estado de colisión es
una partícula con un momento perfectamente definido, cuyo estado se puede
representar por una onda plana.
Un estado de colisión o estado no ligado, es un estado cuántico tal que la amplitud
de probabilidad no se anula fuera de ninguna región finita del espacio físico (ni
tampoco decae exponencialmente ni uniformemente fuera de ninguna región
finita). Los estados de colisión por tanto representan partículas que pueden
moverse por una región infinita del espacio y que cuya función de onda además no
cae abruptamente hacia cero (de manera exponencial). Una partícula sin espín
con un momento perfectamente definido
mediante la función:
tiene un estado representable
Nótese dicha función como las que representan a muchos otros estados de
colisión no es una función normalizable (es, decir de cuadrado integrable) y por
tanto no puede representarse como un elemento de un espacio de
Hilbert ordinario. Con el fin, de poder tratar rigurosamente los estados de colisión
dentro de un formalismo similar al de los espacios de Hilbert ordinarios se
introdujeron los espacios de Hilbert equipados, donde los espacios de colisión son
elementos duales de un cierto subespacio nuclear de dicho espacio de Hilbert.
Los estados de colisión son muy empleados en teoría cuántica de campos y física
de partículas para representar experimentos de colisión de partículas. En muchos
de esos experimentos la interacción entre dos tipos de partículas tiene lugar en
una región relativamente pequeña y localizada del espacio, fuera de esa región
donde se da la interacción las partículas se mueven libremente sin interacción y
por tanto son estados no ligados que pueden realizar un movimiento no acotado, y
por esa razón se representan como estados de colisión no renormalizables (donde
la amplitud de probabilidad de presencia no decae a cero).
Estado puro de varias partículas[editar]
El teorema espín-estadística conlleva que el estado cuántico de un sistema de
partículas indiscernibles (y, por tanto, idénticas) debe ser un autoestado de
cualquier operador de intercambio de partículas. Dado que esos operadoradores
son idempotentes solo admiten como valores propios +1 o -1 y por tanto cualquier
estado físicamente realizable debe ser simétrico o antisimétrico respecto al
intercambio de dos partículas cualesquiera. El teorema espín-estadística además
prueba que un estado de fermiones indiscernible debe ser un estado antisimétrico
mientras uno de bosones indiscernibles debe ser simétrico.
Estado mezcla de varias partículas[editar]
Estado coherente[editar]
Cuanto más libre de efecto sea la situación, (como en el caso del experimento
del gato de Schrödinger), más cuántico es el sistema.
En palabras más simples, el estado cuántico es uno en el que el átomo está
completamente libre de cualquier interacción con variables que puedan cambiar su
estado puro, ya sea de luz, calor, o cualquier otra interacción, y con la interacción
se perturba fuertemente el sistema, es decir, desaparecen los efectos cuánticos.
El proceso por el cual esa perturbación produce la pérdida de algunas
características del comportamiento típicamente cuántico se conoce
como decoherencia cuántica.
Notación de Dirac[editar]
Dirac inventó una notación poderosa e intuitiva para capturar esta abstracción en
una herramienta matemática conocida como la notación bra-ket. Se trata de una
notación muy flexible, y permite notaciones formales muy adecuadas para la
teoría. Por ejemplo, permite referirse a un |átomo excitado>, a
para un
sistema "con espín hacia arriba", o incluso a
y
al tratar con qubits. Esto
oculta la complejidad de la descripción matemática, que se revela cuando el
estado se proyecta sobre una base de coordenadas. Por ejemplo, la notación
compacta |1s>, que describe el átomo hidrogenoide, se transforma en una función
complicada en términos de polinomios de Laguerre y armónicos esféricos al
proyectarlo en la base de los vectores de posición |r>. La expresión
resultante Ψ(r)=<r|1s>, conocida como función de ondas, es la representación
espacial del estado cuántico, concretamente, su proyección en el espacio real.
También son posibles otras representaciones, como la proyección en el espacio
de momentos (o espacio recíproco). Las diferentes representaciones son
diferentes facetas de un único objeto, el estado cuántico.
Superposición de estados puros[editar]
La superposición de estados puros es que superposiciones de ellos se pueden
formar . Si
ket
y
son dos kets que corresponden a los estados cuánticos , el
es un estado cuántico diferente (posiblemente no normalizado) . Teniendo en
cuenta que el estado cuántico depende de las amplitudes y fases (argumentos)
de
que
y
. En otras palabras, por ejemplo, a pesar de
y
(
siendo real) se corresponden con el mismo estado cuántico
físico, no son intercambiables, ya que, por ejemplo,
y
no, en general,
corresponde al mismo estado físico. Sin embargo,
y
si corresponden con
el mismo estado físico. Esto se describe a veces diciendo que los factores de fase
"globales" no son físicos.
Un ejemplo de un fenómeno de interferencia cuántica que surge de la
superposición es el experimento de doble rendija. El estado de fotones es una
superposición de dos estados diferentes, uno de los cuales corresponde a los
fotones de haber pasado a través de la ranura izquierda , y el otro correspondiente
a la ranura derecha. La fase relativa de los dos estados tiene un valor que
depende de la distancia de cada una de las dos rendijas . Dependiendo de cual
sea la fase, la interferencia es constructiva en algunos lugares y destructiva en
otros, creando el patrón de interferencia.
Otro ejemplo de la importancia de la fase relativa en superposición cuántica son
las oscilaciones Rabi, donde la fase relativa de dos estados varía en el tiempo
debido a la ecuación de Schrödinger. La superposición resultante termina
oscilando entre dos estados diferentes.
Estados degenerados y no-degenerados[editar]
Artículo principal: Degeneración (física)
Para muchos sistemas físicos para cada valor de la energía existe un único
posible estado del sistema, en ese caso los estados de dicho sistema se llaman no
degenerados. Sin embargo, en otros sistemas para algunas energías existe más
de un estado posible con esa energía. Cuando para una determinada energía
existe más de un estado cuántico posible, cada uno de los estados posibles se
llama estado degenerado. El nivel de degeneración es el número de estados
posibles.
Un ejemplo de sistema cuántico que presenta estados degenerados es el átomo
hidrogenoide en el que cada nivel energético del átomo puede albergar dos
electrones de la misma energía, es decir, cada electrón puede estar en uno de los
dos estados posibles para ese nivel, y por tanto ambos estados son estados
degenerados. En el modelo atómico de Schrödinger la degeneración es 2n2 ya
que todos los estados cuánticos que comparten el número cuántico principal n y el
número cuántico azimutal l tienen la misma energía, y existiendo 2n2 estados
posibles para la misma energía. Si se tienen en cuenta las correcciones
relativistas, se obtiene el modelo atómico de Dirac donde por efecto de dichas
correcciones los estados con diferente número cuántico azimutal l tienen
diferentes energías, y por tanto sólo existen 2(2l+1) (< 2n2) estados con la misma
energía (todos aquellos que comparten en número cuántico magnético. Si además
se somete el átomo a un campo magnético, la degeneración se elimina por
completo al producirse un desdoble de los niveles energéticos, teniendo ahora
cada electrón energía ligeramente diferentes y existiendo ahora una relación uno a
uno entre posibles energía y posibles estados.
Descargar