REVISTA MEXICANA DE FíSICA 45 SUPLEMENTO 2. 1()(~I09 1999 Nuclear molecular halo: threshold effect or soft dipole in Depl. Moshc Gai* U46. Ulliversity nI COlltlecticllf, 2/52 Storrs. cr 06269-3046. USA. ga i@llco1l1lvm.llc01m.edu .. http://H'lVw.ph ys. lieOI/ (JI Physics, HifI:úde 11 Li? Rd .. n. edu Recihido el 4 de febrero de 1999; aceptado el 19 de marzo de 1999 The ohservation 01' large El strength ncar thrcshold in lhe c1cctromagnctic dissociation uf tl Li poses a fundamental question: 15Ihe lurge El slfcngth tIue lo lhe thrcshold or is it due lo a low Iying El statc'! Sucll molecular cluster sIal.::!' wcrc obscrvcu in 180 and in several nuclci I1caf Ihe drip Iinc. We discuss Ihe naturc 01' lhe "threshold effecC' as well as review lhe situntion in !\lolecular (and Parliclc Physics) where such !\1olccular Stalcs are observed near the dissociation limiL \Ve suggcSI that the situation in II Li is reminiscent of the argon.benzene moleculc wherc the argon alom is loosely bouml by a polarizatioll (van dcr Waals) mechanism and thus leads to a very extended object lying near tbe dissociation IimiL Such sta[es are also suggested lo dominale Ihe structure 01' Illesons (ao(980). 10(975)] and baryons [A(140.5)J with proposed Kaon molecular structure (e.g. by Dalilz) ncar threshold. The inspection 01'such states throughout Physics allows us to gain insight into this phenomenon and suggest thal a ncw collective ~'tolecular Dipale Degree of Freedom plays a major role in the strueture of hadrons (halo Iluclei, mesons and baryons). and that quantilative lools sllch as the El Molecular Sum Rule are uscful far clucidating the nature 01'the observed low Iying El strength in halo nuclci. KeYI\.'onls: Nuclear structure; cnhanced El; soft dipole; thrcshokl cffeet La observnción de unn gran intensidad El cerca del umbral de la disociación electrornngnética de II Li plantea una cuestión fundamental: ¡. Es la gran intensidad El dehida al umhral o es debida a un estado El lTlUYhajo en el espectro? Tales estmlos de cúmulos moleculares fueron ohservi.lllos en 180 y en vnrios núcleos cerca de la línea de escurrimiento. Discutimos la naturaleza del "cfc(,:to de umbral" y también revisamos la situación en la física molecular (y Je p<:lrtículas) en dondc se han ob"cr\'ado tales Estados Molecularcs cerca del límite de disociación. Sugerimos que la situación en II Li es reminiscente de la molécula Je arg6n-hcnceno. en la que el [¡tomo está apenas ligado por un mecanismo de polarización (van der Waals) y asi da lugm a un ohjeto muy extendido que queda cerca del límite de disociación. También se ha sugerido que tales estados dominan la estructura de los mcsones [au(980),j,,(975)] y bariones IA( 14(5)] con una estructura molecular de kaón cerca del umhral [e.g. por Dalitz}. La inspección dc talcs estados mediante la físka nos permite ganar visón de este fenómeno y sugiere que un nuevo grado de libertad colectivo di polar molecular jueguc un papcll1layor en la estructura de los hadrones (halo de núcleos. mesones y bariolles). y que las herramientas cuantitativas tales como las reglas de sLlma molecular E 1 sean lítiles para elucidar la naturaleza ue las intensidaues El que se ob"ervan muy abajo en el especlro de los núcleos de halo. /)l'scril'ton'.\': Estrueturn nuclear: El acentuado; dipolo suave; efectos de umhral PAes: 25.70.-z; 27.80.+w; 23.20.h; 1. Introuuction: ¡UO.Er dipole (El) strength in 11 Li (o disintangle possihility A lIleasmemen( 01" the clectromagnetic dissosiation nI' II Li was pcrformed al GSI[l] from which Ihe c1eclrlc d¡pole (El) strenglh sho\l,'n in Fig. I was eXlractcd. This llleaSmemenl poses a fundamenlal l)lIcstion: Is (he largc El strength just ahoye I MeV in 11 Li, see f'ig. l. tlue lo (he kinemalics (a "threshold etlcct") 01' is it uue lo (h" struc1m" 01" II Li (a "Iow Iying uipole stale")? In (his (al k we ex- it fmm an underlying of a low Iying dipole hroad background. The slate is also given crcdencc hy Ihe previous RIKEN dala [51 011[he piol1 douhle eharge exchange off 11B whcrc an ( = 1 slale at approximately 1.2 McV in 11U was suggestcd. The pion data were givcn (SOIllC) creJcncc recenlly [G]. Howcver lhe MSU group t7] has reccntly proposed a '"nuclear shakeofT mecahnism" that The possibility of such a low Iying dipole slalc [2, 3) was suggestcd hy Ihe RIKEN data {4J on prolon scaltcring off llU where a peak was observed at approximately 1.3 MeV. explains this hllmp withoul invoking a low Iying dipole slalc in II Li. In such a lllcchanism lhe prolon (as wel! as Ihe phoIon) illlparts its ITlOmenlUIll 10 the 9Li core, and thus "shaking off' the (wo ncutrons. Such a mecahnism leads lo a strcngth with a lllaximulll al 1.3 MeV and a high energy tai!. as 011servcu HJ in the low resolulion expcrirnent al RIKEN. The MSU group statcs [71: "In conclusion. there Joes not seem to be any compelling evidence rrolll (he proton scattcring expcrilllcnls of Korshcninnikov el al. [,l) for a 1.3 MeV excited Icvel in II Li." Thc ¡mor resolutioll mil a dctcnninalion To examine the "nuclear shakeolT lllechanism" olle obviously needs a prohc that is strongly surface intcmcling. In Ihis Llmine Ihese questions, we define and test the eoncept 01"a '"threshold etIeet". as wel! as examine molecular structme in molecular ami particle physics near thrcshold. Wc show that quantitative tools exist that allow liS to examine this qucstion in details. of Ihis cxperiment howcver does not pcr01"lhe intrinsic width 01"such a state or NUCLEAR MOLECULAR HALO: THRESHOLD EFFECTOR 107 SOFf D1POLE IN i1Li? .500 Pholodi~ime£ration of Ihe deulerun Dipole Strength 1 .~ ~ •• ~ "..!, 06 W 1500 Experiment . !«JOO J< b W ¡¡¡ • D(1. pln tooO "Li 500 0.2 o Energy 80 • 234 Exclt8t1on e. rMeV1 FIGURE t. Electromagnctic dipole (El) strength surcd by lhe GSI collahoralion. [1} of 11Li as rnC3- FIGURE2. The photodisintegration ofthe deuteron. d(y,n)p case lhe mOlllcnlUm could not he sole1y transfcrrcd lo Ihe 9U core and ncccssarily involvcs the "halo" ncutrons al the SUffaec. Such a probc is Lhepian (as wcll as othcr probes) and wc conclude Ihal the double pian scattering data of thc RIKEN group 151 pose sume difflculty to lhe "nuclear shakcoff Illcchanism" 2. Threshold effect: photodisintegration deutron and BU 0••.",75 yb'c = ., :¡; " ,~ o of the . , E~ (MeV) Thc photodisintcgration 01' lhe deutron shown in Fig. 2, provides a vivid example 01'a "thrcshold cffcel". Namcly, lhe peak shown in Fig. = (2,1, + 1)(2,1, + 1) k' ( ------- a 11 2(2.f:¡+ 1) k:( ) , 2 vclocity (v): a(lI, 1) = (aE1/')0 = (a,,)o [~+ü+1v+ , ( ¡le a 11,1 [E-1/' + ü + 1E'/2 ... ], + ... ] (2) lJ (2,1, + 1)(2,1, + 1) ,E ( ) 211c 2 a n,1 2( 2.f:¡+ 1) Eo (2,1,+1)(2,1,+1)2 2(2,13+ 1) FIGURE3. The photodisintegration of the deuteron as describcd by thc sccond lerm (n) of Eq. (2). 2 al approximatcly 4.4 MeY does not corrcsponds to a state in the proton-neutron systcm ano arise from the kinematics as we discuss below. The photo nuclear cross section is derived using standard Ilotatioll from dctailed halance: ah,n) . )Eo-Q E:( , (1) where the factor of 2 in the denominator arises from the two polarization sIates 01' a real transverse pholon and q = 2.223 MeV, is the one neutron scparation cncrgy in deulerium. The kinemalical factor (Ro - Q)/ E:; produces a peak at 20 in the ah. n) cross scction cven in the ahscnce 01' a peak (e.,g. a stalc) in the a(n, ,) cross section. Anu wc conclude that Ihe peak al 4.4 MeV (= 2(J) in Ihe photodisintegralion 01' the dcutron is solely due to that kincmatical fJctm and we define it as a "lhreshold cffect". But wc note {hat in the electromagnctic dissociation of 11 Li one ohserves a pcak al approximately 1.2 MeV, see Fig. 1, which is four times the two neutron scparation in II Li (Q = 300 kcV), and !lencc t!lis peak in 11 Li can not arise from thc ahoye kincmatical ",etor [ofEq. (1)] alone. The capture of slow neutrons hy nuclci is wcll under stood rS-ll] and can he expanded in teTms of the neutron w and for thermal ncutrons V(J = 2200 mIs ((Jo = 7.3 X 10-';) and ao = 333 I11h for the I'(n, -¡)d rcaelion, thus ("v)o = 2.5 lIbe. for spin zcro particles [9] we have (1 = (III(¡,¡")(A/(A + 1)'. The intcraetion of slow neutrons (up to a fcw hundrcd keV) is dominated by 8-waves with a large wave length. and is therefore dependcnt mainly nn the timc spent neaT thc targct giving risc to the well known llv dependencc 01' lhe cross scction. At higher energics, pwaves dominatc and Ihe o' tefms is most important, and indeed the photodisintcgration of the deuteron is given by that term (for o. 0.8) as shown in Fig. 3. In the same figure we also shl1w the (p-wave) conlinuum El ealculaled by 8ethe and Longmire [12] (which clearly does nol arise from an El dipole state al 4.4 MeV in the deuteron). We conclude Ihal the peak al 2q = 4.4 MeV in Ihe phOlodisinlegration 01' Ihe dcutron is a manifestation 01' a "threshold effect". Thc phntodisinlcgration 01' BLi represents yet anothcT good example al' a threshold effect. In Fig. 4 wc show these data as dcduccd from the direct capture of neutrons on 7Li (13]. The interaclion of the low encrgy neutrons is indeed dominatcd hy s-wavcs [13] and the cross section of the 'Li(n, 1)'Li follwos Ihe l/v law, as shown in Fig. 4. The pho- = Rel'. Mi'x. FÍs. 45 S2 (1999) 106-109 108 MOSIlEGAI 8 .,' "'.>"'" FIGURE 6. Charactcristics dimensions of lhe Ar-benzen molecule, <ldopted fmm Iilchcllo ,md Lcvinc [l4J o E y(Me\') FIGURE 4. Thc pothodisintegration ofthc 8Li. derivcd fmm dircct capture data [1:31.as dcscribed by {he fJrst !cnn of Eq. (2)-lhc 1/1' l;lW. 0••• .\ IIh.",1 + "".1 !IU(y.2n) two neulrons with two Jifl"crcnt velocitics, lhe low vclocity neulron lenJs lo push (he shape lo lower energies, considerahly helow 4(2 = 1.2 MeY, as discussed ahove. 4. Molecular sta tes in molecular and particle physics l'U ;.... 400 ':"2 5200 The uhquitous occureence 01" molecular slates !lear thre.shold in Physics may indecd allow for insight into lhe slructure of ¡lLi amI other such "halo" 1llH:lci. In Pig. 6 we show char- ¡11It1rJ¡ ., 300 '" ..~ 00 05 10 15 2.0 2.5 3.0 Ey (l\fcV) FIGURE S. Elcctromugnclic dipolc (El) slrength 01' 11 Li and al- tcmps lo describe it by Icrms 01' Eq. (2). cross scction is given hy lhe f¡rst lerm of Eq. 7.3 x lO-o x 40 0.29¡1bc. NOle Ihe 01"(an intcrfcring) 3+ statc on lOr 01' el thrcshold todisintcgration (2), wilh (""),, ohscrvation cffecl. = = 3. The photodisintegration Thc photodisintcgration aclerislic dilllensions of the Ar-benzen molecule. The argon ;¡(om is losely hound to the (tightly hound) henzen molecule by a van del' Waalls polarization and lhus this molecular state lies closc to the dissocialion ¡imil. \Ve note lhal the relative dimension and inJeed the very polarizalion phenomena are reminscenl 01" Ihe structure of 11 Li where the argon atom creates a "halo" al"Ound Ihe benzen molccule. Indced the slructure of haryons and mesons near Ihrcshold was suggcsled 10 he governet.l by a molecular degrce of rreedom. The ,\(1.105) Ihallies elose lo Ihe N+Khar Ihresh- 01" (1435 McY) was proposed [15]10 hc 'In 8-wave Ihe scalar meson (/0(980) hy Dalill NKhar moleeule. Ami similarly and Ihe fo{9S0) meso n that lie near Ihe KKhar lhreshold at 1)95.4 MeV, were proposcd by Weinslein and Isgur [16) to 01'11 Li 01' 11 Li helow 1.0 McV yiclds (Wo low cnerg:y neutrons with vclocities that Illay diffcf. But lhe 1\\'0 ncu(rons are in t~lCtohserved lo emerge with almosl idclltical cncrgics (see Fig. 10 of [1}), as onc may expect for halo ncutrons. Hence we makc Ihc assumption that lhe two IlClllrons are cmilled wiLh thc samc velocity (but not implying a physical Ji-nculron objcct) and we use this vclocity in the paramaterizalion of Eg. (2). For these low cncrgy neutrons (approx. 300 keY [1]) we also expecI Ihe l/v law, as discussed abovc. In conlrast the GSI dala cannat be deseribeu by lhe l/u law, or any of the terms 01' Eq. (2), as shown in Fig. 5. In panicular Ihe thirJ term in Eq. (2) (ror 'Y O.G) docs not yield a peak at 1.2 MeV. However Ihe shapc 01' the spcclrum is sufflcicntly uncertain that we can not rule out a '.Ihrcshold cITec!" and Ihis analysis tilus ealls for mOfC accuralc dala on Ihc shapc of Ihc spcctrum, su as 10 Icst Ihe validity of "Ihrcshold clfcet". Note that ror a single stcp caplure 01' = have the slrllcturc 01"a KKhar molccule, anJ a signalure ror slIch a molecular stllclure \\'as sllggesled (171 to he given by lhe ratio 01"the branching ra(ios of lhe radiativc decay 01"Ihe <p llleson to Ihe no anJ lhe Jo mesons. 5. The lIlolccular degree 01'freedom and molecular sum rules A molecular dcgree of frcedotll is characlerized by excita~ lions that involves Ihe relalivc Illolion 01"two tightly bounJ objects and not the excitatioll orthe ohjects lhemsclve. Hence it is associated with a polarizalion veclor known as the separation vector. Such a vector can be descrihcd geomclrically in three Jimellsions 01' hy using the group U(4) [18] and lhe very sllcccsrul Vihron lIlodel 01"lIlolccular Physics [141. This model has Iwo symmctry limits tha( corresponds lo Ihc gcoIllctrical descriptiol1 01"rigid 1Il0lecules. lhe 0(4) limil, or son Illolecules, (he U(3) limi!. Rel'. Me.\". Fú. 45S2(1999) 106-109 NUCL~AR MOLECULAR HALO: THRESHOLD The polarization phcnomena associaled wilh a molecular slale implies lhal il should he associaled wilh dipole excitations 01' the separation vector. In this case expectation values 01" Ihe dipole opcralor do nol vanish as the center 01' mass and ccntcr of chargc of the polarized molecular state do nol coincide. Hcnce Illolecular states give rise to low Iying dipole cxcilations. While rhe high Iying Giant Dipolc Resonacc (GDR) is a.ssociated \Vith (a Goldhaher- Teller) excitation 01 the neutron distrihution against that of lhe prolon, a molecular excit<llion involves a smaller fraction 01' lhe nuclcons at the surrace and is Ihus expected lo occur at lowcr excilation; ¡.e. a soft dipolc mode. The GDR excilalion exhausls the (TRK) encrgy weighted dipole sum rule: = Ei 3(EI S¡(EI:.4) : 0+ --+ li) x £'(li) 9 NZ e'f,2 47f A (3 ) 2m Alld 1m a molecular state Alhassid, Gai, and Bertseh [191 derived sum rules hy sublracling the individual sum rules 01" lhe conlituents fmm the total sum rule: EFFECT OR SOFr DIPOLE IN 11 109 Li'! clear molecule ('Li+11 + '11). Ano the sum rule (as a kincmatical Illooel) does not allow us to dislinguish helween Ihe two molecular cases. Thcse molecular sum rules (Eqs. 4 and 5) were shown 10 he useful in elucidaling molecular (cluster) states in 1'0 \Vhere Ihe measurerl 3(EI)'5 and 3(E2)'5 cxhaust 13LJo and 23%, respcc.:lively, 01' the molecular sum rule [20). Similarily, Ihcsc molecular stalcs in IHO have alpha widths that cxhausl 20% of the Wigncr sum rule. Thc hranching ralios fUI"clcctromagnclic decays in 180 wcre also shown lo he consistent wirh predictions 01' the Vibron model in the U(3) limit 121]. Indeed the manilestation 01 a molecular slruclurc in ¡HO has altercd our undertsanding 01' Ihe cocxistence 01' dcgrecs 01' freedoms in 180 [22]. The dipolc sLrcnglh al approximately 1.2 MeV in llLi. shown in Fig. 1, cxhausls 20% of the two neulrons molecular slIm rule, and lhe IOlal strength inlegrated up lo 5 McV exhausts 100% oí"lhal SUIllrule. We emphasize Ihat the experimental cftkiency al for cxample 6.0 MeV is very large (30%) ll], hut no strcnglh is founJ al higher energics heyond 100% 01' the molecular sum rule. These lwo facIs strongly suggcsl the cxistence 01' a low Iying 50ft dipolc moJe in 11 Li. 6. Conciusion (4) (5) Note that Ihe sum rule for two neutrons molecular slales, Sj (:2/1 + A2), is the same whether one assumes a "di-atomic" nuclear Illolccule (HLi+ a dineulron), or a "tri-atomic" nu- InviteJ talk. XXII Symposium on Nuclear Physics, Jan. 6-9. 1999. Onxtcpec. J\.1éxico. 1. M. Zinser l'( al.. Nl/cI. Php. A619 (1997) 151. 2. K. Ikeda N"cI. Phys. A538 (1992) 355c. .3. P.G. Hansen. Nuel. Phys. A588 (1995) le; P.G. Hansen <lndA.S. Jcnsen. AIlIlIl. Rel'. Nuel. Parto Sci. 45 (1995) 591. 4. A.A. Korshcninnikov elal., Ph)'s. Re\'.Ll'!l. 78 (1997) 2317. In conclusiol1s we demonstralc that quanlitative tools exist to test the validity 01 the "threshold eITeet" and the "soft dipolc molle" inlcrpretalion 01' lhe dipole (El) strcngth in 11 Li. More precise dala are nccdcd to rule oul one or the other inlerprctation alld this papel' may serve as an impetus for such data. Currenl intcrpralion is consistenl wilh Ihe cxistence of a low lying dipolc mode in lL Li al approximatcly 1.2 MeV. iJl1llmay pose diffkultics lo othcr intcrprctations. Acknowledgments Work supported hy USDOE Grant No. DE-rG02- 94ER40X70. 12. II.A. Bctlle ami C. Longmirc. Phy.\'. Rev. 77 (1950) 647. 13. M. Heil. F. Karpler. M. Wiescher, A. Mengoni. A. Phys. 507 (1998) 997, ano references thcrein. 14. F. lachcllo and R.D. Lcvinc. Algebmic Theory (Oxford University Press. New York, 1995) . DI 101/r. MoleclIles. 1!J. R.H. Dalitz, LoH' amI Illlermnliatl' Ellergy Kaoll-Nude//.\" Physics, (Oxford University Press, Oxford, 1981) p. 381. j. T. Kobaynshi. Phys. Ll'll. A 53S (1992) 343c. IG. J. Weinstein amI N. Isgur. Phys. (j. ~1.G. Gornov el al., Phys. Rel'. Letl. SI (1998) 4325. l. S. Karalaglidis ('/ al., P/¡ys. Re\'. Lell. '79 (1997) 1447. 17. F. Close. N. Isgur. and 5. Kumano. Nuc/. Phys. B389 (1993) 513. 8. J.1\1. Blatt anu VE Wcisskopf. (Wiley. Ne\V York. 1952). o T/¡eort,/iml Nue/ear Physics. 18. F. lachello and A.D. Jacksoll. Plty.\'. Lelt. IOSB (l9K2) 151. (1982) 1482. lO. A.A. Bcrgmnn and EL. Shapiro. Sov. (1')6\) JOIlr. Phys. JET? U 20. t\l Gai ('(.a/.. Phys. Re\'. Lefl. 50 (19X3) 239. 21. M. Gai el a/.. J'hy.\'. R('\,. 895. t>l a/.. SOl'. Jow: Len. 4H (1982) 659. 19. Y. Alhassid. M. Gai. and G.F. Bcrtsch. },h.vs. Rev. EL. Shapiro. JETP 7 (1058) 1132. 11. 5.B. Borazkov Rl'V. Nlle/. Phys. 35 (1982) J07. Rel'. Me.\". e 43 (1991) 2127. 22. M. Gai el al.. f'hy.\'. RCl'. Lell. 62 (1989) X74. FI\. 45 S2 (1999) 1Oú-I 09 un 49