Algunas Identidades y Propiedades Matemáticas. sen(α ± β ) = sen(α ) ⋅ cos( β ) ± cos(α ) ⋅ sen( β ) eω −e j sen(ω ) = − jω 2j e −e x senh( x ) = −x 2 sen( 2 ⋅ α ) = 2 ⋅ sen(α ) ⋅ cos(α ) cos(α ± β ) = cos(α ) ⋅ cos( β ) m sen(α ) ⋅ sen( β ) eω +e j cos(ω ) = − jω 2 e +e x cosh( x ) = −x 2 cos( 2 ⋅ α ) = cos2 (α ) − sen 2 (α ) sen 2 (α ) + cos2 (α ) = 1 e ± jω = cos(ω ) ± j ⋅ sen(ω ) e ⋅e x N m ( s) D n ( s) = y e x+ y R p ( s) D n ( s) = C ( s) + k n ≤ m C ∏ i = 1 ( S + zi ) m F ( s) = F ( s) = ∏ n j =1 (S + p ) j Q m ( s) ( S + p) n > m = r r > m = r ∑ k =1 n ∑ j =1 n> p kj (S + p ) Ak ( S + p) [ r + 1− k ( con k j = F ( s) ⋅ S + p j j con M ∠ ϕ = F ( s) ⋅ [ ( S + σ ) + ω 2 ] Ak = )] S=− p j [ 1 d k −1 r ( ) k − 1 F s ⋅ ( S + p) ( k − 1) ! dS ] S=− p S = − σ + jω ′ [ u ⋅ v ] ′ = u ⋅ v ′ + v ⋅ u ′ u = v ⋅ u ′ −2 u ⋅ v ′ v v Identidades y Propiedades Matemáticas, gonzalez_tito@ieee.org [e ]′ = e u u ⋅ u′ (u n ) ′ = n ⋅ u n −1 ⋅ u ′ 1/1