Formulario de Identidades Matemáticas (Formato PDF)

Anuncio
Algunas Identidades y Propiedades Matemáticas.
sen(α ± β ) = sen(α ) ⋅ cos( β ) ± cos(α ) ⋅ sen( β )
eω −e
j
sen(ω ) =
− jω
2j
e −e
x
senh( x ) =
−x
2
sen( 2 ⋅ α ) = 2 ⋅ sen(α ) ⋅ cos(α )
cos(α ± β ) = cos(α ) ⋅ cos( β ) m sen(α ) ⋅ sen( β )
eω +e
j
cos(ω ) =
− jω
2
e +e
x
cosh( x ) =
−x
2
cos( 2 ⋅ α ) = cos2 (α ) − sen 2 (α )
sen 2 (α ) + cos2 (α ) = 1
e
± jω
= cos(ω ) ± j ⋅ sen(ω )
e ⋅e
x
N m ( s)
D n ( s)
=
y
e
x+ y
R p ( s)
D n ( s)
= C ( s) +
k
n ≤ m
C ∏ i = 1 ( S + zi )
m
F ( s) =
F ( s) =
∏
n
j =1
(S + p )
j
Q m ( s)
( S + p)
n > m
=
r
r > m
=
r
∑
k =1
n
∑
j =1
n> p
kj
(S + p )
Ak
( S + p)
[
r + 1− k
(
con k j = F ( s) ⋅ S + p j
j
con
M ∠ ϕ = F ( s) ⋅ [ ( S + σ ) + ω 2 ]
Ak =
)]
S=− p j
[
1
d k −1
r
( )
k − 1 F s ⋅ ( S + p)
( k − 1) ! dS
]
S=− p
S = − σ + jω
′
[ u ⋅ v ] ′ = u ⋅ v ′ + v ⋅ u ′  u  = v ⋅ u ′ −2 u ⋅ v ′
v
v
Identidades y Propiedades Matemáticas, gonzalez_tito@ieee.org
[e ]′ = e
u
u
⋅ u′
(u n ) ′
= n ⋅ u n −1 ⋅ u ′
1/1
Descargar