09. Sistema de partículas

Anuncio
Versão preliminar
10 de setembro de 2002
09. SISTEMA DE PARTÍCULAS ........................................................................................ 2
O CENTRO DE MASSA .......................................................................................................... 2
Sistema de partículas - Uma dimensão ........................................................................ 2
Sistema de partículas - Duas dimensões...................................................................... 3
Sistema de partículas - Três dimensões ....................................................................... 3
Corpos rígidos............................................................................................................... 4
MOVIMENTO DO CENTRO DE MASSA ...................................................................................... 5
MOMENTO LINEAR DE UMA PARTÍCULA .................................................................................. 6
MOMENTO LINEAR DE UM SISTEMA DE PARTÍCULAS ................................................................ 6
CONSERVAÇÃO DO MOMENTO LINEAR ................................................................................... 7
SOLUÇÃO DE ALGUNS PROBLEMAS ....................................................................................... 8
2 .................................................................................................................................... 8
3 .................................................................................................................................... 8
3A.................................................................................................................................. 9
4 .................................................................................................................................. 10
7 .................................................................................................................................. 10
8 .................................................................................................................................. 12
15 ................................................................................................................................ 13
17 ................................................................................................................................ 13
18 ................................................................................................................................ 15
21 ................................................................................................................................ 15
22 ................................................................................................................................ 17
30 ................................................................................................................................ 18
34 ................................................................................................................................ 19
37 ................................................................................................................................ 20
Prof. Romero Tavares da Silva
09. Sistema de partículas
O centro de massa
Mesmo quando um corpo gira ou vibra, existe um ponto nesse corpo, chamado
centro de massa, que se desloca da mesma maneira que se deslocaria uma única partícula, com a massa deste corpo e sujeita ao mesmo sistema de forças que ele.
Ainda que o sistema não seja um corpo rígido mas um conjunto de partículas, pode
ser definido para ele um centro de massa, como veremos adiante.
Sistema de partículas - Uma dimensão
Vamos definir inicialmente a posição xCM do centro de massa para um sistema
composto de duas partículas de massas m1 e m2 e que ocupam as posições x1 e x2 .
x CM =
m1 x 1 + m 2 x 2
m1 + m 2
m1
x1
ou
x CM
 m1
= 
 m1 + m 2
m2

 m2
 x 1 + 

 m1 + m 2
x2

 x 2

Podemos olhar a última equação como uma média ponderada da posição de cada
partícula de massa mi onde o "peso" de cada termo é a fração da massa total contida na
posição xi .
Para um sistema de N corpos dispostos ao longo de uma linha reta, podemos fazer uma extensão da definição anterior:
N
x CM =
m1 x 1 + m 2 x 2 + ! + m N x N
=
m1 + m 2 + ! + m N
∑ mi x1
i =1
N
∑ mi
i =1
Iremos definir a massa total do sistema como M , onde:
N
M = ∑ mi
i =1
e desse modo teremos:
N
Mx CM = ∑ m i
i =1
Cap 09
romero@fisica.ufpb.br
2
Prof. Romero Tavares da Silva
Sistema de partículas - Duas dimensões
Para a definição do centro de massa de um sistema de N partículas distribuídas
em um plano podemos, por analogia com as definições anteriores, considerar que:
N
x CM =
m1 x 1 + m 2 x 2 + ! + m N x N
=
m1 + m 2 + ! + m N
∑ mi x1
i =1
N
∑ mi
=
1 N
∑ mi x i
M i =1
=
1 N
∑ mi y i
M i =1
i =1
N
y CM =
m1 y 1 + m 2 y 2 + ! + m N y N
=
m1 + m 2 + ! + m N
∑ mi y 1
i =1
N
∑ mi
i =1
Sistema de partículas - Três dimensões
Para um sistema de N partículas distribuídas em três dimensões temos as seguintes definições:
x CM =
1 N
∑ mi x i
M i =1
y CM =
1 N
∑ mi y i
M i =1
zCM =
1 N
∑ mi zi
M i =1
Se considerarmos que:
"
 r i = iˆx i + ˆjy i + kˆz i

e

"
r = iˆx + ˆjy + kˆz
CM
CM
CM
 CM
teremos:
"
"
1 N
rCM =
∑ mi ri
M i =1
Cap 09
romero@fisica.ufpb.br
3
Prof. Romero Tavares da Silva
Corpos rígidos
Podemos imaginar um corpo rígido como sendo subdividido em pequenos elementos de volume ∆Vi de massa ∆mi respectivamente, que estão localizados em pontos definidos por coordenadas ( xi , yi , zi ) . Neste cenário, teremos as seguintes equações:
N
x CM =
∑ x i ∆m i
i =1
N
∑ ∆m i
i =1
N
y CM =
∑ y i ∆m i
i =1
N
∑ ∆m i
i =1
N
zCM =
∑ z i ∆m i
i =1
N
∑ ∆m i
i =1
Se os elementos de volume ∆Vi → 0 , as massas contidas nesses elementos de
volume também de serão reduzidas, ao ponto de ∆mi → 0 . Quando isso acontece,
aquelas somas se transformam em integrais:
N
x CM = ∆Lim
m →0
i
∑ x i ∆m i
i =1
N
∑ ∆m i
=
∫ x dm = 1 x dm
∫
∫ dm M
=
∫ y dm = 1 y dm
∫
∫ dm M
=
∫ z dm = 1 z dm
∫
∫ dm M
i =1
N
y CM = ∆Lim
m →0
i
∑ y i ∆m i
i =1
N
∑ ∆m i
i =1
N
zCM = Lim
m
0
∆
i
→
∑ z i ∆m i
i =1
N
∑ ∆m i
i =1
e concluindo:
"
1 "
rCM =
∫ r dm
M
Cap 09
romero@fisica.ufpb.br
4
Prof. Romero Tavares da Silva
Movimento do centro de massa
A partir da definição de centro de massa temos a seguinte equação:
"
"
"
"
MrCM = m1r1 + m 2 r 2 + ! + m N r N
A variação dessas posições com o tempo é calculada como:
"
"
"
"
drCM
dr 1
dr 2
dr N
= m1
+ m2
+ ! + mN
M
dt
dt
dt
dt
de modo que a velocidade do centro de massa tem a forma:
N
"
"
"
"
"
Mv CM = m1v 1 + m 2 v 2 + ! + m N v N = ∑ m i v i
i =1
A variação dessas velocidades com o tempo é calculada como:
"
"
"
"
dv CM
dv 1
dv 2
dv N
M
= m1
+ m2
+ ! + mN
dt
dt
dt
dt
de modo que a aceleração do centro de massa tem a forma:
N
"
"
"
"
"
MaCM = m1a1 + m 2 a 2 + ! + m N a N = ∑ m i a i
i =1
Cada termo da equação anterior refere-se a uma partícula específica, e é igual à
força resultante que atua nessa partícula.
"
"
"
N "
"
MaCM = F1 + F2 + ! + FN = ∑ Fi
i =1
Mas a força resultante que atua em uma partícula que faz parte desse sistema é
composta de duas partes: as forças externas a esse sistema que atuam em cada partícula
e as forças internas de interação mútua entre as partículas.
(
) (
)
(
)
(
)
"
"
"
"
"
"
"
"
"
"
N
"
MaCM = F1EXT + F1INT + F2 EXT + F2INT + ! FNEXT + FNINT = ∑ FiEXT + FiINT = FEXT + FINT
i =1
Mas quando considerarmos a soma das forças internas estaremos incluindo pares
de forças que se anulam, segundo a Terceira Lei de Newton por serem ação e reação.
Por exemplo: iremos incluir as forças que a partícula 2 exerce na partícula 3 como também as forças que a partícula 3 exerce na partícula 2 . E essas forças de interação se
anulam. Isso acontece com todos os pares de partículas que considerarmos. Assim a
soma total das forças internas que atuam em um sistema de partículas é nula, e desse
modo:
"
"
MaCM = FEXT
Cap 09
romero@fisica.ufpb.br
5
Prof. Romero Tavares da Silva
Essa equação diz que o centro de massa de um sistema de partículas se move
como se toda a massa M desse sistema estivesse concentrada nesse ponto e essa
massa estivesse sob a ação da força externa resultante.
Momento linear de uma partícula
Define-se o momentum (ou momento) linear de uma partícula como sendo o produto de sua massa por sua velocidade:
"
"
p = mv
Conta-se que Newton na realidade formulou a sua Segunda Lei em termos do momento, da seguinte maneira:
A taxa de variação do momento de uma partícula é proporcional à resultante das forças
que agem sobre essa partícula, e tem a mesma direção e o mesmo sentido que essa força.
"
"
"
dp d
(mv )
FR =
=
dt dt
Para os sistemas de massa constante:
"
"
"
"
dp
dv
FR =
=m
= ma
dt
dt
Momento linear de um sistema de partículas
Para um sistema composto de N partículas, definimos o momento total como:
" "
N "
"
"
P = p1 + p 2 + ! + p N = ∑ p i
i =1
ou ainda:
N
"
"
"
"
"
P = m1v 1 + m 2 v 2 + ! + m N v N = ∑ m i v i = Mv CM
i =1
Já foi mostrado que:
"
"
"
dv CM
MaCM = M
= FEXT
dt
e quando M = constante , temos
"
"
"
d
dP
(Mv CM ) =
FEXT =
dt
dt
Cap 09
romero@fisica.ufpb.br
6
Prof. Romero Tavares da Silva
Conservação do momento linear
Quando estivermos considerando um sistema isolado, onde a resultante das forças
externas for nula, teremos:
"
FEXT = 0
⇒
"
dP
=0
dt
⇒
" "
"
"
P = p1 + p 2 + ! + p N = cons tan te
indicando que o momento total do sistema é uma constante. Por exemplo, numa colisão
entre duas bolas de bilhar, o momento total desse sistema isolado se conserva: o momento total antes da colisão é igual ao momento total depois da colisão.
Cap 09
romero@fisica.ufpb.br
7
Prof. Romero Tavares da Silva
Solução de alguns problemas
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
2
A distância entre os centros dos átomos de carbono C e oxigênio O em uma molécula de monóxido de carbono CO é de 1,131x10-10m . Determine a posição do centro de massa da molécula de CO em relação ao átomo de carbono. Use as massas
dos átomos de C e O .
Por definição temos que:
d
x CM =
MO dO + MC dC
MO + MC
MO
MC
x
onde dO = d - dC
Vamos escolher a origem do eixo x como passando pelo átomo de oxigênio. Com
essa escolha teremos d0 = 0 e dC = d = 1,131x10-10m , e portanto:
x CM =
considerando que:
MO = 15,994g/mol
MC = 12,011g/mol
MC d
MO + MC
 MC
∴ d C = 
 MO + MC

 d

dCM = 0,571 d = 0,645x10-10m
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
3
Quais são as coordenadas do centro de massa das três partículas que aparecem no
desenho a seguir? O que acontece com o centro de massa quando a massa da partícula de cima aumenta gradualmente? As unidade das distâncias é o metro.
a)
x CM =
x CM
8,0kg
3 x 0 + 8 x1 + 4 x 2 16
=
=
= 1,07m
3+8+4
15
y CM =
y CM =
Cap 09
m1 x 1 + m 2 x 2 + m 3 x 3
m1 + m 2 + m 3
m1 y 1 + m 2 y 2 + m 3 y 3
m1 + m 2 + m 3
3 x 0 + 8 x 2 + 4 x1 20
=
= 1,34m
3+8+4
15
romero@fisica.ufpb.br
4,0kg
3,0kg
8
Prof. Romero Tavares da Silva
b) O que acontece com o centro de massa quando a massa da partícula de cima
aumenta gradualmente?
Usando as definições das coordenadas do centro de massa, podemos dizer que:
"
"
"
"
m1 r1 + m 2 r 2 + m 3 r 3
rCM =
m1 + m 2 + m 3
Se a massa da partícula 2 aumenta gradualmente, passando do valor m2 para
o valor m2 + ∆m2 , a equação acima tomará a forma:
"
"
"
"
"
m1r1 + (m 2 + ∆m 2 )r 2 + m 3 r 3 "
∆m 2
= rCM +
R CM =
r2
m1 + m 2 + m 3
m1 + m 2 + m 3
ou seja:
"
"
"
∆rCM = RCM − rCM =
"
∆m 2
r2
m1 + m 2 + m 3
Conclusão: Se uma das partículas aumentar gradualmente a sua massa, o centro
"
de massa gradualmente se moverá de acordo com a equação anterior para ∆rCM
Capítulo 9 - Halliday e Resnick - Edição antiga
3A Calcule o centro de massa de uma haste com uma distribuição uniforme de massa,
de comprimento L e massa M .
Vamos considerar um elemento de massa
dm de largura dx localizado na posição
x . Como a distribuição de massa é uniforme, podemos dizer que:
dm → dx

M 
⇒ dm =  dx

L
 M → L

x CM
1
=
∫ x dm
M
⇒
x CM
x
x
L
1 L M  1 L
1 x2
x
dx
x
dx
=
=
=


∫
∫
M0 L
L 2
 L0
x CM =
Cap 09
dm
L
0
L
2
romero@fisica.ufpb.br
9
Prof. Romero Tavares da Silva
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
4
Três barras finas de comprimento L são dispostas em forma de U invertido conforme a figura a seguir. As duas barras laterais têm massa M e a barra central massa
3M. Qual a localização do centro de massa do conjunto?
L
3M
L
M
y
m2
M
L
m1
m3
x
Para o cálculo do centro de massa desse conjunto as barras se comportam como se
as suas massas estivessem concentradas em seus respectivos centros de massa.
Escolhendo um sistema de coordenadas, as massas estão nas posições:
 m1 = M e

m 2 = 3M e
m =M e
 3
(0 ; L / 2)
(L / 2 ; L )
(L ; L / 2)
⇒
Mx 0 + 3MxL / 2 + MxL L

=
 x CM =
M + 3M + M
2



MxL / 2 + 3MxL + MxL / 2 4L
=
y CM =
M + 3M + M
5

Capítulo 9 - Halliday, Resnick - Edição antiga
7
Calcule o centro de massa de um fio em forma de arco de raio R , ângulo θ0 e massa M .
Como definido anteriormente, temos:
1
x CM =
∫ x dm
M
1
y CM =
∫ y dm
M
Considerando que a distribuição de massa no fio é uniforme, podemos encontrar
uma relação entre a quantidade infinitesimal de massa dm e o ângulo dθ que
delimita essa massa, usando a proporção
a seguir:
dm → dθ
⇒

 M → θ0
Cap 09
romero@fisica.ufpb.br
y
R
y
θ0
θ
dθ
x
x
dm =
M
dθ
θ0
10
Prof. Romero Tavares da Silva
A posição ( x , y ) de um elemento de massa genérico dm é pode ser expressa
como:
x = R cosθ
y = R senθ
Desse modo termos:
x CM =
M
 Rθ
1
1θ
R

 =
(
θ
)
θ
=
cos
cos θ dθ =
sen θ
x
dm
R
d
∫
∫
∫

θ0
M
M 0
θ 0
 θ0 0
0
0
θ0
0
=
R
sen θ 0
θ0
e de modo equivalente:
y CM =
θ


1
1θ
(R senθ ) M dθ  = R ∫ senθ dθ = − R cos θ
y dm =
∫
∫
θ0
M
M 0
θ0
 θ0 0
0
0
θ0
0
=
R
(1 − cos θ 0 )
θ0
A partir desses resultados podemos o centro de massa de outras figuras semelhantes:
i.
Um quarto de círculo θ0 = π/2 .
R
2R

 x CM = π / 2 sen(π / 2) = π



R
2R
y CM = π / 2 (1 − cos(π / 2)) = π

ii.
Um semicírculo θ0 = π.
R

 x CM = π sen(π ) = 0



R
2R
y CM = π (1 − cos(π )) = π

iii.
Um círculo θ0 = 2π.
R

 x CM = 2π sen(2π ) = 0



R
y CM = 2π (1 − cos(2π )) = 0

Cap 09
romero@fisica.ufpb.br
11
Prof. Romero Tavares da Silva
Capítulo 9 - Halliday, Resnick - Edição antiga
8
Calcule o centro de massa de um quarto de disco de raio R e massa M .
y
O centro de massa é definido como:
x CM =
1
∫ x dm
M
y CM =
1
∫ y dm
M
R
dθ
θ
y
x
x
onde o elemento genérico de massa dm está contido em um elemento de área dA
no interior do disco e essas grandezas estão relacionadas:
dA


 A

→
dm
∴ dm =
→
M
M
dA = σ dA
A
onde σ é a densidade superficial de massa do disco. Temos ainda que:
πR 2

A
=

4


dA = (r dθ )(dr ) = r dr dθ


 x = r cos θ

y = r sen θ
Temos então que:
x CM =
R
π /2
σ Rπ /2
1
1
(r cos θ )(r dr dθ ) = σ ∫ r 2 dr ∫ cos θ dθ
x dm =
x σ dA =
∫
∫
∫
∫
∫
M
M
Mo 0
M0
0
x CM
σ
=
M
 r 3

 3
{

 sen θ
0 

R
π /2
0
}
x CM =
σ R3
=
=
M 3
4M
3
πR 2 R
3
M
4R
3π
De maneira equivalente
y CM =
Cap 09
R
π /2
σ Rπ /2
1
1
(r senθ )(r dr dθ ) = σ ∫ r 2 dr ∫ senθ dθ
y dm =
y σ dA =
∫
∫
∫
∫
∫
M
M
Mo 0
M0
0
romero@fisica.ufpb.br
12
Prof. Romero Tavares da Silva
y CM
σ
=
M
 r 3

 3
{

 − cos θ
0 

R
π /2
0
y CM =
}
σ R3
=
=
M 3
4M
3
πR 2 R
M
3
4R
3π
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
15 Um homem de massa MH está pendurado em uma escada de corda presa a um
balão de massa MB , conforme a figura a seguir. O balão está parado em relação ao
solo.
a) Se o homem começar a subir a escada com velocidade v (em relação a escada), em que direção e com que velocidade (em relação à Terra) o balão vai se
mover?
"
 v = jˆ v
"
"
"
v H = v B + v
y
"
vB
MB
onde VH é a velocidade do homem em
relação ao solo e VB é a velocidade do
balão em relação ao solo.
Como o conjunto homem + balão estava inicialmente em repouso, e a resultante das forças externas é nula, temos
que:
"
"
"
(M H + M B )v CM = M H v H + M B v B = 0
MH
"
vH
ou seja:
"
 MH
"
 MH
 v = − ˆj 
v B = −
 MH + MB 
 MH + MB
b) Qual será o movimento depois que o homem parar de subir?
"
"
"
M B v B + M H (v B + v ) = 0
⇒

 v

O balão novamente ficará novamente estacionário pois se vCM = 0 e vH = 0 teremos que vB = 0 .
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
17 Um canhão e um suprimento de balas de canhão se encontram no interior de um vagão fechado de comprimento L , como na figura a seguir. O canhão dispara para a
direita; o recuo faz o vagão se mover para a esquerda. As balas disparadas continuam no vagão depois de se chocarem com a parede oposta.
a) Qual a maior distância que o vagão pode ter percorrido depois que todas as balas forem disparadas?
Cap 09
romero@fisica.ufpb.br
13
Prof. Romero Tavares da Silva
Vamos considerar que existem N balas de canhão de massa m cada, e
que são disparadas para a direita com
velocidade vB .
O vagão e o canhão têm conjuntamente
uma massa MT .
Após o disparo de uma bala para a direita o conjunto vagão + canhão + ( N 1 ) balas se deslocam para a esquerda
com velocidade vT .
Inicialmente todo esse aparato estava
em repouso, logo a velocidade do centro de massa será nula:
[M
T
x
"
"
"
+ Nm ]v CM = [M T + (N − 1)m ]v T + m v B = 0
⇒
L-x
"

"
m
v T = −
vB
 M T + (N − 1)m 
Pelo desenho podemos notar que após o tiro a bala se deslocou uma distância
L - x e como conseqüência do recuo o vagão se deslocou uma distância x . Ou
seja:
 x = vT t
x
L−x

 x 
⇒ t=
=
∴ vT = 
vB

vT
vB
L − x
L − x = v t
B

Usando as duas últimas equações encontramos o valor de x , o deslocamento
do vagão para um único tiro de canhão:


m
 L
x = 
 M T + Nm 
Depois de N disparos, o vagão terá se deslocado uma distância d = N x :
 Nm 
 L
d = 
M
Nm
+
 T

O maior deslocamento possível acontecerá quando a massa total da balas N m
for muito maior do que a massa do vagão. Nessa situação teremos que:
se N m >> MT
⇒
d=L
b) Qual a velocidade do vagão depois que todas as balas forem disparadas?
O conjunto vagão + canhão + balas voltará ao repouso pois inicialmente esse
sistema tinha o centro de massa com velocidade nula.
Cap 09
romero@fisica.ufpb.br
14
Prof. Romero Tavares da Silva
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
18 Deixa-se cair uma pedra em t = 0 . Uma segunda pedra com massa duas vezes
maior que a da primeira, é largada do mesmo ponto em t = 100ms .
a) Onde estará o centro de massa das duas pedras em t = 300ms ? Suponha que
nenhuma das pedras chegou ao chão.
y
t1
m1 = m
t2
∆t = 100ms = 0,1s
m2 = 2m
T = 300ms = 0,3s
As equações de movimento das partículas são:
2

g t 12
g (t + ∆t )
=−
y 1 = −
2
2



g t 22
gt2
=−
 y2 = −
2
2

O centro de massa desse sistema terá a forma:
 g (t + ∆t )2 
 gt2 
m −
 + 2m −

2
2
g (t + ∆t )
gt 2
 2 


y CM (t ) =
=−
−
m + 2m
6
6
Para t = 0,3s
yCM ( 0,3s) = - 0, 40 m
b) Qual a velocidade do centro de massa desse sistema nesse momento?
v CM (t ) =
d y CM
1
= − g (2t + ∆t )
dt
3
vCM ( 0,3s ) = - 2,28m/s
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
21 Dois sacos de açúcar idênticos são ligados por uma corda de massa desprezível, que
passa por uma roldana sem atrito, de massa desprezível, com 50mm de diâmetro.
Os dois sacos estão no mesmo nível e cada um possui originalmente uma massa de
500g .
a) Determine a posição horizontal do centro de massa do sistema.
Inicialmente os dois sacos estão no
mesmo nível, logo
y CM =
Cap 09
d = 50mm = 0,05m
M1 = M2 = 500g = 0,5kg
M 1y 1 + M 2 y 2
=0
M1 + M 2
romero@fisica.ufpb.br
15
Prof. Romero Tavares da Silva
e
x CM =
M1 x1 + M 2 x 2 M1 . 0 + M 2 d  M 2
=
= 
M1 + M 2
M1 + M 2
 M1 + M 2

d

xCM = 0,025m = 25mm
b) Suponha que 20g de açúcar são transferidos de
um saco para outro, mas os sacos são mantidos
nas posições originais. Determine a nova posição
horizontal do centro de massa.
m1 = 0,48kg
m2 = 0,52kg
x CM =
M2
M1
x
d
m1 x 1 + m 2 x 2  m 2
= 
m1 + m 2
 m1 + m 2

d = 0,026m

y
c) Os dois sacos são liberados. Em que direção se move o centro de massa?
Já foi mostrado anteriormente que os sacos têm, em módulo, a mesma aceleração:
 m − m1 
 g
a =  2
 m 2 + m1 
e elas têm sentido contrários:
"
 a1 = − ˆj a


a" = + ˆj a
 2
Como:
"
"
"
m 1a 1 + m 2 a 2
aCM =
m1 + m 2
encontramos que:
2
"
 m 2 − m1 
ˆ
 g
aCM = j 
 m 2 + m1 
Como a aceleração é constante, a velocidade do centro de massa tem a forma:
"
"
"
"
v CM = v 0CM + aCM t = aCM t
pois a velocidade inicial é nula. Desse modo teremos que:
2
"
 m − m1 
 g t
v CM = ˆj  2
 m 2 + m1 
e portanto o centro de massa se desloca para baixo.
Cap 09
romero@fisica.ufpb.br
16
Prof. Romero Tavares da Silva
d) Qual a sua aceleração?
Já foi mostrado que
2
"
 m − m1 
 g
aCM = ˆj  2
 m 2 + m1 
e) Como varia a posição do centro de massa à medida que os sacos se movimentam?
"
" "
"
a 1t 2
r1 = r 01 + v 01t +
2
"
"
"
"
a2 t 2
r 2 = r 02 + v 02 t +
2
Relembrando que:
⇒
⇒
"
" a1t 2
r1 =
2
" 2
"
a
t
r 2 = iˆd + 2
2
2
"
 m − m1  gt 2

∴ r1 = − ˆj  2
 m 2 + m1  2
2
"
 m − m1  gt 2

∴ r 2 = iˆd + ˆj  2
m
+
m
2
1

 2
"
"
"
m1 r1 + m 2 r 2
rCM =
m1 + m 2
encontramos
2
"
 m2 
 m − m1  gt 2
d + ˆj  2

rCM = iˆ
 m 2 + m1 
 m 2 + m1  2
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
22 Um cachorro de 5kg está em um bote de 20kg que se encontra a 6m da margem.
Ele anda 2,4m no barco em direção à margem, e depois pára. O atrito entre o bote e
a água é desprezível. A que distância da margem está o cachorro depois da caminhada? Sugestão: O cachorro se move para a esquerda; o bote se desloca para a
direita; e o centro de massa do sistema cachorro + bote ? Será que ele se move?
MC = 5kg
MB = 20kg
d = 6m
s = 2,4m
D
Antes de começar a resolução vamos
fazer algumas suposições:
x0 L-s
i.
ii.
O cachorro está na extremidade do
bote mais afastada da margem
O bote tem forma simétrica, tal que
o centro de massa está localizado
no seu centro geométrico.
s
L
d
x
Cap 09
romero@fisica.ufpb.br
17
Prof. Romero Tavares da Silva
"
"
"
(M C + M B )aCM = FEXT = 0 ⇒ (M C + M B )v CM = cons tan te
Como o conjunto cachorro + bote estava inicialmente em repouso, a velocidade do
centro de massa era nula e irá permanecer com esse valor pois a resultante das forças externas é zero.
"
"
"
(M C + M B )v CM = M C v C + M B v B = 0
Antes do cachorro se mover a posição do centro de massa tem a seguinte forma:
dM C + (d − L / 2)M B
MC + M B
Depois que ele se moveu, a posição de centro de massa, tem a seguinte forma:
x CM =
x´ CM =
[(d − L ) + x
0
+ (L − s )]M C + [(d − L ) + x 0 + L / 2]M B
MC + M B
Como a velocidade do centro de massa é nula, ele não se moveu e portanto as duas
equações anteriores são iguais. Fazendo essa igualdade encontramos que:
(x
0
− s )M C + x 0 M B = 0
⇒
x 0 (M C + M B ) = sM C
 MC
∴ x 0 = 
 MC + M B

 s = 0,48m

D = (d − L ) + x 0 + (L − s ) = d + x 0 − s =4,08m
Capítulo 9 - Halliday e Resnick - Edição antiga
30 Um sapo de massa m está parado na extremidade de uma tábua de massa M e
comprimento L . A tábua flutua em repouso sobre a superfície de um lago. O sapo
pula em direção à outra extremidade da tábua com uma velocidade v que forma um
ângulo θ com a horizontal. Determine o módulo da velocidade inicial do sapo para
que ele atinja a outra extremidade da tábua.
"
v
Vamos supor que quando o sapo
pula, a parte da tábua onde ele
θ
estava afunda um pouco, mas volta
a boiar, de modo que quando ele
L
tocar na outra extremidade, a tábua
já estará na posição horizontal.
Como o conjunto estava em repouso, a velocidade do centro de massa é nula.
x
O sapo salta para direita e a tábua se move para esquerda com velocidade V .
(m + M )v
CM
= 0 = mv cos θ − MV
⇒ V =
mv cos θ
M
O sapo irá permanecer no ar um tempo t , e portanto o tempo de subida será metade
desse tempo de vôo, logo:
Cap 09
romero@fisica.ufpb.br
18
Prof. Romero Tavares da Silva
t
v M = v sen θ − g  
2
⇒
t=
2 v sen θ
g
Desse modo, o deslocamento horizontal x do sapo, será:
x = ( v cosθ ) t
e o deslocamento horizontal da tábua L - x , será:
 mv cos θ 
L − x = Vt = 
t
M


ou seja:
L = (v cos θ )t +
m
(v cos θ )t = 1 + m (v cos θ )t = 1 + m (v cos θ ) 2v senθ
M
M
M
g


L=
v2 
m
1 +  sen 2θ
g 
M
ou seja:
v=
gL
m

1 +  sen 2θ
M

Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
34 Dois blocos de massas 1kg e 3kg respectivamente, ligados por uma mola, estão
em repouso em uma superfície sem atrito. Em um certo instante são projetados um
na direção do outro de tal forma que o bloco de 1kg viaja inicialmente com uma
velocidade de 1,7m/s em direção ao centro de massa, que permanece em repouso.
Qual a velocidade inicial do outro bloco?
M1 = 1kg
M2 = 3kg
v1 = 1,7m/s
M1
M2
x
De maneira geral temos que:
"
"
MaCM = FEXT
A partir da equação anterior temos que quando a resultante das forças externas for
nula a velocidade do centro de massa será constante. Mas como os blocos estavam
inicialmente em repouso, a velocidade do centro de massa será nula:
"
"
"
Mv CM = M 1v 1 + M 2 v 2 = 0
ou seja:
"
M "
v 2 = − 1 v1
M2
Cap 09
romero@fisica.ufpb.br
19
Prof. Romero Tavares da Silva
"
Mas v 1 = iˆ 1,7m / s , logo
"
"
3
v 2 = −iˆ 1,7 ∴ v 2 = −iˆ 5,1m / s
1
Capítulo 9 - Halliday, Resnick e Walker - 4a. edição
37 Uma vagão plataforma de peso P pode rolar sem atrito em um trecho reto e plano
da linha férrea. Inicialmente, um homem de peso p está de pé no carro, que se
move para a esquerda com velocidade v0 . Qual a variação da velocidade do vagão
quando o homem corre para a esquerda com uma velocidade vREL em relação ao
vagão?
M = P/g
m = p/g
O momento inicial do conjunto é:
x
"
"
PI = (m + M )v 0
Vamos considerar o homem passe a ter uma velocidade iˆv e que o vagão passe a
ter uma velocidade iˆV . O momento final do sistema será:
"
"
"
PF = MV + mv
Mas a velocidade do homem em relação ao vagão, ou seja a velocidade relativa é
definida de tal modo que:
" " "
v = V + v REL
ou seja:
"
"
" "
PF = MV + m V + v REL
(
)
Considerando que quando a resultante das forças externas for nula o momento total
deste sistema se conserva, temos que:
"
(m + M )v
0
(
"
#
v0 = V +
" " "
∆V = V − v 0 = −
Cap 09
)
"
" "
"
"
= MV + m V + v REL = (m + M )V + mv REL
m "
v REL
m+M
m "
p "
v REL = −
v REL
m+M
p+P
romero@fisica.ufpb.br
20
Descargar