Trigonometric Identities MTH 151 Reciprocal Identities 1 csc t = sin t 1 sin t = csc t 1 sec t = cos t 1 cos t = sec t 1 cot t = tan t 1 tan t = cot t Tangent and Cotangent sin t tan t = cos t cos t cot t = sin t Pythagorean Identities Formulas for Negatives (1) (2) sin(−t) = − sin t (12) cos(−t) = cos t (13) tan(−t) = − tan t (14) (3) csc(−t) = − csc t (15) (4) sec(−t) = sec t (16) cot(−t) = − cot t (17) (5) (6) Cofunction Formulas sin (7) (8) cos sec csc sin2 t + cos2 t = 1 (9) 1 + cot2 t = csc2 t (10) tan tan2 t + 1 = sec2 t (11) cot π 2 π 2 π 2 π 2 π 2 π 2 − u = cos u − u = sin u − u = csc u − u = sec u − u = cot u − u = tan u (18) (19) (20) (21) (22) (23) Addition Formulas sin(u + v) = sin u cos v + cos u sin v (24) cos(u + v) = cos u cos v − sin u sin v tan u + tan v tan(u + v) = 1 − tan u tan v (25) (26) Subtraction Formulas sin(u − v) = sin u cos v − cos u sin v (27) cos(u − v) = cos u cos v + sin u sin v tan u − tan v tan(u − v) = 1 + tan u tan v (28) (29) Double-Angle Formulas sin 2u = 2 sin u cos u (30) 2 2 Half-Angle Formulas cos 2u = cos u − sin u 2 cos 2u = 1 − 2 sin u 2 cos 2u = 2 cos u − 1 2 tan u tan 2u = 1 − tan2 u Half-Angle Identities 1 − cos 2u sin2 u = 2 1 + cos 2u 2 cos u = 2 1 − cos 2u 2 tan u = 1 + cos 2u (31) (32) (33) (34) r v 1 − cos v sin = ± 2 2 r v 1 + cos v cos = ± 2 2 r v 1 − cos v tan = ± 2 1 + cos v (38) (39) (40) (35) Alternate Half-Angle Formulas (36) 1 − cos v v = 2 sin v v sin v tan = 2 1 + cos v (37) tan (41) (42) Product-to-Sum Formulas sin u cos v = 12 [sin(u + v) + sin(u − v)] cos u sin v = cos u cos v = sin u sin v = 1 2 [sin(u + v) − sin(u − v)] 1 2 [cos(u + v) + cos(u − v)] 1 2 [cos(u − v) − cos(u + v)] (43) (44) (45) (46) Sum-to-Product Formulas a−b a+b cos 2 2 a+b a−b sin a − sin b = 2 cos sin 2 2 a+b a−b cos a + cos b = 2 cos cos 2 2 a+b a−b cos a − cos b = −2 sin sin 2 2 sin a + sin b = 2 sin (47) (48) (49) (50)