3.5.1 Trasformada de Laplace de la función escalón unitario

Anuncio
3.5.1 Trasformada de Laplace de la función escalón unitario
210
3.5.1 Trasformada de Laplace de la función escalón unitario
Función Escalón Unitario
También llamada función salto unidad de Heaviside, y con frecuencia se utiliza en
aplicaciones que tratan casos o situaciones que cambian de manera abrupta en tiempos
específicos. Para esto se necesita una notación para una función que suprima un término
dado hasta cierto valor de t e inserte ese término para todo valor mayor que t . Esta función
nos proporciona una herramienta poderosa para construir transformadas inversas.
Varias funciones discontinuas frecuentemente se pueden expresar en términos de esta
función por eso es el punto de partida para el tema de las funciones definidas por tramos.
u (t − a ) =
0 si t < a

1 si t < a
(1)
Para cada constante a la gráfica de esta función se muestra en la siguiente figura
µ(t-a)
f(t)
2
1
a
t
Figura 3.5.1.1 Función escalón u ( t − a )
Obsérvese que se ha dejado u ( t − a ) indefinida en t = a , y la figura 3.5.1.1 incluye un
segmento vertical. El segmento vertical es tan sólo una conveniencia del diagrama en este
caso, y de ninguna manera es parte de la gráfica de una función. Con respecto al porqué
u ( t ) queda indefinido, existen dos razones: primero, la definición de u ( t ) no afecta a la
transformada de Laplace de u ( t − a ) . La transformada de Laplace se define mediante
integrales, que no se ven afectadas por el valor de la función en un punto dado cualquiera,
al integrar. Al dejar sin definir algunos valores nos evitamos molestias y detalles
innecesarios que provoquen distracción de lo que nos ocupa. Segundo, cada vez que resulte
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.5.1 Trasformada de Laplace de la función escalón unitario
211
apropiada la definición de u (t ) por alguna razón, tenemos que estar libres para determinar
el valor apropiado a la situación.
Nos ocuparemos de las funciones de escalón unitario u ( t − a ) tan solo para a > 0 debido a
que una transformada de Laplace se define mediante una integral para t ≥ 0 y, por lo tanto,
no se ve afectada por la forma en que se define la función cuando t es negativa. En
consecuencia, cuando a ≤ 0 , la transformada de Laplace de u ( t − a ) es igual que la de la
función 1 .
Cuando a > 0 , la trasformada de Laplace de u ( t − a ) es más interesante.
Por definición tenemos
∞
L {u (t − a )} = ∫ e − st [u (t − a) ] dt
(2)
0
a
∞
0
a
Sustituyendo los valores de la función F ( s ) = ∫ e − st ( 0 ) dt + ∫ e − st (1) dt
1
Simplificando F ( s ) = − e − st
s
∞
a
1
Integrando F ( s ) = − lim ( e − st )
s b →∞
b
a
1
Aplicando límites F ( s ) = − lim ( e − sb − e− sa )
s b →∞
(
)
Suponiendo que s > 0 , entonces lim e − s( ∞ ) → 0
Por lo tanto F ( s ) = −
1 − as
e
s
De tal manera que
{ (
L µ t−a
)} = 1s e− as
Instituto Tecnológico de Chihuahua / C. Básicas
si a > 0
(3)
Amalia C. Aguirre Parres
3.5.1 Trasformada de Laplace de la función escalón unitario
212
0

Ejemplo 3.5.1.1 Encontrar la transformada de Laplace de f (t ) =  2
1

si
0 ≤ t <1
si
si
1≤ t < 3
t≥3
La gráfica de esta función aparece en la figura 3.5.1.2 y muestra un salto (incremento) de 2
unidades en t = 1 y una caída (disminución) de 1 unidad en t = 3
5
f(t)
4
2µ(t-1)-µ(t-3)
3
2
1
0
1
2
3
4
5
t
Figura 3.5.1.2 Gráfica de f (t ) = 2u (t − 1) − u (t − 3)
En términos de función escalón tenemos f (t ) = 2u (t − 1) − u (t − 3)
En general, cualquier combinación lineal de funciones escalonadas unitarias
b1u (t − a1 ) + b2 u (t − a2 ) + " + bn u (t − an )
(4)
Podremos decir que existen saltos o caídas de puntos t = ai de acuerdo con los coeficientes
bi , los coeficientes positivos corresponden a saltos, los coeficientes negativos corresponden
a caídas.
Usando f (t ) = 2u (t − 1) − u (t − 3) , aplicando L { f (t )} = 2L {u (t − 1)} − L {u (t − 3)}
y utilizando la fórmula (3) L {u ( t − a )} = e − as si a > 0 , obtenemos
1
s
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.5.1 Trasformada de Laplace de la función escalón unitario
Por lo que F ( s ) =
213
2 − s 1 −3 s
e − e
s
s
 2 si 0 ≤ t < 2

Ejemplo 3.5.1.2 Encontrar la Transformada de Laplace de f (t ) = −1 si 2 ≤ t < 5
 1 si
t≥5

La gráfica de f (t ) se muestra en la figura 3.5.1.3, esta es una función discontinua en dos
puntos, con un caída de 3 unidades en t = 2 y salto de 2 unidades en t = 5 , estas
discontinuidades se pueden eliminar con la función −3u (t − 2) + 2u (t − 5) , que tiene el
mismo salto y caída. El resultado es una función continua cuya gráfica se muestra en la
figura.
3
2
2−3µ(t-2)-2µ(t-5)
f(t)
1
1
0 1 2 3 4 5 6 7 8 9 10
2
3
t
Figura 3.5.1.3 Gráfica de f (t ) = 2 − 3u ( t − 2 ) + 2u ( t − 5 )
Aplicando el esquema mencionado en (1.2), (1.4) y (1.6) de la sección 3.5
f (t ) = {2 − 2u ( t − 2 )} + ( −1) {u ( t − 2 ) − u ( t − 5 )} + {u ( t − 5 )}
(5)
Que corresponde a la suma de cada una de las tres porciones representadas en términos de
la función escalón.
Realizando las operaciones nos queda f (t ) = 2 − 3u ( t − 2 ) + 2u ( t − 5 )
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.5.1 Trasformada de Laplace de la función escalón unitario
214
Que al aplicar (3), obtenemos la transformada de Laplace
F (s) =
2 3 −2 s 2 −5 s
− e + e
s s
s
Instituto Tecnológico de Chihuahua / C. Básicas
(6)
Amalia C. Aguirre Parres
Descargar