Fundamental Identities I CSC B^ 2- sec 0 cot B 3 tan 0 4 5 cot 0 1 sin 0 • 1 9 sini-B) = -sin 0 19 sin(a + ^) = sin a cos /3 + sin (3 cos a 10 cos(-0)==cos0 20 cos(a + (S) = cos o; cos jS ~ sin a sin jS 11 tan(-0) = "tan 0 cos 0 21 tan(a + /3) 12 cot(~0) === -cot 0 1 tan 6 13 sec(-^) = sec B sin 0 cos 0 • 22 sin 0 COS'^ f ? + sin^ 0 = 1 7 1 + tan^ 0 = sec^ B 1 + cot^ 0 == csc^ 0 15 sin 20 == 16 cos 20 = = = 2 sin B cos B 2 cos^ 0 - 1 1 - 2 sin^ 0 cos^ 9 - sin^ 24 sin(a - ^3) = sin a cos ^ - sin /3 cos a tan(a ~ (3) tan a - tan (3 1 + tan a tan (i Product Formulas 17 cos^ 0 - 1(1 + cos 20) 18 sin^ a = k l " cos 20) Geometry 1 ~ tan a tan /3 23 cos(a - /3) = cos a cos /3 + sin a sin ^ Double-Angle Formulas COS 0 tan a + tan IB Subtraction Formulas 14 csc(-^) = -CSC 9 6 8 Addition Formulas Even-Odd Identities 25 sin a cos jS =^ |[sin (a + /3) + sin (a - (3)] 26 cos a cos /3 = |[cos (a + /3) + cos (a - ^3)] 27 sin a sin /3 = |[cos (a - /3) - cos (a + (B)] (see Appendix A, page 1015) DM 1 D^u" = nu" ^ D^u 11 Z)^ sinh u = cosh « D^u 2 D:,{u + v) = DxU + D^v 12 Z?:^ cosh M ~ sinh M Z^^^M 3 />:((HV) = uDxV 4- vD;,M 13 Dx tanh M = sech^ u D^u 14 Dx coth u = - c s c h ^ u D^u 4 D, 15 Dx sech M ™ - s e c h u tanh M £>J,M H N __ vD^u - uDxV 7/ ^ i^ 5 D;c sin H = cos u D^u 16 Dx csch M = " c s c h u coth M Z);t« 6 I>:c cos u = —sin M DJ;H 17 D;,e" = e" £>;,M 7 Z)j: tan M = sec^ M Z>;CM 18 D;,a" = a" In a D^u 8 Dx cot M = ~ c s c ^ u DxU 19 Z);, lOga M 9 D;r sec u ~ sec H tan u DxU 20 Z>. In M == 10 D^ CSC u = —CSC M cot u D^u uln a DxU u 27 Dx f(t)dt^f{u)DxU