sin θ = y cos θ = x tan θ = y/x definitions sin θ = y csc θ = 1/y cos θ = x sec θ = 1/x tan θ = y/x cot θ = x/y double angle (x, y) θ sin(2θ ) = 2 sin θ cos θ cos(2θ ) = cos2 θ − sin2 θ tan(2θ ) = sec θ = 1/xidentities pythagorean 2 half angle 2 sin θθ=+x/y cos θ = 1 cot tan2 θ + 1 = sec2 θ cot2 θ + 1 = csc2 θ 1 sin θ 1 tan θ sin θ cos θ sin(−θ ) = − sin(θ ) cos θ cot θ = cos(−θ )sin = θcos(θ ) negatives tan θ = tan(−θ ) = − tan(θ ) csc(−θ ) = − csc(θ ) cofunctions sec(−θ ) = sec θ = 1 cos θ tan θ = 1 sec θ = cos θ cot θ = 1 sin θ 1 cot θ = tan θ reciprocals csc θ = csc θ = sin θ cos θ tan θ 1 − cos θ sin θ = = 2 sin θ 1 + cos θ power reduction cos θ cot θ = sin θ sin(−θ ) = − sin(θ ) sin2 θ = 1 − cos(2θ ) 2 cos(−θ ) = cos(θ ) cos2 θ = 1 + cos(2θ ) 2 tan(−θ ) = − tan(θ ) tan2 θ = 1 − cos(2θ ) 1 + cos(2θ ) csc(−θ ) = − csc(θ ) π sec(−θ )= )θ sin − θ sec(θ = cos 2 cot(θ ) π ) = − cot(−θ − θ = sin θ cos 2 π tan − θ = cot θ 2 π csc − θ = sec θ 2 π sec − θ = csc θ 2 π cot − θ = tan θ 2 sec(θ ) π cot(−θ )= cot(θ sin − θ −= cos θ) 2 π cos − θ = sin θ 2 π tan − θ = cot θ 2 π csc − θ = sec θ 2 additionπ sec − θ = csc θ sin(α2+ β ) = sin α cos β + cos α sin β π cot +−βθ) ==cos tanαθcos β − sin α sin β cos(α 2 tan(α + β ) = θ 1 − cos θ sin = ± 2 2 θ 1 + cos θ cos = ± 2 2 tan α + tan β 1 − tan α tan β sum to product α +β α −β sin α + sin β = 2 sin cos 2 2 α +β α −β sin α − sin β = 2 cos sin 2 2 α +β α −β cos cos α + cos β = 2 cos 2 2 α +β α −β cos α − cos β = −2 sin sin 2 2 product to sum 1 sin α sin β = [cos(α − β ) − cos(α + β )] 2 1 cos α cos β = [cos(α + β ) + cos(α − β )] 2 1 sin α cos β = [sin(α + β ) + sin(α − β )] 2 Trigonometric Identities csc θ = 1/y 2 tan θ 1 − tan2 θ