Tabla de derivadas e integrales Derivada Función y=c y = cx 0 y' = c c y = xn y ' = nx n −1 y = x −n y' = − y= x=x 1 y' = 2 y = b xa = x a b 1 x y=sen x y=cos x y=tg x y=cotg x y=sec x y=cosec x y=arcsen x y=arccos x y=arctg x y=arccotg x Y=arcsec x Y=arccosec x y=senh x 1 2x 2 y' = − x b a +1 b ln x (a b −1) 1 x2 y’=cos x y’=-sen x -cos x sen x -ln cos x 1 = sec 2 x 2 cos x 1 y' = = sec 2 x 2 sen x senx y ' = sec xtgx = cos 2 x y' = y ' = − cos ecx cot gx = − y' = y' = − x2 2 (a +1) a y' = ln sen x ln tg cos x sen 2 x x = ln sec x + tgx 2 ln(cosec x-cotg x) 1 x.arcsenx + 1 − x 2 1− x2 1 x. arccos x − 1 − x 2 1− x2 1 y' = 1+ x2 x.arctgx − 1 y' = − 1+ x2 x.arctgx + y' = 1 x x −1 y' = − Integrada x n +1 n +1 x − n +1 − n +1 2 32 x 3 1 nx n −1 1 bx y= y = cx 2 2 ln 1 + x 2 2 xArcSecx − ln x1 + 1 x x2 − 1 y’=cosh x ln 1 + x 2 cosh x x 2 − 1 x 2 y=cosh x y=tgh x y=cotgh x y’=senh x senh x ln cosh x 2 y '= sec h x y ' = − cos ech 2 x 1 y '= x 1 y '= x ln a ln senh x y = ex y' = e x ex y = ax y '= a x ln a y = eu y = uv y' = e u u' y ' = u ' v + uv' u v y = uv u ' v − uv' v2 vu ' y ' = u v v' ln u + u (v' u ln u − u ' v ln v ) y' = vu ln 2 u y=ln x y = log a x y= y = ln u v x ln x − x − x + x ln x ln a y '= ax ln a ∫ udv + ∫ vdu y' = Formula de recurrencia ∫ (x dx 2 = + 1) 2 x 2(x + 1) 2 + 1 arctgx 2 Propiedades Integrales definidas b ∫ kf si k=cte b x a Aditiva: si dx = k ∫ f x dx a b c b a a c c ∈ (a, b ) ⇒ ∫ f x dx = ∫ f x dx + ∫ f x dx a ∫f x dx = 0 a b a f x dx = − ∫ f x dx ∫ a b Regla de Barrow b ∫f x dx = F(b ) − F(a ) a Teorema del valor medio del calculo integral b f (c ) = 1 f ( x ) dx b − a ∫a Identidades Trigonometricas sen 2 x + cos 2 x = 1 1 cos x 1 + cot g 2x = cos ec 2 x sec x = tgx = senx cos x 1 senx sen(x ± y ) = senx. cos y ± seny. cos x cos ecx = tgx ± tgy 1 ± tgx.tgy sen(2 x ) = 2 senx. cos x 1 − cos x x sen = ± 2 2 1 + cos x x cos = ± 2 2 tg (x ± y ) = 1 − cos 2 x 2 cos( x ± y ) = cos x. cos y ± seny.senx cos(2 x ) = cos 2 x − sen 2 x cos(2 x) = 1 − 2 sen 2 x = 2 cos 2 x − 1 1 + cos 2 x 2 x+ y x− y senx + seny = 2sen cos 2 2 x+ y x− y cos x + cos y = 2 cos cos 2 2 sen 2 x = cos x senx 2 1 + tg x = sec 2 x cot gx = 1 − cos x senx x = = tg = ± 1 + cos x 1 − cox 2 1 − cos x = = cos ecx − cot gx senx cos 2 x = x− y x+ y senx − seny = 2sen cos 2 2 x+ y x− y cos x − cos y = 2sen sen 2 2