REVISTA MEXICANA DE FíSICA 45 SUPLEMENTO JUNIO 1999 1. 118-121 Sorne requirernents for a theory to explain probable roorn-ternperature superconductivity and unusual rnagnetic properties of narrow channels in oxidised atactic polypropylene D.M. Eagles* Instituto de Investigaciones en Materiales, U"h'ersidad Nacional Autónoma de México Apartado postal 70-360, 045/0 México, D.F., Mexico e-mail: d.eagles@k.ac.llk Recibido el27 de febrero de 1998; aceptado cl2 de abril de 1998 Mea:-;urements of electrieal conductivity. Ihermal conduetivity nnd magnelic propertics of narrow channels through oxidiscd films of atnclic polypropylcnc rcported in Ihe lnsl ten yenrs are rcvicwcd. and rensons nre given why il is thought thal c1nims of room-temperature supercondllctivity in su eh channcls in Ihis material are valid. Five requirements for ~mythcory which can explain allthe experimental results are listed. and a diseussion is given of how one candidate theory may satisfy these requirements. Kl'YlI'ord.\': Room-temperature superconductivity; diamagnetism: met<lmagnelism; ataclic polypropylene Se revisan lns mediciones de conductivitidad eléclrica, conduclividad térmica y de las propiedades magnéticas de cnnales nngostos n través de peliclllns oxidadas de polipropileno ntáctico. reportados en los últimos diez años. y :-;edan argumentos de porqué In afirmnción de que dichns canales presentan supercondllctividad n temperatura ambiente es válida. Se lisIan cinco requisitos para cualquier leorín que quiera explicar todos los resullados experimentnles y se dn una discusión de una tcoría que puede satisfacer eslos requisitos. Descriptores: Superconductividad rAes: a temperatura ambiente; diamagnctislllo: mctalllagnctismo: polipropilcno atáctico 73.6I.Ph; 74.25.H,,; 74.70.Kn 1. Summary of experimental results (h) A prohahle 1.1. Electrical measurements and thermal conductivity Thcrc have heen c1aims in lhe litcraturc of room-tcmpcralurc supcn:onductivily in narrow channels through films ol" oxi. llpper limil 01' channel from atlcmpts lo see conduction rOl"closely spaccd conlacls [4]. (e) A separation of conducting film 01' 0.3 ¡"TI thickncss diumelers 01' 2 ¡"TI in Ihc planes af films channels of7-8¡lnl in one [2]. discd atactic polypropylcnc sincc 1988 [1]. anJ three papcrs rcaffirming this claim appcarcd in 1989, lwo fmm lhe Instilute nI' Synlhclic Polymcric Materials in Moscow {2, 3] amI olle from Ihe folTe Institute in what was lhen Lcningrad [4]. Thc l1Ims werc usually oxidiscd hy hcating in air al IDOoe l'ollowed hy irradialion wilh ulLraviolel light, hui some rcsults on lilms oxidised hy lcaving for several pcrformcd with In prcssure contacts and a eu hase c¡cetroJe. \Vhen lhe In conlacls wcrc pUl in various positions jt was founu that thcrc were insulating, poorly conducting, and relatively highly conducting points. The llrst indication of possible supcrconductivity was that the resistan ce 01' Ihe poinls wilh goou conJuclívíty JiJ not depend on the film Ihickness, rOl"films 01' tlp to 100 ¡1tn thickness, ami was approximately equal to Ihat of lhe contact directty in louch with Ihe hase electrode [1-3J. Some other interesting results of electrical mcasurcmenls reponed in the 1989 papers were: (a) Changcs perature pies [3). (c) A slow dccline in the nUlllber oI" condllc.:ting channels over a pcrinl\ of so me days when magnclic liclds of aholll (J. I T \Vere applied parallel lo film surfuces [2]. ycars in air al room tcmpcraturc wcre also disclIsscd [1,3]. Work was lllostly (d) An incrcase nI' conductivity by a factor aF abaut 250 rOl" quite small applied pressures (::::::: 70 g.cm-2) {4J. of R by nine ordcrs of magnilude by tcmcycling ncm room temperature in same sam- (1) Experimcnts wilh 0.5 A currents wilh In contacts and 2-3 A \vilh eu contacls whcre Ihe contacts mcltcd pcrIllitlcd dcdllctions that Ihe high-condllctivity state persisled up lo ahove 429 K (lhe mclting point nf In) and also, fmm the cxperilllcnt with Cu contacts. that Ihcre was no heat evollllion in lhe polymer for current densities j > 3 x lO(; Acm-2 [3]. The strongest indications Ihal channcls Ihrough lilms of oxidiscd alaclic polypropylene are supercandllcting al room lemperalure came frolll Ihree propcrties reponed in 1990 and 1991 [5-71. These are: l. Thcir electrícal conductivily at room tempcraturc is at least two and prohahly more Ihan lIve orders of magnitude grealcr Ihan that ofCu [5, G]. SOME REQUIREMENTS 2. The highly eondueting state is deslroyed in pulsed Illcasurements aboye a critica! current, ami this clcs!ruelion is nol by lhermal effeel' [6]. clcctronic contribution to lhe therin lhe channcls, implying a violation nI' lhe Wict.lcmann~Franz law by scvcrnl ordcrs 01' magnilude [7J. 3. Thcrc is a ncgligiblc mal conduclivily A lowcr I¡mil on Ihe channel electrical conductivity a al room lcmpcraturc is obtaincd in two ways, dircctly from a four.prohc mcasurcmcnt by lhe Joffe lnstitulc group [5j and indircctly from lhe lack ofthcrmal decomposition in rcpcJtcd pulscd-currcnt IllCaSUrClllcnts by lhe Moscow group [6], in comhination with mC<lsurcmcnls uf low thermal conduclivity of channcJs [7]. Thc indircct mcthod givcs conductivitics over five ordcrs of magnitlldc grcaler than that of eu, whilc Ihe direct melhod givcs a lower limit for a 01' lllore than two orders nI" magnitllde grcater than that of eu ir channcl diamelers are assumcu to have Iheir eSlimated upper Iimit of 2//111 14, G], 01' 01' nearly flve orders af magniluJe greatcr Ihan that af eu ir an eSlimatc 01' Ihe channcl diamcter of O.l/lm is maJe by identiflying the contact rcsislancc with a spreading resis(ance associaleo with lhe cantacl metal [5}. The violation of the Wicdemann-Franz law indicales that the channcls are superconliucling, ralher than having ultra-high normal conductivity. Two other prnpcrties 4. The crilical conducting 700 K. 5. The crilical of the channcls lemperature currenl estimalcd ror destruction or sllpcrconducling stale uensilY jc ,....,5 119 FOR A THEORY TO EXPLAIN PROBABLE ROOM-TEMPERATURE. X crileria occurrcd ovcr a fcw hundred hours viewing time for ficlds in lhe range 01' 80 to 400 Oc, bUI nonc for zera fteld or for f1clds grealer than 800 Oc. AH five evenls gave torces pushing Ihe samples 10wanJs lower fields, corresponding lo diamagnetisl1l. 1I is prohahle (ha! holh properties 2 ami 3 are associated wilh whal happcns when conducting channels join up at their ends lo I'orm closed loops. This was ftrst suggested by lhe Moseo\V group for properly 3 in 1993 [IOJ. 2. Why conducting channels exist Grigorov el al. [11, 12] argue Ihat conducling channnels are likely lo exist in any elaslol11er (material with very low elastic constanls) which contains a surtkient concenlration 01' rotatable electrical dipolar groups. In an elaSlomer an extra chargc can orient allllipoles wilhin sOllle radius Ro given by = Ro (cD /rrvC,oc)'. , ( I) Herc D and vare the dipole moment and volume 01' the group, G is the shear l110dulllS ol" the material, and fCX) is lhe high-frcquency dielectric constan!. Assuming D ;:::::: 3 Dehye, v ;:::::: 0.1 nm\ ('00 2.2, ano Ihal G lies in Ihe range 4100 MPa, \Ve lind Ro (3"= 2) nlll. = = In such an elastomer timate: material (:1) It is energetically favourable Grigorov el al. lll, 12] es- in [61 are: 01' lhe highly satisfies Te > 109 Acm-:.!, (h) Ir the stalic dielectric 1.2. l\Iagnetic properties for some atoms (o ionise, wilh ions ami eleclrons hoth surrounded aligned dipoles, provided that there are dipoles in any rcgion of radius Ro. An its surrounding rcgion of aligned Jipoles type nI" polaron, constanl by regions of three or mOfe cleclron plus is an unuslIal is more lhan a few limes it is energetically favourahle for polarons lo join up in pairs, and then in long slrings called "supcrpolarons'., Currenl carriers can move up anu down lhe slrings rairly freely. f(X), \Ve now come lo magnclic properlies. There are threc anomalous magnelic properties thal nced explaining: 1, \Vhm is callcu "anomalous ferromugnelism" by the Moscow group, hut which should perhaps he calleó mctamagnelism, with a Iransilion field in the range 01' 0.1 lo 0.2 T, scen in \VeJl oxidised films [8]. 2. Large diamagnelism al low applied fields in aboul 10% 01' films stlldied [3]. The diamagnelic susceplibilily at 10\V fields (l/lI) JI is approximately proportional The estimaled diamelcr 01"Ihe superpolaron strings is of the order 01' a nanoJ11clcr, hut diame(ers (JI' conducting channeis have been infcrred fmm experil11ents [4-6] lo be in the range 0.1 lo 2 Illll, ami so il has to he poslulatcd Ihal the strings or fIIamcnts combine con<!ucting channels. in quite large numbers lo form lo 19J 3. Occasional spontaneous forces tending to push smllpies towards lower lields in inhomogeneous magnetic liclds [10). 3. Sorne reqllirements for a theory to explail1 hoth sllperconductivity and magnetic properties of channels lo Study nf lhe thirJ property rcquircs a criterion ror whether a sponlaneous rorce is signifkant cnollgh lo he worlh counling, Three crilcria were c/losen, ha sed on strength, duration amI rale nI" grO\vth, Five cvenls salisfying the required Assllllling a pairing thcory, we neeu large pair binding encrgics, al Icasl 0.1 eV ror ronm-Icmperaturc supercont!uctivi(y, or at least 0.2 cV ror sllperconductivity al 700 K, supposing (hat pair hinuing energies nccd to be al leasl about 4/cll T('. Re\', Me.\". F{s. 45 SI (1999) 11R-121 tu..!. EACiLES I2n 2. \\'e /leed cilhcr small pair cffcctive masscs, at Icast in lhe dircction along Ihe channcls, or un un usual pair di.\pcrsillll rclation [131. Olhcrwisc {he Bosc-Einstl'in (ollticnsatioll tcmpcraturc Tu uf bosons will ¡¡mil 1~ 10 rairly small \'alucs. \Ve llave maJe cakulations 01' TlJ for non.jntcracling hosons ror lhe case 01'quadratic dispcrsion relatians chafactcriscd hy dilTcrcnll1lasscs .\[/, and i\lT parallel and perpendicular 10 liIamenl tlircclions in <.In array 01' flIarncnts ll..J 1.11 lhe tralls\'crsc cUI-off cncrgy 1FT associated wilh lhe millillllllll tilamcnt separatíon is smallcr than kHTn. we lInd fmm l1ulllcrica\ rcsults rOl"thrcc cases with diffcring ratios (kIlT/I/I\"'rJ thal, for a suflicicnlly largc numbcr 01' lila. IllClltS. (2) whcrc (' is lhc linear ('arrier conccntration in a filament, anu separalion. If, e.g., e ~ 107 cm-I and 1/'/ ;:;: '2 1111l, then. to obtJ.in Tu 700 K we need an average mass 01' aholll 1..11I1¡. Sincc lransversc masses are prohahl)' laid)' large, small longitudinal basan massC's \\'ould he nccdcd inlhis Iypc of model. ¡Ir is Ihe filament = 3. In order lo cxplain \ C( (1/ H) in samples "howing lliamagnctism, which implies magnelic mamenls indcpenden( of 11. we prohahly nced large circulaling suIK'I'l'Urrents lo arise \vhencvcrchanncl cnds join to fOfln ¡¡ closed loop. 4. \Ve Ill'ed to explain why the direction af such curren(s is sllch ;1" lo give magnelic momcnts in lhe directioll ('ppo<.,ite lo l!lal of Ihe applied licld, in both susceptihility ami spolllancolls-force mcasurements. 5. \Ve nccd (o cxplain Illelamagnetic transitions llClic liclds in Ihe mnge of 0.1 lo 0.2 T. for mag- .l, I'ossihlc lhcories -l.I, Iligh-drift-n~locity molle! Tlli"nwdl'l \\'as inlrodllced in 1994 [15.16], anu is hased on :tn old idea nI Parlllcnlcr 11 jll~at enhancements 01'electron~ clcclron allfaL'lions can occur at drift vclocilies close lo Ihe \"l'loL'Íly \lf "iollnd 01' 10 a phase velocity of whatevcr excita~ tion is Illedialing the anraclion. Consequcnces of the mooel j"or m;\gllelic propertics are oiscusscd in [18]. A disclIssion of h(1\\ ll1i" Illodel (!t:;¡ls wilh Ihe lI\'c poinls mcnlionco in Ihe prC\'illlb "L',,:Iion is gi\'ell hdnw. l. Pail" hinding encrgies Illay he large hccause 01 (he cnhanced inlel'at:liOIlS al srecial drin vclocitics melllinlled ,lhove. For Fcrllli ellergies slllall compared wilh the el1crgy 1/:...-' 01"\'ihale\'cr Illcdi:J1t::sthe pairing, this cnhancclTlcnl hecolllcs inlinite rOl' qllasi onc-dimensional systellls in lhe /?('I'.M"x. ¡:[~.-l5SI simplest pcrturhalioll approach to e1ectron elcclron attraclions It5. lGl. 11wa" suggestco in [16] Ihat plaslTlons of enL'rg:' 1.S eV migllt llledialC the attraction. For so me dis. cllssion of whal may l1;¡ppen heyond pcrturhalion theory sec pnin! 2 helo\\'. 2. EITecti\'c masses nf pairs. in\'crscly proportional 10 the cur\':Ilure of the energy. E, \>crsus ccnter-of-mass wa\'e vector 1\" for pairs, L'olllJ he small ir E wcre lo go through a sharp lllininUllll at'some llplilllUJIl 1\'. Preliminar)' calculatians for hipo1arons in one-dimension using a \'ariational melhod appropriale ror intermediate cOllpli ng strenglhs ano the assumrlion Ihal hare electrol1s have a constant effectivc muss do not SllPPOr! Ihe idea 01' a second minimum in E al l\ i- O. Ha\\'e\'L'r. after inL'iusinn or a conjeclured approximale methoJ nf Irealing ellecls uf b:lIld encrgics for hare clcctrons rroportional lo [1 - ("os (J,'(/)]. where a is Ihe lattkc constanl ano k is :In eleClron wave number, il scems that. 1'01'some coup1ing conslants, the hipolaron encrgy can go down lo a cusp. like rninimum ror 1\' equal lo its maximum possible value, I\"ll = 2;;/11. Thlls Ihere mi.lY he an unusual oispersion rclation. rfllm lhe Illllllcrieal caklllations we have done up 'o now, il arrears that Iherc will he an aprroximatcly linear dependencc nI"cllergy on \\':I\"e \"CClOrITIcasured fmm A"ni near I\'/ll' hecoming sllhlinear rurther a\\'ay. [1' clcclrie currcnts fmm pairs with particular wavc \'cclors are proportional 10 dE /d /\'. thell. for a 1inL'ar dispcrsion relation. lherc would he tWll lypes 01' pairs wilh clJual and orpositc largc vclocities. althollgh the sl;¡lc at Ihe ClISPwill presumably consist 01' a superposition 01' stales \\'ilh ('qual alllJ opposite \"elocilies. \Villl no l'xlernal perturhalioll, a condel1satc wilh states at (he cusp with tcro nel velocity Illay he e.\pccled. However, the ocgcnerae)' 01"Ihe (wo ~lales fmm which Ihe zOl1c-cdge cu"p slalc is cOlllposcLl will hl' hroKCll hy an c\ternal pcrturhalion sllch as ,1Il i.lpplied currcnl 1'01'<l quasi onc-dimensional f¡lament wilh end COIlIlL'Clioll". or a magnctic lielJ rOl' a li1ament in Ihl' r01"1llof a closl'd loop. Then. sincc cXL'hange inter:.u.:tions Illakc a superposition 01"IWOcondensates from nearly degen~ t:rate slates cnergelically unfavourahlc [19], we expcct Ihat a ,Iale willl a high CLlITcntdensily in OJll' 01' Ihe 1\\"0 directions will be prcfcrred. Evell rol' a linear dispcrsion for a single quasi-onc dimensional lIlamcnt, \Ve necd lo in\"okc inh::raction hetwcen 1¡lamenls within a channel in order to ohtain a finitc eondL'llsalion Icmperalure. 3. LlI'gc circulating cUlTenls can occur in <:loscd loops. since high drift n:locilies ( a fe\\' limes 107 CI11.S-1) were prcfcrrcd in Ihe original mooel [16]. and, for appropriate sln:nglhs of e!ccIHlll-\lnson eoupling ano energics 01" the ho:-,oll" \\'hich induL'e pairing. dri!'t \'clacities can he nf this OIoer loo in Ihe hipolaron Ihcory wilh a cusp-like minilllulll in lhe pair encrg:y al lhe tone edgc. 4. ¡\ pos"ihle expbnation as 10 why lhe initial direc(ion 01' lhe cirnJ!aling currents lllay he such as lo opposc the applil:d licld is as rollows. To c10sc a loop, 011average lhe material of the loop has ((l 1110\'L'l110re IOwards Ihan away from the cenlcr, ~lIld(lile GIII lhlls illvo"'c Lcnz's 1aw as applicd 10 moving wire sq!l1lellls lo ,11()\',' lhal lhc indllced e.m.r. for Ihis l11otion 4 (j\)'N) tlx-t21 SOME I{EQUIREr-.lENTS FUR A THEORY TO EXI'LAIN PROBABLE ROOi\1-TEMPERATURE is such as to cause which produces currents \\'ith a direction a licld opposite 01' circulation to the applied \\'hichcvcr explanation is invoked for the inilial curren! dircctioll, it is expe<.:led that, in tlue course, (he loop as a \,,'hole Illal' rotate so Ihat its momenl beco mes parallcl to the 011 a timc scalc which \ViII decreasc as Ihe applieJ tic Id illLTeases. A reversal fmm diamagnctisrn lo paramagnelisll1 was reponed in [L 101 in a 1600 Oe field 011 a limescale 01' lhe onler 01' a minute. 5. iV1clamagneLism in the moJel is associated wilh a tranlo a fcrromagnetic array 01' sition from an i.lnliferromagnetic 121 5. Conclusions licld. An altcrnative possihle explanation more dependent Oll details of Ihe high-drift-velocitl' moJel was givcll in [18]. llcld, .. elelllelltary long-thin current loops. To explain a transition liL'ld 01' c.g. 0.12 T, \Ve need ahout 30 fIlall1ents per current loop [181. There is experimcntal evidence ror superconductivity and unusual ll1agnetic properties in narrow channels through films of oxidised atactic po.lypropylene. Although not discussed here, there is also evidence that some of the same unusual propcrties are present in fIIms 01' polydimeth1'lsilox- ane [20,211. Only one candidate theory to explain aJl types ordata has heen puhlished in any detail [15, lG, 181, and this theory nccds more work ror ils justification heyond perturhation thcory. More groups should try to reproduce and extentl the Russian experimental work. SOIllC suggested worthwhilc experiments are listed in [18]. Acknowledgcmcnts 4.2. l\lodcl with l'x(.'han~e-inclllced triplet pairing I shollld Iike to Ihank L.N. Grigorov There is very liule puhlishcJ on this moJel 1'et, which \Vas mClltiollcd in [12J, and so it is difficult (o asscss ils plausihilily al prcscnt. dence ami discllssions, D. Likhatchev ror a verhal translation 01' a long Russian papel', I.G. Kaplan rol' sOllle commcnts on a draft 01' Lhe manuscript, M. de Llano rol' a preprint. ami O. Navarro rOl' a Spanish version 01' the title and ahslrac!. Addrc:-,s fwm Arri 1 199X: 56, Portland don N 15 ..J.SX. England. 1. L.i'\. llrigorov LOJl- lO. L.N. Grigorov. "nu TCl'hnological Infol'ma- anu L.N. Gríg(lf()v. Vyosoko- I'i."",,, 3. N.S. EnikoloPY"Il. LN. Grigorov. "Ild S.G. Smiroov". Zh. I:'kSJ1. TcOl: Fi~. 49 (19R9) 3261JETP Len 49 (1989) J71]. ct a/., DoU. Akad, Nauk. 5S5R J09 fi03 [SOl'. Phys. DoUad)' 3-1 (1989) 101fi]. 11. D.N. Rognchcv, J5 (1993) S()ct/ill. IJ f)cflo.\'Í/ed Aniell' No. 238/ and S.G. Smirnova, (AlI-Union InstilUlc rol' Scicnlific (ion, 2J .\Ian:h 19HX), V X8, 2. S.G. Smirnovn, E.1. Shklyarovn, //lo/. Soctli/l. 1/ .\ 1 (19X9) fi6? Rond, To((cnharn, L.N. Grigorov, 1921 for extensive anu A.Y. Kracv, r PO/)'I1Il'r Makm/llof. 5cicllCl' corrcspon- Vy.wkol1lol. .'5 (1993) 1625 J. ChCIIl., Macl'OlIIol. 5."1/1/', 37 (1990) 159: L.N. Grigorov, Pis '/l/a 7h. Tdh. Fiz. 17(5) (1991) 45. (501'. T,,('h. /'ltr.\'. 1.('((. 17 (1991) 36S). 12. L.N. Grigoro\'. Y.t\-1. Anurccv, anu S.G. Smirnovn. C1I(,1II.,Macromo!. .\~\'/Jlp..n (1990) 177. Makmlllol. 13. M. Casas ('/ a/., COl/{/. ¡\fall. T//('oril's IJ 13 (\ 998J 1..J..D.i\-l Eaglcs./'1IY.l'ica C. JOI (1998) 165. ,1. Vi\1. Arkhangorouskil ( 1()X9) IS. D.M. Eagks. in: Pmc. COI,f Ph\'s. SIIP('I'[,Olldlll.tOJ'S, ;.1. \'.1\-1. Arl\hangorodskil. A.N, lonov, Y.M, Tuchkcvich, Shlimal\, Pi.\ '1/1(/ Zh. J::ksl'. Teor. Fiz. 51 (1990) SI (I'NO) 671. n. (l. \'. Dcrnichcva 228 [J/JI' j. ('( a/., Pis S.G. Smirnova, Z/¡. 211. Eksp. Ll'1/. and S.G. Smirnova, 399 [5I1percOIu/lfctil'll\', 5\'(,I'k1l- O.V [)cmichcva, anu L.N. Grigorov, l'i,\"lI/a (1988) 212 [JETI' Lel/. 48 (t 988) 2311. O. L.N. Grigmov, ami D.N. Rogachcv, 230 (1993) fi2S. Alv/n. Cr)'st. Liql/id Cryst. e 225 (1994) Phys. Rn: Parmcnlcr. 116 222; 280 (1997) (1959) D90; 0.,\1. E:lglcs . .I. 511/)crcO/u/. 11 (1998) 19. P. [\;o/icrcs. /'/¡ys. n,l'. TcOl: n,. 48 R.I!. AJo/cclI/armu/Oxide 335. 140 (1'-)65) 1\ 1952. TC01: Fiz. 51 (1990) 18. O.Y. Demichcva, 4 (1991) 345J. 1G. D.M. Eaglcs. PltysiC(I 17. C//('III. 7 (1994) 679. S/ljwrcolUl. ami I.S. 56 [J/:TP Lell. SI (1990) 2581. L.N. Grigorov, Ill'Ol'OdiIllO,\1' (K/Am Ch('l/I. 1"£'ch,-I(1991) .s. 'l11a 1. in /J()sl'-h'illstcill IR9. Crmc!(,II.Wlliofl, fin. D.W. Snokc, ;lt1d S. Stringari C;lmbridgc. 19(5). p. 15. (Cambridge cdilcd by A. Grif~ Univcrsity Prcss. 20. E.I. SIlI\IY:lH1Vi.l el r l'ol\'ll1('1' 21. Scil'f1c{, L.N. Grigorov [Po/JIllt'r Rel'. Me.\". Ft\.'¡S SI (1999) I1R-12t (j/ •• Vysoko/J/o/. Socdill. A 38 (1996) 2004 A 38 (1996) 1321 J. el a/., Vysoko/l1o/. 50('di/l. A .'8 (1996) SciCIICl' A 38 (1996) 1328J. 201 I