ESTADISTICA E^^PAÑOLA Vol. 32, Núm. 124, 1990, págs. 451 a 454 S ob re l a conveni e ncia d e util iza r el tér m ino Aná li si s Mul tivaria nte por F. AZORIN Facultad de Ciencias, Universidad Autc^noma de Madrid C. M. CUADRAS Facultad de Biología, Universidad de Barcelona RESUMEN Se dan diversos argumentos con e1 fin de que los profesores e investigadores en el tema de la evaluación psicológica, que necesiten trabajar con varias variables estadísticas analizadas conjuntamente, utilizen el término correcta de Análisis Multivariante. En Evaluación psicológica, especialmente en los problemas de evaluación que se presentan en psicología clínica y educación, así como en psicología experimental, psicofisiofogía, psicometría, etc., tienen gran interés y aplicación las técnicas del Aná/ísis Mu/tivariante. La importancia metodológica de esta rama de la Estadística y del Análisis de Datos está fuera de toda duda. Sin embargo, hemos apreciado diversas referencias a este tema utilizando la expresión "análisis multivariable". En este breve trabajo exponemos diversos argumentos en defensa del término correcto multivaríante. En primer lugar, todas las obras clásicas y recientes escritas en lengua inglesa (Kendall, Anderson, Cooley y Lohness, Morrison, Dempster, Krishnaiah, Seal, Maxwell, Mardia, Chatfield y Collins, Seber, etc.1 utilizan el término "multivariate analysis". Ello es debido a que las palabras "variable" y"variate" tienen diferentes significados en inglés. "Variable" es el I^ f ^ f)I^ E ft ♦ t ^I' 1 til )I ^ nombre que se da a una cantidad {real o compleja) que toma valores en un determinado conjunto (cuerpo de los números reales o complejo, espacio euclídeo, espacio de Hilbert, etc.) de naturaleza no estocástica. Es bien conocida la interpretación de y= f{x) como una expresión matemática que liga una variable dependiente y con una variable independiente x mediante una función f. Tales cantidades suelen tener un significado determinista, no aleatorio, a menudo controlable por el experimentador. Ejemplos: temperatura, presión, humedad, tiempo, velocidad. Sin embargo, "variate" significa variable estadística, variable aleatoria o variable estocástica i Barceló, 1 964). Luego multívariate hace referencia a varias variabies estadísticas. Es lógico que al pasar al caso múltiple, se recurra al término "variate" en vez de a"random variable". Además, las princ;ipales enciclopedias de Matemáticas y Estadística (lyanaga, 1 9$0; Kruskal, 197$; Kotz, 1981 } utilizan exclusivamente la voz "multivariate". EI uso del término "multivariable analysis" se reserva al estudio de funciones f(x,, x2, ..., x„}, es decir, funciones de varias variables (no estadísticas}, y a temas afines (análisis numérico, teoría de control, teoría de sistemas, investigación operativa}. Véase, por ejemplo, Kolman y Trench (1 971 }, Wilson y Mishra (1979 ^ , Hette`ssy y Kevicky { 1 977}. Por lo tanto, es impropio designar el conjunto de técnicas que estudian varias variables estadísticas con el nombre de "análisis multivariable", puesto que induce a confusión, dada que en inglés "multivariable" tiene un ^ignificado diferente de "multivariate", cuya traducción más idónea es multivariante. En segundo lugar, las primeras obras, tanto originales como traducidas, publicadas en castellano sobre el tema que nos ocupa, utilizan el término que consideramos correcto. Así, dos autores distintos dan el mismo título '"Métodos de Análisis Multivariante", a sendas obras, la primera traducción (Hope, 1 972} y la segunda original (Cuadras, 1 981). También se hace uso correcto del térrnino en la notable obra de Escudero ^ 1 977). Incluso bastante antes la palabra multivariante había sido incorporada al castellano (Barceló, 1964). Tales obras crean un claro precedente. Por otra parte, la sección de terminología científica de la Revista de la Reai Academia de Ciencias Exactas, Físicas y Naturales ha editado un Vocabulario Científico y Técnico (1 983} en el que se utiliza la terminología que defendemos aquí. En efecto, el término Análisis Multivariante está contenido en las voces análisis de componentes, de conglomerados, discriminante y factorial. Por ejemplo, se puede leer una definición del Análisis Factorial, que dice: "Técnica estadística del Análisis Multivariante mediante la cual la variabilidad de un cierto número de variables observ^bles puede ser explicada por tiOI3Ftf-. I.,A (()ti^'t N1^ `( I^!)f 1 I Il.l/^1R f 1 i t K111tiO ^^^^I I^;I^; 11l l i I` 1Ftl 1^. l I ^5^ la de un número en general mucho menor de variables Ilamadas factores o variables latentes". No es un hecho aislado. EI término Análisis Multivariante, es también utilizado en el Diccionario de Términos Científicos y Técnicos (Lapedes, 1981 }. La terminolog^a correcta ha sido utilizada por otros autores (Maravall, 1974, Mallo, 1985; Quesada y García, 1988) aunque hemos apreciado e! uso del término "análisis multivariable" en alguna obra en castellano IGarcía Ferrando, 19851. Sin embargo, esta última obra adolece de una "cierta terminología confusa y errónea" (véase Arnaiz, 1987 ). Finalmente, en ciertas aplicaciones se parte de una matriz de distancias (o de similaridades) entre un conjunto de objetos, de los cuales se desea obtener una representación espacial o a través de un dendograma. Tal matríz no siempre se obtiene a través de ia observación de variables. Luego el término "multivariable" no es adecuado en este caso. Sin embargo, interesa analizar la variabilidad multidimensional de los objetos. Tal ocurre en diversas técnicas de M DS (Multídimensional scaling) y de I N DSCAL (individual scaling), que forman parte del Análisis Muitivariante, y que se traducen utilizando el término "escafamiento multidimensianal", o"escalogramas multidimensionales" aunque sería rnés correcto el término "análisis de escalas muÍtidimensionales" (pero esta es otra historia}. REFERENCIAS A^J D E R S O N, T. W., D AS G U PTA, S. y S TYA N, G. P. H. A Bib/iograph y of Mu/tivariate Statistica/ Analysis. Edinburgh, Oliver and Boyd. ARNAlZ, G. (1987) Crítica del libro: Manuel García Ferrando. Socioestadística. Estadística Española, 1 16, 121-12 4. BARCELO, J. (1964) Vocabulario de Estadística. Barcelona: Ed. Hisp. Euro. CUADRAS, C. M. (1981 Í Métodos de Análisis Mu/tivarrante. Barcelona: Eunibar. Segunda Edición PPU, 1 991. ESCUDERO, L. (1977} f^econocimiento de Patrones. Madrid: Paraninfo. GARCIA FERRANDO, M. (1985) Socioestadística. Madrid: Alianza Editorial. HETTE'SSY, .1. y KEVICKY, L. ( ^ 977} "Minimum variance control of multivaria- ble linear systems". Prob. Control and /nform. theory, 6, 229-242. H oPE, K. (19 72 ) Métodos de Análisis Multivariate. M adrid: I nst. Est. Polit. IYANAGA, S. y KAWADA, Y. (eds.} (1980) Encyc%pedíc Díctionary of Mathematics. Cambridge, M IT Press. f ti t^ I^11 í It ^ F tif' ^ ti( ^1 1 KOLMAN, B. y TRENCN, W, F. Í1971 ) Elementary Multivariable Calculus. N.Y.: Academic Press. K OTZ, S. y J Q N N so r^, N. L. (19 81 ) Encyclopedia of Statistical Sciences. N.Y.: Wiley. ICRUSKAL, W. H. y TANTUR, J. M. 1eds.) { 1978) lnternational Encyc%pedia of Statistics. N.Y.: Macmillan Pub. Co. Inc. LA PE D E S, D. N.( ed )(1 9 S 1} Diccionario de Términos Cíentíficos y Técnicos. Barcel^na: McGraw Hill, Boixareu. MALLO, F. { 1985} Análisis de Componentes Principales. ^León, Secc. Pub. Univer. i ^ón. M A R A V A L L, D. ^ 19 7 4) Cálculo de Probabilidades y Procesos Es tocás ticos. Madrid: Paraninfo. QUESADA, V. y GARCIA, A. (1 988) Lecciones de Cálculo de Probabilidades. Madrid: Díaz de Santos. R EAL ACADEMIA de CIENCIAS EXACTAS, FISICAS y NATURALES. ( 1983} Vocabularío Científico y Técnico. M a d ri d. WI^saN, D. A. y MISHRA, R. N. { 1979} "Optimal reduction of Multivariable systems". /nt. J. of. Contro% 29, 267-278. SUMMARY The techniques of Multivariate Analysis are of great interest and they are widely applied for psychological evaluation. This is true, specially, in clinical and educational psychology, as well as in experimental and physiological psychology and in testing. The rnethodological importance of this branch of statistics and data analysis is unquestionable. We have found, nevertheless, various references to this subject using the expression "Multivariable Analysis". In this brief article, several arguments are exposed in defense of the use of the correct term. NOTA: Este breve artículo fué escrito hace algunos años, siendo aceptado para su publicación en el primer n ^ mero de una revista sobre metodología en Psicología, cuyo proyecto de edicián ha sido aplazado " sine die". EI fallecimiento del profesor F. Azorín impide cualquier modificación en el redactado del artículo.