Trigonometric Identities Right-Triangle Definitions sin(θ ) = Opp/Hyp cos(θ ) = Adj/Hyp tan(θ ) = Opp/Adj cot(θ ) = Adj/Opp sec(θ ) = Hyp/Adj csc(θ ) = Hyp/Opp Radians ⇐⇒ Degrees xr = πr · t◦ 180◦ t◦ = 180◦ · xr πr Reduction Formulas sin(−x) = − sin(x) π sin − x = cos(x) π2 sin + x = cos(x) 2 sin(π − x) = sin(x) cos(−x) = cos(x) π cos − x = sin(x) π2 cos + x = − sin(x) 2 cos(π − x) = − cos(x) sin(π + x) = − sin(x) cos(π + x) = − cos(x) Pythagorean Theorem sin2 (x) + cos2 (x) = 1 tan2 (x) + 1 = sec2 (x) 1 + cot2 (x) = csc2 (x) Sum and Difference Formulas sin(α + β ) = sin(α) cos(β ) + sin(β ) cos(α) sin(α − β ) = sin(α) cos(β ) − sin(β ) cos(α) cos(α + β ) = cos(α) cos(β ) − sin(β ) sin(α) cos(α − β ) = cos(α) cos(β ) + sin(β ) sin(α) tan(α + β ) = tan(α) + tan(β ) 1 − tan(α) tan(β ) tan(α − β ) = tan(α) − tan(β ) 1 + tan(α) tan(β ) Double Angle and Half Angle Formulas r 1 − cos(θ ) 2 1 + cos(θ ) cos(θ /2) = ± 2 1 − cos(θ ) sin(θ ) tan(θ /2) = = sin(θ ) 1 − cos(θ ) sin(θ /2) = ± r sin(2θ ) = 2 sin(θ ) cos(θ ) cos(2θ ) = cos2 (θ ) − sin2 (θ ) tan(2θ ) = 2 tan(θ ) 1 − tan2 (θ ) Euler’s Identity eiθ = cos(θ ) + i sin(θ ) Derivative Formulas d sin(x) = cos(x) dx d tan(x) = sec2 (x) dx d sec(x) = sec(x) tan(x) dx d arcsin(x) = dx d arctan(x) = dx d arcsec(x) = dx 1 √ 1 − x2 1 1 + x2 1 √ x x2 − 1 d sinh(x) = cosh(x) dx d tanh(x) = sech2 (x) dx d sech(x) = sech(x) tanh(x) dx d arcsinh(x) = dx d arctanh(x) = dx d arcsech(x) = dx 1 √ 1 + x2 1 1 − x2 1 √ x 1 − x2