www.tiwariacademy.net TRIGONOMETRIC IDENTITIES tan A = sin A/ cos A sec A = 1/ cos A cosec A = 1/ sin A cot A = cos A/ sin A = 1/ tan A sin2 A + cos2 A = 1 sec2 A = 1 + tan2 A cosec 2 A = 1 + cot2 A sin(A ± B) = sin A cos B ± cos A sin B cos(A ± B) = cos A cos B ∓ sin A sin B tan(A ± B) = tan A±tan B 1∓tan A tan B sin 2A = 2 sin A cos A cos 2A = cos2 A − sin2 A = 2 cos2 A − 1 = 1 − 2 sin2 A tan 2A = 2 tan A 1−tan2 A sin 3A = 3 sin A − 4 sin3 A cos 3A = 4 cos3 A − 3 cos A tan 3A = 3 tan A−tan3 A 1−3 tan2 A sin A + sin B = 2 sin A+B 2 cos www.tiwariacademy.com Focus on free education A−B 2 www.tiwariacademy.net A−B sin A − sin B = 2 cos A+B 2 sin 2 A−B cos A + cos B = 2 cos A+B 2 cos 2 A−B cos A − cos B = −2 sin A+B 2 sin 2 2 sin A cos B = sin(A + B) + sin(A − B) 2 cos A sin B = sin(A + B) − sin(A − B) 2 cos A cos B = cos(A + B) + cos(A − B) −2 sin A sin B = cos(A + B) − cos(A − B) √ a sin x + b cos x = R sin(x + φ), where R = a2 + b2 and cos φ = a/R, sin φ = b/R. If t = tan 12 x then sin x = cos x = 21 (eix + e−ix ) ; eix = cos x + i sin x ; 2t 1+t2 , cos x = sin x = 1 2i 1−t2 1+t2 . (eix − e−ix ) e−ix = cos x − i sin x www.tiwariacademy.com Focus on free education