EVALUACIÓN DE TRES ETAPAS FENOLÓGICAS DE SEIS

Anuncio
UNIVERSIDAD RAFAEL LANDÍVAR
FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS
LICENCIATURA EN CIENCIAS AGRÍCOLAS CON ÉNFASIS EN RIEGOS
EVALUACIÓN DE TRES ETAPAS FENOLÓGICAS DE SEIS GENOTIPOS DE
SORGO DE CICLO CORTO (Sorghum bicolor L. Moench) PARA LA
PRODUCCIÓN DE ETANOL; ASUNCIÓN MITA, JUTIAPA
TESIS DE GRADO
FREDY AMILCAR GARCÍA AGUIRRE
CARNET23378-07
JUTIAPA, OCTUBRE DE 2013
SEDE REGIONAL DE JUTIAPA
UNIVERSIDAD RAFAEL LANDÍVAR
FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS
LICENCIATURA EN CIENCIAS AGRÍCOLAS CON ÉNFASIS EN RIEGOS
EVALUACIÓN DE TRES ETAPAS FENOLÓGICAS DE SEIS GENOTIPOS DE
SORGO DE CICLO CORTO (Sorghum bicolor L. Moench) PARA LA
PRODUCCIÓN DE ETANOL; ASUNCIÓN MITA, JUTIAPA
TESIS DE GRADO
TRABAJO PRESENTADO AL CONSEJO DE LA FACULTAD DE
CIENCIAS AMBIENTALES Y AGRÍCOLAS
POR
FREDY AMILCAR GARCÍA AGUIRRE
PREVIO A CONFERÍRSELE
EL TÍTULO DE INGENIERO AGRÓNOMO CON ÉNFASIS EN RIEGOS EN EL GRADO ACADÉMICO DE
LICENCIADO
JUTIAPA, OCTUBRE DE 2013
SEDE REGIONAL DE JUTIAPA
AUTORIDADES DE LA UNIVERSIDAD RAFAEL LANDÍVAR
RECTOR:
P. ROLANDO ENRIQUE ALVARADO LÓPEZ, S. J.
VICERRECTORA ACADÉMICA:
DRA. MARTA LUCRECIA MÉNDEZ GONZÁLEZ DE PENEDO
VICERRECTOR DE
INVESTIGACIÓN Y
PROYECCIÓN
DR. CARLOS RAFAEL CABARRÚS PELLECER, S. J.
VICERRECTOR DE
INTEGRACIÓN UNIVERSITARIA
DR. EDUARDO VALDÉS BARRÍA, S. J.
VICERRECTOR
ADMINISTRATIVO:
LIC. ARIEL RIVERA IRÍAS
SECRETARIA GENERAL:
LIC. FABIOLA
LORENZANA
DE
LA
LUZ
PADILLA
BELTRANENA
AUTORIDADES DE LA FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS
DECANO:
DR. ADOLFO OTTONIEL MONTERROSO RIVAS
VICEDECANO:
ING. MIGUEL EDUARDO GARCÍA TURNIL
SECRETARIA:
ING. REGINA CASTAÑEDA FUENTES
DIRECTOR DE CARRERA:
ING. LUIS FELIPE CALDERÓN BRAN
NOMBRE DEL ASESOR DE TRABAJO DE GRADUACIÓN
LIC. EDWIN ROLANDO PAREDES MAZARIEGOS
TERNA QUE PRACTICÓ LA EVALUACIÓN
ING. LUIS ROBERTO AGUIRRE RUANO
ING. MIGUEL EDUARDO GARCÍA TURNIL
ING. OSCAR ROLANDO SALAZAR CUQUE
DE
AGRADECIMIENTOS
A:
Dios, por la esperanza viva, único redentor y por derramar la fuente de sabiduría e
inteligencia.
Mi país Guatemala
La Universidad Rafael Landívar:
Claustro de catedráticos de la Facultad de ciencias Ambientales y Agrícolas con Sede
en Jutiapa y Campus Central por compartir sus conocimientos y brindarme la
orientación necesaria sin egoísmo alguno.
La Facultad de Ciencias Ambientales y Agrícolas
Ing. Edwin Rolando Paredes Mazariegos, por su orientación y apoyo incondicional en la
ejecución y realización de la presente investigación.
Ing. Rony Carrillo, por su apoyo y orientación administrativa durante las gestiones
necesarias para llevar acabo la presente investigación.
Ing. Ariel Estuardo Nieves Antillón, por su flexibilidad laboral durante el periodo de
ejecución y trámites administrativos para la culminación de esta investigación.
Ing. Edgardo Carrillo, por su valiosa colaboración en la obtención de los insumos
necesarios para la realización de esta investigación.
Ing. José Luis Zea, por su apoyo en gestiones institucionales para obtención de
insumos necesarios en esta investigación.
DEDICATORIA
A:
MIS PADRES: Francisca Rubila Aguirre Carpio y Oscar Amilcar García Gómez; a
quienes debo mi ser, brindo este triunfo como una recompensa a sus innumerables
esfuerzos y sacrificios.
MIS HERMANOS: Edwin Armando, Mario David, Elmer Odilsal, Luis Alfredo, Luis René
y Josseline Viviana.
Sea un ejemplo de lo que con esfuerzo y dedicación se puede lograr.
MI ESPOSA: Ana Silvia Luna Gracias.
Por su apoyo, compresión, amor y por su lucha incansable a mi lado.
MI ABUELA:
Por sus incansables muestras de amor y por nunca dejar de creer mí, que en paz
descanse.
MIS AMIGOS Y AMIGAS:
Con mucho aprecio: Meme, Yiyo, Rody, Los Monjeños, Chaito, Karina, Jarly, de
quienes al pasar el tiempo, tendré el más grato recuerdo de tiempos inolvidables.
MIS CATEDRATICOS:
Por
compartir
sus
sabios
conocimientos.
ÍNDICE GENERAL
RESUMEN......................................................................................................................... i
SUMMARY ....................................................................................................................... ii
1.
INTRODUCCIÓN .............................................................................................. 1
2.
MARCO TEÓRICO ........................................................................................... 2
2.1.
ORIGEN DEL SORGO ..................................................................................... 2
2.2.
PRODUCCIÓN MUNDIAL E IMPORTANCIA ECONÓMICA DEL SORGO ...... 2
2.3.
DISTRIBUCIÓN
E
IMPORTANCIA
ECONÓMICA
DEL
SORGO
EN
GUATEMALA.................................................................................................... 4
2.4.
MORFOLOGÍA DE LA PLANTA ....................................................................... 7
2.5.
CONDICIONES AMBIENTALES REQUERIDAS PARA EL CULTIVO DEL
SORGO ............................................................................................................ 8
2.5.1
Agua ..................................................................................................... 8
2.5.2
Temperatura....................................................................................... 10
2.6.
ASPECTOS FISIOLÓGICOS DEL CRECIMIENTO Y DESARROLLO ........... 10
2.7.
FOTOPERÍODO ............................................................................................. 11
2.8.
FENOLOGÍA DE SORGO DE CICLO CORTO Y LARGO .............................. 12
2.8.1
Fase I ................................................................................................. 12
2.8.2
Fase II ................................................................................................ 12
2.8.3
Fase III ............................................................................................... 13
2.9
ETANOL ......................................................................................................... 14
2.10
FUENTES DE OBTENCIÓN DE ETANOL...................................................... 14
2.11
ETANOL EN EL MUNDO................................................................................ 15
2.12
ETANOL A PARTIR DE SORGO .................................................................... 17
2.13. DESTILACIÓN FRACCIONADA ..................................................................... 20
2.13.1 Proceso de destilación ....................................................................... 21
2.14. PRODUCCIÓN DE ETANOL EN GUATEMALA ............................................. 22
2.15
OBTENCIÓN DE ETANOL A PARTIR DE SORGO EN GUATEMALA .......... 23
2.16
NUEVA TECNOLOGÍA PROPUESTA POR LA UNIVERSIDAD DEL VALLE
DE GUATEMALA............................................................................................ 25
3.
JUSTIFICACIÓN DEL TRABAJO ................................................................... 26
3.1
4.
DEFINICIÓN DEL PROBLEMA Y JUSTIFICACIÓN DEL TRABAJO ............. 26
OBJETIVOS.................................................................................................... 28
4.1.
OBJETIVO GENERAL .................................................................................... 28
4.2
OBJETIVOS ESPECÍFICOS........................................................................... 28
5.
HIPÓTESIS..................................................................................................... 29
5.1.
6.
HIPÓTESIS ALTERNA ................................................................................... 29
MATERIALES Y MÉTODOS........................................................................... 30
6.1.
LOCALIZACIÓN DEL TRABAJO .................................................................... 30
6.2.
MATERIAL EXPERIMENTAL ......................................................................... 30
6.2.1
Germoplasma..................................................................................... 30
6.2.2
Levadura ............................................................................................ 31
6.3.
FACTORES ESTUDIADOS ........................................................................... 31
6.4.
DESCRIPCIÓN DE LOS TRATAMIENTOS .................................................... 31
6.5.
DISEÑO EXPERIMENTAL ............................................................................. 33
6.6.
MODELO ESTADÍSTICO ............................................................................... 33
6.7.
UNIDAD EXPERIMENTAL ............................................................................. 34
6.7.1
Parcela grande ................................................................................... 34
6.7.2
Parcela bruta ...................................................................................... 34
6.7.3
Parcela neta ....................................................................................... 34
6.8.
CROQUIS DE CAMPO ................................................................................... 34
6.9.
MANEJO DEL EXPERIMENTO ...................................................................... 37
6.9.1
Obtención de la semilla ...................................................................... 37
6.9.2
Preparación del terreno ...................................................................... 37
6.9.3
Tratamiento de la semilla ................................................................... 38
6.9.4
Siembra .............................................................................................. 38
6.9.5
Riego .................................................................................................. 38
6.9.6
Control de maleza .............................................................................. 38
6.9.7
Fertilización ........................................................................................ 38
6.9.8
Control de plagas y enfermedades .................................................... 38
6.9.10 Obtención de levadura ....................................................................... 39
6.9.11 Aplicación de levadura y período de fermentación ............................. 39
6.9.12 Obtención y cuantificación de etanol.................................................. 39
6.10. VARIABLES RESPUESTA ............................................................................. 39
6.10.1 Volumen de etanol producido en litros por hectárea (l/ha) para cada
etapa fenológica y genotipo ............................................................... 39
6.11. ANÁLISIS DE LA INFORMACIÓN .................................................................. 40
6.11.1 Análisis estadístico ............................................................................. 40
6.11.2 Análisis económico ............................................................................ 40
7.
RESULTADOS Y DISCUSIÓN ....................................................................... 41
7.1.
VOLUMEN PRODUCIDO DE ETANOL EN LITROS POR HECTÁREA (l/ha)
PARA ETAPAS FENOLÓGICAS Y GENOTIPOS .......................................... 41
7.2
ANÁLISIS ECONÓMICO ................................................................................ 44
8.
CONCLUSIONES ........................................................................................... 47
9.
RECOMENDACIONES ................................................................................... 48
10.
REFERENCIAS BIBLIOGRÁFICAS ............................................................... 49
11.
ANEXOS ......................................................................................................... 53
ÍNDICE DE CUADROS
Cuadro 1. Principales países productores de sorgo. ....................................................... 3
Cuadro 2. Área cultivada y rendimiento de sorgo en los departamentos de Guatemala
en el período 2007 – 2008. ............................................................................. 6
Cuadro 3. Requerimientos de agua para el cultivo del sorgo. ......................................... 9
Cuadro 4. Producción anual de etanol por país (2004-2006), quince mayores países
productores (millones de galones internacionales, todos los grados de
etanol). .......................................................................................................... 16
Cuadro 5. Distribución de tratamientos
entre
etapas
fenológicas y genotipos de
sorgo. ............................................................................................................ 31
Cuadro 6. Distribución aleatoria de tratamientos en cada bloque. ............................... 36
Cuadro 7. Demanda promedio de macronutrientes. ...................................................... 38
Cuadro 8. Análisis de varianza para la producción de etanol en l/ha. ........................... 41
Cuadro 9. Test DGC ...................................................................................................... 43
Cuadro 10. Volúmenes
de etanol en l/ha producidos por sorgo dulce y caña de
azúcar....................................................................................................... 44
Cuadro 11. Datos de rendimiento neto de etanol en l/ha obtenidos en cada etapa
fenológica, bloque y genotipo. .................................................................. 57
Cuadro 12. Relación beneficio/costo en etapa fenológica de macollamiento. ............... 59
Cuadro 13. Relación beneficio/costo en etapa fenológica de bota. ............................... 59
Cuadro 14. Relación beneficio/costo en etapa fenológica de masoso lechoso. ............ 59
Cuadro 15. Rentabilidad por etapa fenológica............................................................... 59
ÍNDICE DE FIGURAS
Figura 1. Área cultivada (ha) por municipio en el período 2007 – 2008.… ...................... 7
Figura 2. Producción de sorgo en toneladas por municipio para el departamento de
Jutiapa en el período 2007 – 2008…. ............................................................. 7
Figura 3. Efecto del retraso en la inoculación del jugo de sorgo. .................................. 20
Figura 4. Diagrama de producción convencional de etanol a partir de jugo de sorgo. .. 20
Figura 5. Diagrama de proceso de destilación fraccionada ………..….......................... 22
Figura 6. Proceso tradicional de molienda para extracción de jugos azucarados de
sorgo a partir de hojas y tallos…………. ...................................................................... 24
Figura 7. Proceso tradicional de obtención de etanol a partir de jugos azucarados de
sorgo…….. ................................................................................................... 24
Figura 8. Nueva metodología de molienda y producción de etanol………….. ............... 25
Figura 9. Simbología de parcela grande. ....................................................................... 37
Figura 10. Producción de etanol en l/ha de la interacción etapa fenológica-genotipo. .. 42
Figura 11. Rentabilidad en la producción de etanol en l/ha por etapa fenológica y
genotipo. ....................................................................................................... 45
Figura 12. Relación beneficio/costo en la producción de etanol en l/ha por etapa
fenológica y genotipo. ................................................................................... 46
Figura 13. Establecimiento de ensayo. .......................................................................... 53
Figura 14. Mecanización de área para establecimiento de ensayo. .............................. 53
Figura 15. Emergencia de genotipos de sorgo forraje y grano. .................................... 53
Figura 16. Etapa fenológica de macollamiento. ............................................................. 54
Figura 17. Colecta de muestras en etapa de macollamiento. ........................................ 54
Figura 18. Bagazo residual de caña de sorgo. .............................................................. 55
Figura 19. Molienda para extracción de jugo. ................................................................ 55
Figura 20. Proceso de destilación fraccionada. ............................................................. 55
Figura 21. Fermentación de jugo de caña de sorgo. ..................................................... 55
Figura 22. Etapa fenológica de Bota. ............................................................................ 56
Figura 23. Etapa fenológica masoso-lechoso. ............................................................... 56
EVALUACIÓN DE TRES ETAPAS FENOLÓGICAS EN SEIS
GENOTIPOS DE SORGO DE CICLO CORTO (Sorghum bicolor L.
Moench), PARA LA PRODUCCIÓN DE ETANOL; ASUNCIÓN MITA,
JUTIAPA
RESUMEN
La investigación se realizó en Asunción Mita, Jutiapa y tuvo como objetivo evaluar tres
etapas fenológicas en seis genotipos de sorgo de ciclo corto (Sorghum bicolor L.
Moench) para la producción de etanol, se analizó la etapa fenológica, el genotipo e
interacción. que presenten el mejor rendimiento en cuanto a litros de etanol por
hectárea. Se utilizó el arreglo de parcelas divididas distribuido en un diseño de bloques
competos al azar, donde la parcela grande fue formada por las etapas fenológicas
(macollamiento, bota y masoso-lechoso), mientras que la parcela chica fue formada por
los genotipos evaluados (ICTA – CL929, ICTA – CL936, ICTA – CL947, ICTA –
MICTLAN, ICTA – RC y SUGAR DRIP). La variable respuesta fue volumen de etanol
producido en litros por hectárea (l/ha) para cada etapa fenológica y genotipo. Los
resultados mostraron que únicamene se producen jugos fermentables capaces de
producir etanol en las etapas de bota y masoso lechoso y los mejores tratamientos
fueron ICTA-CL936 con 406 l/ha e ICTA MICTLAN con 383 l/han en la etapa de bota.
El análisis económico determinó que bajo las condiciones específicas de este estudio
que no existe rentabilidad alguna en la producción de etanol a partir de los genotipos y
etapas, ya que en los mejores resultados (etapa fenológica de bota) se produjo una
pérdida promedio del 58.43% sobre el costo total de producción.
i
EVALUATION OF THREE PHENOLOGICAL PHASES IN SIX SHORTCYCLE SORGHUM GENOTYPES (Sorghum bicolor L. Moench), FOR
THE PRODUCTION OF ETHANOL; ASUNCIÓN MITA, JUTIAPA
SUMMARY
The research was carried out in Asunción Mita, Jutiapa and its objective was to evaluate
three phenological phases in six genotypes of short-term shorghum (Sorghum bicolor L.
Moench) for the production of ethanol. The phenological phase, genotype and
interaction with the best yield regarding liters of ethanol per hectare were analyzed. A
split plot arrangement in a complete randomized block design was used, where the big
plot consisted of phenological phases (tillering, boot and doughy-milky), while the small
plot consisted of the evaluated genotypes (ICTA – CL929, ICTA – CL936, ICTA –
CL947, ICTA – MICTLAN, ICTA – RC and SUGAR DRIP). The response variable was
ethanol volume produced in liters per hectare (l/ha) for each phenological phase and
genotype. The results showed that only fermentable juices capable of producing ethanol
in the boot and doughy-milky phases are produced and that the best treatments were
ICTA-CL936, with 406 l/ha, and ICTA MICTLAN, with 383 l/ha in the boot phase. The
economic analysis determined that under the specific conditions of this study, there is no
profitability in the production of ethanol from genotypes and phases because with the
best results (boot phenological phase) an average loss of 58.43% was obtained on the
total production cost.
ii
1.
INTRODUCCIÓN
La demanda de modernos vectores energéticos es imperativa para el desarrollo
económico y social, comprometiendo un significativo volumen de recursos naturales y
capital. En este contexto y buscando además ampliar la sustentabilidad de los sistemas
energéticos, las fuentes renovables de energía vienen incrementando su participación
en el suministro de combustibles, en particular mediante la introducción del etanol
mezclado con la gasolina (ONU, 2010).
El etanol (C2H5OH) es un alcohol etílico, obtenido principalmente a partir de la
fermentación de tres tipos de materia prima renovable: Sacarosa - caña de azúcar y
remolacha; almidones - cereales (maíz, sorgo dulce, trigo, cebada) y tubérculos (yuca,
camote, papa) y celulosa - la madera y los residuos agrícolas (ACR, 2010).
Según la Asociación de Combustibles Renovables (ACR, 2010), en Guatemala cinco
destilerías producen etanol, se cuenta con una capacidad instalada de 493,150 litros al
día (180 millones de litros anuales) y más del 80% de etanol se exporta principalmente
a Europa y Estados Unidos, el etanol es producido casi en su totalidad en los ingenios
de la costa sur.
El sorgo (Sorghum bicolor L. Moench) es una planta que debido a su alto contenido de
almidones, bajos requerimientos hídricos, adaptabilidad a suelos pobres y relativamente
bajo costo de producción se ha convertido en Guatemala en objeto de estudio como
fuente productora de etanol.
Asunción Mita, Jutiapa, presenta condiciones adecuadas para este cultivo, pudiendo
alcanzar hasta tres cosechas por año, lo cual representa un gran potencial del área
para la producción de biocombustibles razón por la cual se realizó la evaluación de tres
etapas fenológicas y seis genotipos de sorgo para grano y forraje de ciclo corto en la
producción de etanol.
1
2.
2.1.
MARCO TEÓRICO
ORIGEN DEL SORGO
Según Cargil (2010), los primeros informes muestran que el sorgo existió en India en el
siglo I d. C. Esculturas que lo describen se hallaron en ruinas asirias de 700 años a. C.
Sin embargo, el sorgo quizás sea originario de África Central -Etiopía o Sudán-, pues es
allí donde se encuentra la mayor diversidad de tipos. Esta diversidad disminuye hacia el
norte de África y Asia. Existen sin embargo, ciertas evidencias de que surgió en forma
independiente tanto en África como en la India.
El sorgo como cultivo doméstico llegó a Europa aproximadamente hacia el año 60 d. C.
pero nunca se extendió mucho en este continente. No se sabe cuándo se introdujo la
planta por primera vez en América. Las primeras semillas probablemente se llevaron al
hemisferio Occidental en barcos de esclavos procedentes de África. El desarrollo
posterior de los tipos precoces, así como de variedades resistentes a enfermedades e
insectos, junto con el mejoramiento de otras prácticas de producción, estableció
firmemente el sorgo como un importante cultivo (Cargil, 2010).
Como resultado de las investigaciones de Quinby y Stephens de Texas, los híbridos de
sorgo se hicieron realidad hacia 1950 y actualmente los rendimientos alcanzan más de
13,440 kg/ha en los sorgos híbridos (Cargil, 2010).
2.2.
PRODUCCIÓN MUNDIAL E IMPORTANCIA ECONÓMICA DEL SORGO
Según la Food and Agriculture Organization (FAO, 2007), en la actualidad, el sorgo es
el principal grano en algunas partes de África, Asia, India/Pakistán y China donde
constituye gran parte de la dieta humana. Se emplea también en alimentación animal,
en la producción de forrajes y para la elaboración de bebidas alcohólicas.
Su resistencia a la sequía y al calor lo hace un cultivo importante en regiones áridas, y
es uno de los cultivos alimentarios más importantes del mundo (FAO, 2007).
2
El sorgo, además de su empleo en alimentación humana y animal, tiene interés por su
uso como cultivo bioenergético. Existiendo variedades de sorgo con tallos ricos en
azúcares, de los que se utiliza toda la planta para la fabricación de biocarburantes
(FAO, 2007).
Cuadro 1. Principales países productores de sorgo.
PAIS
PRODUCCIÓN (1000 t)
Estados Unidos
12 635 730
Nigeria
9 058 000
India
7 150 800
México
6 202 920
Sudán
4 999 000
Argentina
2 794 967
China
2 434 895
Etiopía
2 173 599
Burkina Faso
1 507 162
Brasil
1 440 750
Australia
1 283 000
Níger
975 223
Mali
900 791
Tanzania
900 000
Egipto
843 840
Yemen
601 040
3
Chad
576 571
Camerún
500 000
Uganda
456 000
Venezuela
382 116
(FAO 2007).
Actualmente la producción de sorgo está dedicada en su gran mayoría a la producción
de forraje para alimentación de ganado vacuno, fabricación de concentrados y en
mínima parte a la producción de biocombustibles y alimentación humana (FAO, 2007).
Los grandes productores de semilla de sorgo a nivel mundial lo exportan, debido a que
es utilizado como materia prima para otro tipo de productos (FAO, 2007).
2.3. DISTRIBUCIÓN E IMPORTANCIA ECONÓMICA DEL SORGO EN GUATEMALA
Según datos estadísticos del Banco de Guatemala (1998), citado por Nájera (2002), el
sorgo ocupa el segundo lugar en la producción de cereales después del maíz. En 1997
y 1998 se le dedicó un área de siembra de 42,605 ha, con una producción de 54,450
toneladas,
obteniendo un rendimiento promedio de 1.81t/ha. Es un cultivo de
importancia económica para el país, ya que sustituye al maíz para la industria de
concentrados.
Según Martínez (1988), citado por Nájera (2002), el sorgo es utilizado como alimento
humano en el oriente del país, se mezcla con maíz para la elaboración de tortillas o
bien se utiliza solo. En la Costa Sur de Guatemala, de 85-90 por ciento de la producción
se utiliza en la elaboración de concentrados y el resto para la alimentación directa de
animales. El cultivo del sorgo se realiza principalmente en la Costa Sur (Escuintla como
mayor productor), en el Oriente (Jutiapa, Chiquimula y Zacapa) y en el Norte (Valle de
Polochic) de Guatemala.
4
De acuerdo con el Censo Agrícola del Instituto de Nacional de Estadística (INE, 2008),
en las regiones secas del nororiente de Guatemala, el sorgo
representa un grano
básico de mucha importancia para las familias campesinas pobres, llegándose a cultivar
alrededor de 17,213 hectáreas y con rendimientos promedio de 1.75 a 1.95 t/ha.
Según el Instituto de Ciencia y Tecnologías Agrícolas (ICTA, 1995), citado por Nájera
(2002), en Guatemala el cultivo del sorgo se introdujo en el oriente del país con
variedades criollas que se caracterizan por su ciclo vegetativo largo, de porte alto y de
bajos rendimientos. Fue en la década de 1960 a 1970 cuando el área de siembra se vio
incrementada, especialmente en franjas de la Costa Sur, sembrándose híbridos
importados de los Estados Unidos de Norteamérica.
La disciplina de Socioeconomía Rural del ICTA (1991), citado por Nájera (2011), indica
que existen varios factores que han hecho que se incremente el área de siembra y el
número de agricultores que se dedican al cultivo del sorgo, dentro de estos están:
a) Es un cultivo que presenta para el agricultor menor riesgo, en cuanto a robo, daño
por de enfermedades, plagas, sequía y altas precipitaciones.
b) Otra de las ventajas primordiales del agricultor sorguero, es el aprovechamiento de
los restos de cosecha (rastrojo) para la alimentación del ganado en época de verano.
5
Cuadro 2. Área cultivada y rendimiento de sorgo en los departamentos de Guatemala
en el período 2007 – 2008.
Departamento
Área Cultivada (ha)
Rendimiento (ton/ha)
Guatemala
678
1.57
El Progreso
191
2.49
Escuintla
136
4.82
Santa Rosa
4,261
1.92
Retalhuleu
280
1.43
Quiché
813
1.43
Zacapa
1,058
1
Chiquimula
2,185
1.25
Jutiapa
17,213
1.75
(INE, 2008).
Según el INE (2008), el departamento de Jutiapa destaca como productor de sorgo y de
acuerdo a la encuesta nacional agropecuaria, en el período del 2008 se cultivaron
alrededor de 26,976 ha y se obtuvieron rendimientos de 1.5 y 1.75 t/ha, llegándose a
obtener una producción a nivel departamental de 48,363 toneladas.
6
16,192
1,213 571
2,589
429
661
232
318
89
232
1,714 893
446 1,161
0
75
161
Figura 1. Área cultivada (ha) por municipio en el período 2007 – 2008. (INE, 2008).
28336
2541
4531
1200 750 1156 488 668 188 406
781
2031 3000 1875
0
131 281
Figura 2. Producción de sorgo en toneladas por municipio para el departamento de
Jutiapa en el período 2007 – 2008. (INE, 2008).
2.4. MORFOLOGÍA DE LA PLANTA
Según Compton (1990), citado por Nájera (2002), la planta del sorgo posee las
siguientes características morfológicas:
7
La planta de sorgo puede tener una altura de 1 a 2 m, generalmente un solo tallo, pero
varía mucho en su capacidad de ahijamiento dependiendo de la variedad, la población
de plantas y el ambiente, la altura 0.45 m hasta más de 4 m. Los tallos tienen de 7 a 24
nudos y son erectos, sólidos con una corteza dura y una médula más suave.
El entrenudo más alto que lleva la inflorescencia es el pedúnculo y es siempre el más
largo.
El número de hojas varía de 7 a 24 según la variedad. Las hojas son erectas hasta casi
horizontales y se conservan con la edad, las hojas maduras son de 30 a 135
centímetros (cm) de longitud y de 1.5 a 15 cm de ancho, son alternas y lanceoladas
con una superficie superior lisa y cerosa. Los márgenes de las hojas son ásperas o
lisas y pueden ser peludas hacia la punta. Los estomas están en fila sencilla a doble en
ambas superficies de la lámina. Filas de células en la epidermis superior facilitan el
enrollamiento rápido hacia dentro de las hojas en los períodos de sequía. La vena
central es prominente, convexa abajo, cóncava arriba, blanca o amarilla. El embrión
tiene de 5 a 7 hojas embrionarias las cuales se establecen en intervalos de 3 a 6 días.
El mismo intervalo rige la diferenciación en el ápice vegetativo del tallo y algunas
variedades producen hojas más rápido que otras, la última hoja producida es la hoja
bandera y su rama protege la inflorescencia al emerger.
La vaina de la hoja circunda el tallo y frecuentemente tienen márgenes sobrepuestos.
Su longitud varía de 15 a 35 cm, con la máxima hacia el centro del tallo.
2.5. CONDICIONES AMBIENTALES REQUERIDAS PARA EL CULTIVO DEL
SORGO
2.5.1 Agua
Según Cargil (1999), el sorgo tolera mejor la sequía y el exceso de humedad en el
suelo que la mayoría de los cereales y crece bien bajo una amplia gama de condiciones
en el suelo. Responde favorablemente a la irrigación, lográndose excelentes resultados
bajo riego. Requiere un mínimo de 250 mm durante su ciclo para llegar a producir grano
y pueden obtenerse buenos rendimientos con 350 mm. Pero, para lograr altas
8
producciones, el requerimiento de agua varía entre 450 a 600 mm, dependiendo del
ciclo del híbrido y de las condiciones ambientales.
Cuadro 3. Requerimientos de agua para el cultivo del sorgo.
Requerimiento en el ciclo
Milímetros (mm) de agua
Objetivo de
rendimiento
Óptimo
400 a 600
alta producción
Conveniente
350
rendimientos medios
Mínimo
250
producción mínima
rentable
(Cargil, 1999).
Las mayores exigencias en agua comienzan unos 30 días después de la emergencia y
continúan hasta el llenado de los granos, siendo las etapas más críticas las de
panojamiento y floración, puesto que deficiencias hídricas en estos momentos producen
importantes mermas en los rendimientos. Los mayores rendimientos se lograrán
cuando el uso de agua esté disponible durante toda la estación de cultivo (Cargil, 1999).
Según el Instituto Interamericano de Cooperación para la Agricultura (IICA, 1989), las
necesidades de agua en el sorgo son inferiores a las del maíz; globalmente se estima
en los Estados Unidos de América (con variedades enanas) que el maíz exige, en
comparación con el sorgo, 20 por ciento adicional de agua para producir un kilogramo
de materia seca. Desde este punto de vista, la superioridad del sorgo sobre el maíz
consiste, principalmente, en una mejor aptitud para soportar los períodos de sequía.
Según Gómez (1991), citado por Nájera (2002), aunque el sorgo es resistente a la
sequía, en ciertos años las necesidades del agua pueden disminuir hasta 410 o 460
mm y en un año cálido y seco puede subir hasta 610 o 660 mm para lograr
rendimientos máximos.
9
2.5.2 Temperatura
Según Cargil (1999), por ser una especie de origen tropical, el sorgo requiere
temperaturas altas para su desarrollo normal, siendo por lo tanto más sensible a las
bajas temperaturas que otros cultivos.
Para una buena germinación, el suelo, a cinco cm de profundidad, debe tener una
temperatura no inferior a los 18 grados centígrados. Si el suelo estuviese más frío, entre
15 y 16 grados centígrados, tendría una emergencia lenta y desuniforme, con plantas
débiles y rojizas. Durante la floración requiere una mínima de 16 grados centígrados,
pues por debajo de este nivel se puede producir esterilidad de las espiguillas y afectar
la viabilidad del grano de polen (Cargil, 1999).
Temperaturas muy altas durante los días posteriores a la floración reducen el peso final
del grano. A 38 grados centígrados se produce aborto de flores, en 27 grados
centígrados media diaria para los períodos de desarrollo y de floración, en 21 grados
centígrados mínima para lograr un buen crecimiento y a 18 una temperatura óptima del
suelo para la germinación (Cargil, 1999).
2.6. ASPECTOS FISIOLÓGICOS DEL CRECIMIENTO Y DESARROLLO
Según Compton (1990), citado por Nájera (2002), el sorgo es una planta C4, con tasas
altas de fotosíntesis y la mayoría de las variedades requieren temperaturas superiores a
21 grados centígrados para un buen crecimiento. El cultivo tolera mejor la sequía y el
exceso de humedad en el suelo que la mayoría de los cereales y crece bien bajo una
gama amplia de suelos. Durante EC1 (etapa vegetativa), son importantes la rapidez en
la germinación, la emergencia y el establecimiento de la plántula. En EC2 (inicio de
floración), la expansión de las raíces, la acumulación de materia seca y el
establecimiento del número potencial de semillas en el meristemo apical que se está
diferenciando, son procesos de crecimiento que afectan el rendimiento. En EC3
(llenado de semilla), los factores que afectan el llenado de grano son muy importantes.
10
Durante todas estas etapas de desarrollo, la fotosíntesis, la repartición de productos
asimilados, la división expansión de células y el metabolismo celular en general, deben
estar ajustados hacia el rendimiento final del grano.
2.7. FOTOPERÍODO
Según Compton (1990), citado por Nájera (2002), el fotoperíodo es la respuesta del
crecimiento a la duración de los períodos de luz y de obscuridad. La mayoría de las
plantas se sitúan dentro de una de tres categorías: días cortos, días largos y días
neutrales, las plantas de días cortos requieren para florecer de un período obscuro que
excede una duración crítica y no lo pueden hacer bajo iluminación continua. En las
plantas de días largos la floración se inhibe cuando el período obscuro excede en
duración.
La hoja madura o recientemente expandida, es la perceptora de cambios en la duración
del día. En algunas plantas, las hojas solo necesitan ser expuestas a un solo ciclo luzobscuridad de la duración del día, aunque la mayoría requiere de muchos ciclos
(Compton (1990), citado por Nájera, 2002).
Según Compton (1990), citado por Nájera (2002), una vez que las hojas han recibido un
mensaje fotoperíodo, producen una substancia hipotética, llamada florígeno, la cual
debe ser transmitida al meristemo que va a ser inducido a florecer. Las longitudes de
onda efectivas para las reacciones fotoperiódicas se ha encontrado que están en la
gama de 600 a 680 namómetros (nm), tanto por las plantas de día corto como por las
plantas de día largo. El estímulo fotoperiódico puede ser invertido mediante exposición
a la luz en la región cercana a la infrarroja del espectro (700 a 800 nm). Dentro de los
que son los sorgos cultivados, existen cultivares fotosensitivos (ciclo largo) e
insensitivos (ciclo corto), ya que algunos responden a día cortos y otros a días largos.
11
2.8. FENOLOGÍA DE SORGO DE CICLO CORTO Y LARGO
De acuerdo con la Federación Nacional de Cultivadores de Cereales y Leguminosas
(FENALCE, 2011), según la raza y la temperatura, el sorgo de grano no-fotosensible
llega a la madurez fisiológica dentro de 90 a 130 días, en la zona de 0 a 1000 msnm de
los trópicos. Por otra parte, las razas locales sensitivas al largo del día pueden demorar
hasta 200 días, a causa de su floración tardía. A las altas elevaciones, todas las
variedades pueden demorar 200 días o más.
Igual al caso del maíz, la diferencia principal entre la variedad de sorgo de 90 días y la
de 130 días, queda en el largo de la etapa vegetativa (el período entre la emergencia de
la planta semillero hasta la floración). El período del llenado del grano (desde la
polinización hasta la madurez) es casi igual para ambos (30 a 50 días). Las siguientes
secciones describen las etapas de crecimiento y los factores del manejo de una
variedad típica de 95 días. Estos principios son los mismos no obstante la variedad que
se está cultivando (FENALCE, 2011).
2.8.1 Fase I: De la emergencia a las tres semanas
Según FENALCE (2011), las plantas semilleros del sorgo en un periodo de tres a seis
días, en suelos calientes y húmedos. Bajo condiciones frescas donde la emergencia se
atrasa, las semillas son especialmente susceptibles a hongos del suelo e insectos
dañinos y un aliño para las semillas de un fungicida/insecticida es particularmente
beneficioso. En comparación con el maíz, las pequeñas semillas del sorgo están bajas
en reservas de alimentos que se gastan rápidamente mucho antes de que haya
suficiente desarrollo de hojas para la fotosíntesis. Por esta razón, las plantas semilleros
comienzan tan lentamente por las primeras tres semanas, después de las cuales la tasa
de crecimiento se apura.
2.8.2 Fase II: De las tres semanas a la media-floración (60 días, después de la
emergencia)
Según FENALCE (2011), la tasa de crecimiento y el uso de alimentos y agua acelera
rápidamente después de las primeras tres semanas.
12
La hoja "bandera" (la última hoja producida) es visible en la vaina foliar 40 días,
después de la emergencia. La etapa de "bota" viene alrededor del día 50 cuando la
cabeza de la flor comienza a emerger de la vaina foliar pero todavía está encerrada en
la vaina. El tamaño potencial de la espiga en términos del número de semillas ya ha
sido determinado. La escasez severa de agua durante la etapa de "bota" puede
prevenir la emergencia completa de la espiga. Esto previene la polinización completa
durante la etapa de la floración (FENALCE, 2011).
Según FENALCE (2011), la etapa de media-flor se alcanza alrededor del día 60 cuando
la mitad de las plantas en el campo estén en alguna etapa de la floración de espigas.
Puesto que una planta individual de sorgo florece desde el punto de la espiga hacia
abajo dentro de cuatro a nueve días, la media-floración a base de planta por planta
ocurre cuando la floración está a media espiga. Aunque el tiempo para llegar a mediaflor varía con la raza y el clima, por lo general cubre dos tercios del período desde la
emergencia de la planta semillero hasta la madurez fisiológica. En coordinación con las
tasas rápidas de crecimiento y el uso de alimentos, como 70, 60, y 80 por ciento de los
requerimientos de nitrógeno, fósforo, y potasio (respectivamente) han sido absorbidos
por la planta al llegar a la etapa de media-flor. La escasez severa de agua durante la
etapa de la polinización acorta críticamente los rendimientos porque causa el aborto de
los óvulos de la semilla y la polinización incompleta.
2.8.3 Fase III: Desde la media-flor hasta la madurez fisiológica (60-95 días)
Las semillas (los granos) llegan a la etapa de masa suave 10 días después de la
polinización (70 días, después de la emergencia) en la raza de 95 días y la media parte
del rendimiento final en peso seco es acumulado durante este corto período. La etapa
de masa dura se desarrolla dentro de los siguientes 15 días (85 días después de la
emergencia) cuando tres cuartos del rendimiento final en peso seco se ha acumulado.
La escasez severa de agua durante este período produce grano ligero y pequeño. La
madurez fisiológica se alcanza en 10 días más (95 días de la emergencia en el caso de
esta variedad). En esta etapa, el grano todavía contiene 25 a 30 por ciento de agua, lo
cual es mucho más que el nivel seguro de 13 a 14 por ciento para el almacenaje en
forma trillada (después que los granos han sido sacados de la espiga). Los pequeños
13
agricultores pueden cortar las espigas en esta etapa y secarlas al sol antes de trillarlas
o dejar que las espigas se sequen naturalmente en la planta en el campo (FENALCE,
2011).
2.9
ETANOL
El etanol o alcohol etílico es un compuesto químico líquido, incoloro, volátil, inflamable y
soluble en agua cuyas moléculas se componen de carbono, hidrógeno e hidroxilos
(CH3CH2OH), el cual es obtenido a partir de la fermentación de los azúcares que puede
utilizarse como combustible, bien solo o bien mezclado en cantidades variadas con
gasolina.
2.10 FUENTES DE OBTENCIÓN DE ETANOL
Según Tsakiridou (2010), el etanol se produce por hidratación del etileno, mientras que
el bioetanol es producido por la fermentación de azúcares como la glucosa, fructosa y
sacarosa con levadura.
Según Negrillo (2011), el etanol se produce a partir de tres principales materias primas
a.
Sacarosas
La caña de azúcar es una de las materias primas más atractivas para la elaboración de
etanol, debido a que los azúcares se encuentran en una forma simple de carbohidratos
fermentables. Se estima que de una tonelada de melaza se produce 230 litros de
etanol; además, con una tonelada de caña de azúcar se produce entre 30 y 40 kg de
melaza, que a su vez generaría entre 6.9 y 9.2 litros de alcohol.
b.
Almidones, que se encuentran en cereales (maíz, trigo, cebada, entre otros) y
tubérculos (yuca, camote, papa, etc.). Los almidones contienen carbohidratos de mayor
complejidad molecular que necesitan ser transformados en azúcares más simples
mediante un proceso de conversión (sacarificación), introduciendo un paso adicional en
la producción de etanol, con lo que se incrementan los costos de capital y de operación.
14
No obstante, existen algunos cultivos amiláceos como el sorgo, que pueden ser
desarrollados con una mínima cantidad de insumos y en tierras marginales donde
generalmente no se desarrollan otras especies.
c.
Celulosa, que se encuentra en la madera, residuos agrícolas y forestales. Las
materias primas ricas en celulosa son las más abundantes, sin embargo, la complejidad
de sus azúcares hacen que la conversión a carbohidratos fermentables sea difícil y
costosa.
Es importante destacar, que la producción mundial de celulosa asciende a 100 mil
millones de tm por año, de los cuales se estima que sólo es utilizado el 11%.
2.11 ETANOL EN EL MUNDO
Según la Asociación de Combustibles Renovables, (ACR 2010), el origen del etanol
como combustible se origina junto a la creación de automóviles en los Estados Unidos.
Cuando Henry Ford hizo su primer diseño de su automóvil modelo T en 1908, esperaba
que el combustible de mayor uso fuera el etanol, fabricado a partir de fuentes
renovables. De 1920 a 1924, la Standard Oil Company comercializó un 25% de etanol
en la gasolina vendida en el área de Baltimore pero los altos precios del maíz,
combinados con dificultades en el almacenamiento y transporte, hicieron concluir el
proyecto. A finales de la década de 1920 y durante los 30 se hicieron subsecuentes
esfuerzos para reavivar un programa de combustible con etanol, basado en legislación
federal y estatal, particularmente en el Cinturón Maicero de los Estados Unidos, pero
sin éxito.
Entonces, Henry Ford y varios expertos unieron fuerzas para promover el uso del
etanol; se construyó una planta de fermentación en Atchison, Kansas, para fabricar
38,000 litros diarios de etanol, específicamente para combustible de motores. Durante
los 30, más de 2,000 estaciones de servicio en el Medio Oeste vendieron este etanol
hecho de maíz y que llamaron “gasohol”. Los bajos precios del petróleo llevaron al
cierre de la planta de producción de etanol en los 40, llevándose consigo el negocio de
15
los granjeros americanos; el gasohol fue reemplazado por el petróleo. Esta situación se
mantiene, sin embargo los actuales problemas ambientales y la sobreexplotación
petrolera, ponen de manifiesto la necesidad de buscar combustibles más ecológicos y
renovables (ACR, 2010).
Brasil lo produce de la caña de azúcar, a través de un programa que ha funcionado por
más de dos décadas, consumiendo anualmente entre 16 y 17 mil millones de litros de
etanol carburante por año, utilizando dos modalidades diferentes: mezclado con las
gasolinas, en proporciones que oscilan entre 20% y 25%; y etanol puro (100%), para
vehículos que han sido especialmente diseñados para ello (ACR, 2010).
De acuerdo con la ACR (2010), Estados Unidos lo produce a partir de maíz. Se utilizan
anualmente alrededor de 7.5 millones de litros de etanol carburante en mezclas con
gasolina. El 12% del consumo de combustible en ese país contiene etanol carburante.
La mayor parte contiene una mezcla de 10% de etanol y en ciertas regiones ya se
utiliza gasolina con 85% de etanol.
Cuadro 4. Producción anual de etanol por país (2004-2006), quince mayores países
productores (millones de galones internacionales, todos los grados de etanol).
Clasificación
País
2006
2005
2004
1
Estados Unidos
4.855
4.264
3.535
2
Brasil
4.491
4.227
3.989
3
China
1.017
1.004
964
4
India
502
449
462
mundial
16
5
Francia
251
240
219
6
Alemania
202
114
71
7
Rusia
171
198
198
8
Canadá
153
61
61
9
España
122
93
79
10
Sudáfrica
102
103
110
11
Tailandia
93
79
74
12
Reino Unido
74
92
106
13
Ucrania
71
65
66
14
Polonia
66
58
53
15
Arabia Saudita
52
32
79
13.489
12.150
10.770
Producción mundial total
(Renewable Fuel Association, 2006)
2.12 ETANOL A PARTIR DE SORGO
Según la Agence France Presse (AFP 2008), el sorgo, es un cultivo adaptado a climas
secos, capaz de producirse tanto para consumo humano como alimento para animales
17
y biocombustibles, ofrece un enorme potencial para responder a las necesidades de los
países en desarrollo.
Según el Indian Crops Research Institute for Semi Arid Tropics (2008), citado por la
AFP (2008), el sorgo es un cultivo ideal porque se puede usar para producir alimentos o
etanol. La planta alcanza de 2.5 a 4 metros de altura, con hojas ricas en azúcar que
permiten la obtención de etanol por destilación; a igual superficie cultivada, el sorgo
consume dos veces menos de agua que el maíz, con un valor nutritivo comparable y
ocho veces menos que la caña de azúcar.
A través de una asociación entre la firma privada india Rusni Distilleries y 791
agricultores de Andhra Pradesh en India, el ICRISAT ayudó a construir y hacer
funcionar desde el año 2007 una fábrica de etanol a partir de sorgo azucarado
producido por ellos (AFP, 2008).
Según el ICRISAT (2008), en India un galón (3.78 litros) de etanol producido a partir
de sorgo cuesta 1.74 dólares, contra 2.19 dólares el fabricado de caña de azúcar y 2.12
dólares con maíz. Proyectos desarrollados sobre el modelo de asociación están en
marcha en Filipinas, México, Mozambique y Kenia, precisa el informe presentado por
este instituto.
Actualmente se cultivan 42 millones de hectáreas de sorgo en 99 países y Estados
Unidos es el primer productor (AFP, 2008).
Según Tsakiridou (2010), la línea de producción de azúcar fermentada se puede
separar en cinco etapas principales:
a. El transporte de sorgo dulce para la planta de bioetanol y desintegración
Los tallos del sorgo dulce son transportados a la planta de bioetanol descargado sobre
la mesa de alimentación. Con la ayuda de un desintegrador se cortan los tallos de sorgo
(en caso así sea necesario) para alimentar la molienda.
b. La extracción del jugo de sorgo dulce
La molienda requiere un proceso continuo; los tallos de sorgo se pasan a través de una
serie de molinos (la cantidad de molinos depende del tipo de molienda utilizada).
18
Durante el paso de las cañas por el tercer molino (suponiendo que la molienda es de
cuatro molinos); se agrega agua calienta a presión con una temperatura de alrededor
de 65 °C, esta se añade para aumentar la eficacia de la extracción de jugo. El jugo
derivado de la extracción se recoge y se lleva al horno para la producción de jarabe.
c. Jarabe de producción de sorgo dulce (concentración de jugo de sorgo
dulce)
Un aspecto que puede tener un gran impacto en el proceso es el tiempo que transcurre
entre la cosecha y fermentación. El jugo extraído tiene que ser fermentado
inmediatamente ya que el no hacerlo baja el rendimiento de etanol por unidad de
volumen de jugo.
El jugo de sorgo, no solo contiene azúcares, sino también sólidos solubles
(antocianinas y clorofila) y sólidos insolubles (gránulos de almidón). El jugo extraído se
debe filtrar a fin de estar limpio.
d. La fermentación de jugo de sorgo dulce
La fermentación alcohólica es un proceso anaeróbico realizado por las levaduras y
algunas clases de bacterias. Estos microorganismos transforman el azúcar en alcohol
etílico y dióxido de carbono. La fermentación alcohólica, comienza después de que la
glucosa entra en la celda. La glucosa se degrada en un ácido pirúvico. Este ácido
pirúvico se convierte luego en CO2 y etanol.
La producción de etanol y la eficiencia de fermentación varían dependiendo de la
cosecha de sorgo dulce y la cantidad y proporción de azúcar en ellos.
La levadura seca recién activada (generalmente Saccharomyces cerevisiae) y el jugo
de sorgo dulce son cargados en común en el tanque de fermentación con el manejo
adecuado y la limpieza mediante la observación de las medidas sanitarias para evitar la
contaminación con bacterias no deseados o de otros microorganismos indeseables. El
jugo se inocula con levadura y se ejecutan en fermentador por un período de 72 horas
más o menos 30-32 °C y 750 rpm para la producción de etanol (pH ~ 3.5).
19
Como producto final se obtiene etanol fermentado y estable para el almacenamiento a
largo plazo;
mientras que con el retraso de la inoculación ocasiona pérdidas
significativas en la producción de etanol.
Tiempo de inoculación (hr)
Figura 3. Efecto del retraso en la inoculación del jugo de sorgo.
Figura 4. Diagrama de producción convencional de etanol a partir de jugo de sorgo.
2.13. DESTILACIÓN FRACCIONADA
20
La destilación fraccionada sirve para separar una mezcla homogénea compuesta por
dos líquidos, con puntos de ebullición próximos. El aparato de destilación fraccionada
es formado por un balón de vidrio con fondo plano, que es calentado por una llama.
En este balón la mezcla es homogénea. La boca del balón permanece presa por una
columna de fraccionamiento con bolas de vidrio en su fondo – por lo general. En lo más
alto de la columna de fraccionamiento está un termómetro, y en el lateral, hay una
salida para un condensador. El condensador es hecho por un tubo interior que será
envuelto externamente por agua fría. Al final del condensador hay un vaso
(Escuelapedia, 2013).
2.13.1
Proceso de destilación
En el balón de vidrio se coloca la mezcla. Al ser calentada, la sustancia de menor punto
de ebullición se evaporará primero y, más tarde, la otra sustancia se va a evaporar
también. Sin embargo, para apoyarse en la punta de la columna de fraccionamiento, la
primera sustancia se condensa de nuevo en el frasco y la otra sustancia seguirá
subiendo hasta encontrar el condensador.
El termómetro sirve para mantener una temperatura constante, un poco por encima del
punto de ebullición. Al final del proceso, el vaso contendrá el líquido más volátil y el
balón de vidrio tendrá el líquido menos volátil (Escuelapedia, 2013).
21
Figura 5. Diagrama de proceso de destilación fraccionada (Escuelapedia, 2013).
2.14. PRODUCCIÓN DE ETANOL EN GUATEMALA
Según la ACR (2010), existen cinco destilerías en el país (ingenios de la costa sur y
Cervecería Centroamérica) que producen etanol, se cuenta con una capacidad
instalada de 493,150 litros al día (180 millones de litros anuales), actualmente el 80%
de etanol se exporta principalmente a Europa y Estados Unidos, mientras que el 20%
restante es consumido dentro de las mismas industrias productoras, razón por la que
este producto no se comercializa en el mercado nacional como un hidrocarburo.
En Guatemala el producto no es mezclado aún con la gasolina a nivel comercial; existe
una ley vigente pero inoperable que es el Decreto 17-85 “Ley del Alcohol Carburante” y
se considera importante que el uso de este oxigenante sea legislado, reglamentado y
monitoreado para que los consumidores reciban el producto con las especificaciones
correctas (ACR, 2010).
Según la ACR (2010), es importante que países como Guatemala empiecen a producir
y utilizar combustibles renovables, como parte de una Política Energética con una visión
a largo plazo, para lograr obtener todos los beneficios del uso de combustibles
renovables y enfocarse hacia el desarrollo sostenible.
En Guatemala se propone iniciar con E10 (10% etanol y 90% gasolina), para garantizar
que ningún vehículo del parque vehicular tenga problemas; en el país inclusive hay
vehículos que pueden aceptar hasta el 22% de etanol, en Estados Unidos existen más
de 5 millones de vehículos que aceptan E85 (85% etanol y 15% de gasolina); Brasil
cuenta con vehículos Flex Fuel que pueden aceptar hasta 100% de etanol o cualquier
porcentaje de mezcla, y debido a esto, en el 2007 más del 80% de las ventas fueron de
Flex Fuel (ACR, 2010).
22
Lo importante es empezar a producir y usar localmente este combustible y que los
guatemaltecos sean beneficiados y con el pasar de los años ir aumentando el
porcentaje de mezcla para que los beneficios sean mayores (Rolz, 2011).
Según Rolz (2011), la producción de etanol en Guatemala se justifica debido a los
siguientes parámetros:
El consumo anual de gasolinas y diesel es de aproximadamente 1,000 millones de
litros, mientras que la cantidad máxima de etanol que puede producirse de melazas es
de 142 millones de litros, esta cantidad cubre la necesidad para una mezcla de 14% de
etanol en la gasolina; mientras que al mezclar el etanol también con el diésel, las
mezclas serían únicamente del 7% de etanol.
En la actualidad no existen en el país proyectos establecidos para la producción de
etanol a partir de sorgo.
2.15 OBTENCIÓN DE ETANOL A PARTIR DE SORGO EN GUATEMALA
Según Rolz (2011), la producción de etanol a partir de sorgo es relativamente nueva, el
Instituto de Investigaciones de la Universidad de Valle de Guatemala (UVG) por medio
de los Centros de Ingeniería Bioquímica, de Procesos Industriales, de Estudios
Agrícolas y Forestales, y de Estudios en Ciencia y Tecnología de Alimentos, es la única
institución de estudios avanzados en el país con un programa experimental sobre el
sorgo como planta de propósitos múltiples.
La obtención de etanol se realiza de las hojas y el tallo de la planta, lo cual dificulta su
extracción con la metodología tradicional, este debido que se debe extraer el jugo
azucarado de dichas partes de la planta ocasionando pérdidas hasta del 25% del
volumen que se pudiera obtener (Rolz, 2011).
23
Tallos de
Agua
sorgo
Jugo azucarado de
sorgo
Faja
conectora
Fibra de
sorgo
Figura 6. Proceso tradicional de molienda para extracción de jugos azucarados de
sorgo a partir de hojas y tallos (Rolz, 2011).
En el proceso de obtención de etanol prácticamente se identifican tres pasos de gran
importancia como lo son la obtención de jugos azucarados, la fermentación y la
destilación.
Figura 7. Proceso tradicional de obtención de etanol a partir de jugos azucarados de
sorgo (Rolz, 2011).
24
2.16 NUEVA TECNOLOGÍA PROPUESTA POR LA UNIVERSIDAD DEL VALLE DE
GUATEMALA
Rolz (2011), menciona que actualmente se experimenta con nueva metodología que
incrementa el porcentaje de etanol obtenido por volumen de materia prima (tallos de
sorgo), esta metodología se encuentra aún en proceso experimental pero promete ser
una opción muy viable.
La metodología bajo evaluación permite mejorar el proceso de extracción del jugo
azucarado de los tallos de sorgo (molienda), evitando de esta manera las pérdidas de
hasta el 25% que se generan con la metodología tradicional. El nuevo proceso de
molienda propone desintegrar los tallos, en lugar de pasarlos por rodillos; según
pruebas de laboratorio la desintegración del tallo incrementa significativamente el
volumen de jugo azucarado obtenido; el resto del procedimiento para obtener el etanol
sigue siendo el tradicional (Rolz, 2011).
Figura 8. Nueva metodología de molienda y producción de etanol (Rolz, 2011).
25
3.
JUSTIFICACIÓN DEL TRABAJO
3.1 DEFINICIÓN DEL PROBLEMA Y JUSTIFICACIÓN DEL TRABAJO
El abastecimiento de combustibles fósiles está limitado a la extracción de petróleo como
materia prima, el cual resulta ser escaso y costoso; además la carburación de los
combustibles fósiles genera dióxido de carbono (CO2), el cual es
gas de efecto
invernadero que más se genera a nivel mundial (Rolz, 2011).
La hidrocarburos fósiles utilizan metil-ter-butil-eter, o MTBE (C5H120) para incrementar el
octanaje en los motores de combustión interna, normalmente representa el 10 y 15 por
ciento del volumen de la gasolina, y debido a que es altamente volátil y soluble es una
de las principales fuentes de contaminación de los mantos freáticos (Rolz, 2011).
La mayor producción de etanol en Guatemala es generada en los ingenios azucareros,
lo cual representa ingresos derivados de éste únicamente a los grandes empresarios.
La producción de etanol a partir de sorgos doble propósito (grano y forraje) podría
generar ingresos adicionales al agricultor que produce este cultivo; sin poner en riesgo
el alimento para sus animales debido a que en el proceso de obtención de etanol
solamente se extrae el jugo de la caña y hojas de la planta, dejando la materia vegetal
para complemento en la alimentación animal.
Según el Ministerio de Agricultura y Ganadería (MAGA, 1998), Guatemala posee
alrededor de 600,000 ha de suelos no aptos para la agricultura convencional y sin
cobertura forestal; más sí lo son para el cultivo de sorgo, pudiéndose cultivar este en
sistemas agroforestales, razón por la cual se considera que la producción de etanol a
partir de este no amenaza con expansión de la frontera agrícola o deforestación.
Al identificar genotipos y sus etapas de desarrollo fenológico y económicamente
rentables para el agricultor y la obtención de etanol a partir de la fermentación de los
jugos, podrá generarse independencia energética para el país, sin incrementar la
emisión de gases de efecto invernadero, esto justifica el investigar el efecto de tres
etapas fenológicas sobre la producción de etanol en seis genotipos de sorgo
26
insensitivos (ICTA – CL929, ICTA – CL936, ICTA – CL947, ICTA – MICTLAN, ICTA –
RC y SUGAR DRIP), lo cual permitirá identificar si existen diferencias a nivel de etapas
fenológicas y cómo influyen estas sobre los genotipos.
27
4.
4.1.
OBJETIVOS
OBJETIVO GENERAL
Evaluar tres etapas fenológicas en seis genotipos de sorgo de ciclo corto para la
producción de etanol a partir de sus jugos fermentables.
4.2 OBJETIVOS ESPECÍFICOS
Identificar la etapa fenológica donde se obtiene el mayor volumen de etanol en los
diferentes genotipos.
Identificar los genotipos que produzcan el mayor volumen de etanol en las diferentes
etapas fenológicas.
Cuantificar el volumen de etanol producido para cada tratamiento de la combinación
entre etapas fenológicas y genotipos.
Determinar la relación beneficio/costo en la producción de etanol, para los tratamientos
evaluados.
28
5.
HIPÓTESIS
5.1. HIPÓTESIS ALTERNA
Ha: Por lo menos una de las tres etapas fenológicas tendrá una respuesta diferente en
el volumen producido de etanol
Ha: Por lo menos uno de los seis genotipos será diferente al resto en cuanto a la
producción de etanol.
Ha: Por lo menos una de las interacciones de los tratamientos y etapas fenológicas será
diferente estadísticamente al resto en la producción de etanol.
29
6.
MATERIALES Y MÉTODOS
6.1. LOCALIZACIÓN DEL TRABAJO
El estudio se realizó en el valle del municipio de Asunción Mita, del departamento de
Jutiapa, en la finca El Engaño, en las coordenadas geográficas 14° 17' 47.2" N y 89° 42'
00.6" W, a una altura de 483 msnm, con una precipitación pluvial de 1,284 mm anuales
y una temperatura media anual de 28 oC. El suelo presenta una textura arcillo-arenosa y
un pH de 6. Según la clasificación de Holdridge (1982), citado por Zambrana (2008), el
área corresponde a la zona de vida de Bosque Seco Subtropical.
6.2. MATERIAL EXPERIMENTAL
6.2.1 Germoplasma
Se evaluaron genotipos de sorgo de ciclo corto identificados como ICTA – CL929, ICTA
– CL936, ICTA – CL947, ICTA – MICTLAN, ICTA – RC y SUGAR DRIP.
El ICTA – CL929, ICTA – CL936 e ICTA – CL947 son variedades de sorgo de doble
propósito (grano – forraje) que contienen el gen bmr que les confiere características de
mayor digestibilidad al forraje.
Las variedades ICTA – MICTLAN e
ICTA – RC al igual que las variedades
mencionadas anteriormente son sorgos doble propósito, pero su buena producción de
grano los ha convertido en sorgos un poco más utilizados para producción de grano
como objetivo principal, siendo el más utilizado en la región oriente la variedad ICTA –
MICTLAN.
El híbrido SUGAR DRIP es un sorgo netamente azucarero el cual no se encuentra en el
mercado guatemalteco, este híbrido es utilizado principalmente como fuente forrajera y
como potencial materia prima para producción de etanol en Estados Unidos.
30
6.2.2 Levadura
Para inducir la fermentación necesaria para la producción de etanol se empleó
la levadura de cerveza (Saccharomyces cerevisiae), la cual es un hongo unicelular
perteneciente a la división Ascomycota; S. cerevisiae es un tipo de levadura utilizado
industrialmente en la fabricación de pan, cerveza y vino, gracias a su capacidad de
generar dióxido de carbono y etanol durante el proceso de fermentación. Básicamente
este proceso se lleva a cabo cuando esta levadura se encuentra en un medio muy rico
en azúcares y en ausencia de oxígeno.
6.3. FACTORES ESTUDIADOS
Se estudiaron dos factores:
Factor A: Etapas fenológicas (Parcela Grande)
Nivel: tres etapas
Factor B: Genotipos de sorgo de ciclo corto (Parcela Pequeña)
Nivel: seis
6.4. DESCRIPCIÓN DE LOS TRATAMIENTOS
Cuadro 5. Distribución de tratamientos entre etapas fenológicas y genotipos de sorgo.
Tratamiento
Factor A
Factor B
1
MACOLLAMIENTO
ICTA – CL929
2
MACOLLAMIENTO
ICTA – CL936
3
MACOLLAMIENTO
4
MACOLLAMIENTO
ICTA – CL947
ICTA – MICTLAN
Tratamiento
MACOLLAMIENTO + ICTA
– CL929
MACOLLAMIENTO + ICTA
– CL936
MACOLLAMIENTO + ICTA
– CL947
MACOLLAMIENTO +
ICTA-MICTLAN
31
MACOLLAMIENTO + ICTA
5
MACOLLAMIENTO
6
MACOLLAMIENTO
7
BOTA
ICTA – CL929
BOTA + ICTA – CL929
8
BOTA
ICTA – CL936
BOTA + ICTA – CL936
9
BOTA
ICTA – CL947
BOTA + ICTA – CL947
10
BOTA
ICTA – MICTLAN
BOTA + ICTA-MICTLAN
11
BOTA
ICTA – RC
BOTA + ICTA – RC
12
BOTA
SUGARDRIP
BOTA + SUGAR DRIP
13
MASOSO-LECHOSO
ICTA – CL929
14
MASOSO-LECHOSO
15
MASOSO-LECHOSO
16
MASOSO-LECHOSO
17
MASOSO-LECHOSO
18
MASOSO-LECHOSO
ICTA – RC
SUGAR DRIP
ICTA – CL936
ICTA–CL947
ICTA – MICTLAN
ICTA – RC
SUGAR DRIP
– RC
MACOLLAMIENTO +
SUGAR DRIP
MASOSO-LECHOSO +
ICTA – CL929
MASOSO-LECHOSO +
ICTA – CL936
MASOSO-LECHOSO +
ICTA – CL947
MASOSO-LECHOSO +
ICTA-MICTLAN
MASOSO-LECHOSO +
ICTA – RC
MASOSO-LECHOSO +
SUGAR DRIP
Se evaluaron 18 tratamientos consistentes en la combinación de tres etapas
fenológicas y seis variedades de sorgo de ciclo corto y, además, se colectaron
muestras en cada etapa (en la etapa de macollamiento, bota y masoso-lechoso); dichas
muestras fueron sometidas a un proceso de extracción del jugo para su posterior
fermentación.
32
La colección de las muestras en la etapa de macollamiento para los seis genotipos se
realizó a los veintitrés días (23) luego de su emergencia, en la etapa de bota se realizó
a los cincuenta y tres días (53) luego de la emergencia, mientras que en la etapa de
mososo-lechoso se realizó a los setenta días (70) luego de la emergencia, esto debido
a que todos los genotipos se comportaron de manera muy similar en cuanto a su
desarrollo fenológico.
La colecta de las muestras se inició con el corte de dos surcos centrales de cada
parcela y genotipo; cada muestra fué identificada y atada para su posterior traslado al
área donde se extrajo el jugo haciendo uso de un trapiche artesanal.
El período entre cosecha y la extracción del jugo varió entre 3 y 4 horas
aproximadamente; el jugo obtenido del proceso de molienda fué medido en litros y
colocado en embases para su fermentación; posteriormente a cada embase se le
agregó una cantidad de levadura acorde al volumen que este contenía, utilizando una
relación de 3 gramos de levadura (Saccharomyces cerevisiae) por cada litro de jugo,
esta relación se utilizó como recomendación del doctor Carlos Rolz de la Universidad
del Valle de Guatemala. El proceso se siguió de la misma manera para las tres etapas
fenológicas y seis genotipos evaluados.
6.5. DISEÑO EXPERIMENTAL
Se utilizó un diseño de parcelas divididas, donde la parcela grande fue formada por las
etapas fenológicas y la parcela pequeña por las variedades (Sitún, 2005).
6.6. MODELO ESTADÍSTICO
Yijk= U+Ai+Bj+AiBj+Rk+Ei.k+Eijk
Yijk= variable respuesta asociada a la ijk-ésima unidad experimental
U= efecto de la media general
Ai= efecto del i-ésimo nivel del factor en la parcela grande (etapas fenológicas)
33
Bj= efecto del j-ésimo nivel del factor en la parcela pequeña (variedades)
AiBj= efecto de la interacción entre el i-ésimo nivel del factor parcela grande con el jésimo nivel del factor parcela pequeña
Rk= efecto del k-ésimo bloque
Ei.k= error experimental asociado a la parcela grande
Eijk= error experimental asociado a la parcela pequeña
6.7. UNIDAD EXPERIMENTAL
6.7.1 Parcela grande
Estuvo compuesta por 36 surcos de 5 m de largo cada uno, 0.20 m entre planta y 0.4 m
entre surco, lo cual constituyó un área de 72.00 m2.
6.7.2 Parcela bruta
6 surcos de 5 m de largo * 0.40 m entre surco= 12.00 m2.
6.7.3 Parcela neta
Estuvo compuesta por 2 surcos centrales de 4.6 m de largo, 0.40 m entre surco y
0.20 m entre planta, lo cual constituyó un área de 3.68 m2.
6.8. CROQUIS DE CAMPO
Bloque IV
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
8
7
3
4
6
5
9
1
0
2
7
8
3
6
2
4
1
5
34
Bloque
III
Bloque II
Bloque
I
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
9
7
1
2
0
8
6
5
1
2
4
3
5
8
3
6
7
4
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1
1
1
1
1
1
0
0
0
0
0
0
1
0
1
0
0
1
6
8
3
5
4
7
5
6
1
4
3
2
2
7
0
8
9
1
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0
0
0
0
0
0
1
1
1
1
1
1
0
1
0
1
0
1
5
3
6
2
4
1
6
5
7
4
3
8
8
1
7
0
9
2
35
Cuadro 6. Distribución aleatoria de tratamientos en cada bloque.
Orden
T01
T02
T03
Tratamiento
MACOLLAMIENTO + ICTA
– CL929
MACOLLAMIENTO + ICTA
– CL936
MACOLLAMIENTO + ICTA
I
II
III
IV
106
210
309
402
104
207
310
404
102
209
312
406
105
208
311
403
101
212
308
401
103
211
307
405
– CL947
T04
MACOLLAMIENTO + ICTAMICTLAN
T05
T06
MACOLLAMIENTO + ICTA
– RC
MACOLLAMIENTO +
SUGAR DRIP
T07
BOTA + ICTA – CL929
115
205
302
408
T08
BOTA + ICTA – CL936
113
213
306
407
T09
BOTA + ICTA – CL947
117
202
301
412
T10
BOTA + ICTA-MICTLAN
116
204
305
410
T11
BOTA + ICTA – RC
114
201
303
411
T12
BOTA + SUGAR DRIP
118
206
304
409
111
216
315
416
110
214
318
415
T13
T14
MASOSO-LECHOSO +
ICTA – CL929
MASOSO-LECHOSO +
ICTA – CL936
36
T15
MASOSO-LECHOSO +
108
215
313
413
107
218
316
414
109
213
317
417
112
217
314
418
ICTA – CL947
T16
MASOSO-LECHOSO +
ICTA-MICTLAN
T17
T18
MASOSO-LECHOSO +
ICTA – RC
MASOSO-LECHOSO +
SUGAR DRIP
Macollamiento
Masoso - Lechoso
Bota
Figura 9. Simbología de parcela grande.
6.9.
6.9.1
MANEJO DEL EXPERIMENTO
Obtención de la semilla
La semilla de las variedades ICTA – CL929, ICTA – CL936, ICTA-MICTLAN, ICTA –
CL947 e ICTA – RC fue proporcionada por la oficina del ICTA ubicada en la cabecera
departamental de Jutiapa; mientras que la variedad SUGAR DRIP se obtuvo de la
Universidad del Valle de Guatemala.
6.9.2
Preparación del terreno
Se utilizó tractor, arado y dos pasos de rastra.
37
6.9.3
Tratamiento de la semilla
La semilla fue tratada con imidacloprid 60 FS, con una dosis de 10 mg/kg de semilla,
con el objeto de prevenir ataque de plagas del suelo.
6.9.4
Siembra
Se realizó de acuerdo al método tradicional utilizado en la región, colocando entre seis
y ocho semillas por postura.
6.9.5
Riego
No se aplicó riego debido a que en la región el sorgo se cultiva como relevo luego de la
la dobla del maíz; por lo cual el ensayo fue establecido el 07 de agosto de 2012.
6.9.6
Control de maleza
Se llevaron a cabo labores culturales alternadas con aplicaciones de fluazifop-p-butil
(éster) 12,5% p/v y glifosato con una dosis de dos l/ha.
6.9.7
Fertilización
Se aplicaron 180 kg/ha de urea, 180 kg/ha de nitrógeno y 180 kg/ha fósforo; además,
se aplicó fertilizante foliar completo con una dosificación de dos l/ha (ver cuadro 7).
Cuadro 7. Demanda promedio de macronutrientes.
N
P
K
Ca
Mg
S
33-38
30-36
24-30
kg/ha
180-220
30-35
150-170
(Manual del sorgo, 2011)
6.9.8
Control de plagas y enfermedades
Se realizaron monitoreos constantes para la detección y control de plagas y
enfermedades, haciendo uso de labores culturales y combinaciones del insecticida
imidacloprid y beta-ciflutrin contra Spodoptera frugiperda (gusano cogollero) con
fungicida preventivo/ curativo carbendazim 72% para el control de Phyllachora maydis
(mancha de asfalto).
38
6.9.10
Como
Obtención de levadura
agente
para
inducir
fermentación
se
utilizó
la
levadura
cervecera
(Saccharomyces cerevisiae), la cual se obtuvo en la empresa Quimiprova (6a. avenida
22-47, zona 12, Guatemala, C.A.).
6.9.11
Aplicación de levadura y período de fermentación
Se aplicaron tres gramos de levadura por cada litro de jugo de sorgo para cada
tratamiento, dicha mezcla fue sometida a un período de fermentación anaeróbica de 10
días.
6.9.12
Obtención y cuantificación de etanol
El jugo fermentado se sometió a un proceso de destilación fraccionada en muestras de
100 mililitros (ml) para cada tratamiento; el etanol se empezó a obtener a partir de los
45 oC y la destilación se detuvo cuando el termómetro alcanzó una temperatura máxima
de 78 oC, ya que luego de esta temperatura se inicia la destilación de agua. La misma
metodología fue aplicada a todos los tratamientos evaluados.
El etanol obtenido se midió en mililitros (ml) para su posterior cálculo a litros.
6.10. VARIABLES RESPUESTA
6.10.1
Volumen de etanol producido en litros por hectárea (l/ha) para cada etapa
fenológica y genotipo
Derivado del proceso de destilación aplicada a cada tratamiento se obtuvo un volumen
de etanol expresado en ml/3.68 m2 (área de la parcela neta), este resultado fue
transformado a través de estequiometria y conversiones a las unidades de medida
requeridas para dar respuesta a las variables planteadas en este estudio, las cuales
expresan el volumen de etanol en l/ha; la fórmula final empleada fue la siguiente:
10,000 m2 X Vol. obtenido en el bloque (en l)
Vol. etanol/ha =
Área de parcela neta (m2)
39
6.11. ANÁLISIS DE LA INFORMACIÓN
6.11.1 Análisis estadístico
Para el análisis estadístico (varianza) para las variables bajo estudio se hizo uso del
programa estadístico InfoStat; debido a significancias estadísticas para las fuentes de
variación se utilizó el test DGC al 5% con el cual se establecieron diferencias
estadísticas entre tratamientos.
6.11.2 Análisis económico
El indicador económico que se aplicó fue el de la relación beneficio/costo, que expresa
la relación entre ingresos brutos y costos totales para cada tratamiento. Esta relación
siempre debe de estar por encima de uno, para que exista ganancia o sea factible,
mientras que si es igual a uno se puede decir que se alcanzó el punto de equilibrio
(Aguirre, 1995).
40
7.
7.1.
RESULTADOS Y DISCUSIÓN
VOLUMEN PRODUCIDO DE ETANOL EN LITROS POR HECTÁREA (l/ha)
PARA ETAPAS FENOLÓGICAS Y GENOTIPOS
En el cuadro 8 se presentan los resultados del análisis de varianza donde se obtuvo
alta significancia estadística al 1% (p<0.0001) tanto para las etapas fenológicas,
genotipos y la interacción etapa fenológica×genotipo.
Cuadro 8. Análisis de varianza para la producción de etanol en l/ha.
Grados de
Suma de
Cuadrado
libertad
Cuadrados
Medio
Bloque
3
5640.17
1880.06
Etapa Fenológica
2
1160169.12
580084.56
6
3648.87
608.15
5
201997.73
40399.55
32.19
<0.0001
10
136497.32
13649.73
10.88
<0.0001
45
1564434.02
34542.98
Factores de Variación
Bloque×Etapa
Fenológica (Ea)
Genotipo
Etapa
Fenológica×Genotipo
Error (Eb)
F
p-valor
3.09
0.1112
953.86 <0.0001
CV = 20.20%
(p<0.0001)= Alta significancia estadística
Analizando la alta significancia estadística (p<0.0001) para
la interacción etapa
fenológica×genotipo en esta investigación, se puede afirmar que la etapa fenológica
determina la producción de etanol en l/ha para cada genotipo de sorgo. Además, se
observa que la mayor producción de etanol para la mayoría de los genotipos se obtuvo
en la etapa de bota mientras que en la etapa de macollamiento no se registró
producción (ver figura 10).
41
VOLUMEN DE ETANOL EN l/ha
450
400
350
300
250
200
150
100
50
0
MACOLLAMIENTO
BOTA
MASOSO-LECHOSO
GENOTIPOS
Figura 10. Producción de etanol en l/ha de la interacción etapa fenológica-genotipo.
El valor del coeficiente de variación obtenido fue del 20.20%, indicando que la
desviación de los puntos con relación a la media general se considera aceptables, por
lo tanto se puede afirmar que el ensayo fue bien manejado y la información es confiable
y representativa de la investigación en ese sitio.
Partiendo de que se obtuvo una alta significancia estadística para etapas fenológicas,
genotipos y la interacción, se procedió a realizar la prueba de medias de cuadrados
mínimos para la interacción etapas fenológicas-genotipos con el propósito de establecer
diferencias reales entre tratamientos.
En el cuadro 9, se presentan los resultados de la prueba de medias de cuadrados
mínimos donde se integró una distribución de 11 grupos, sobresaliendo el grupo A
integrado por los tratamientos 8 (Bota-ICTA-CL936 con una producción promedio de
etanol de 406 l/ha) y el tratamiento 10 (Bota-ICTA-MICTLAN con producción de 383
l/ha) quienes estadísticamente son diferentes al resto.
Los seis genotipos evaluados en la etapa de macollamiento integraron el último grupo
donde no se registró producción de etanol en esta evaluación.
42
Cuadro 9. Test DGC
Etapa fenológica
Genotipo
Etanol en
l/ha
Grupos
Bota
ICTA - CL936
406 A
Bota
ICTA - MICTLAN 383 A
Bota
ICTA – RC
335
B
Masoso Lechoso
ICTA - MICTLAN 316
B
Bota
SUGAR DRIP
298
B
Masoso Lechoso
ICTA - CL936
274
C
Masoso Lechoso
ICTA – RC
254
C
Masoso Lechoso
SUGAR DRIP
245
C
Masoso Lechoso
ICTA - CL947
218
D
Bota
ICTA - CL929
179
D
Bota
ICTA - CL947
177
D
Masoso Lechoso
ICTA - CL929
71
E
Macollamiento
ICTA - CL929
0
F
Macollamiento
ICTA - CL936
0
F
Macollamiento
ICTA - CL947
0
F
Macollamiento
ICTA - MICTLAN
0
F
Macollamiento
ICTA – RC
0
F
Macollamiento
SUGAR DRIP
0
F
Letras en común indican que no existe significancia y letras distintas indican diferencias
significativas (p > 0.05).
La producción de etanol obtenida en esta investigación con sorgos doble propósito
registró valores bajos en comparación con la producción de etanol en sorgos dulces y
caña de azúcar (ver cuadro 10), lo cual se puede explicar con base a lo expuesto por
Rolz (2013), quien indica que los genotipos de sorgo dulce generan gran concentración
de carbohidratos formados en el proceso de fotosíntesis los cuales son transformados
en azúcares y almacenados en el tallo, Rolz (2013) además menciona que en estos
sorgos la etapa fenológica de masoso-lechoso presenta la mayor concentración
azúcares en el tallo debido a que no son genotipos productores de semilla, y por esto
no existe gran translocación de azúcares para el llenado de éstas, lo cual explica el por
qué es posible extraer dicho jugo para producción de etanol.
43
Rolz (2013), señala que los sorgos de doble propósito (forraje y grano) evaluados en
este estudio (ICTA – CL929, ICTA – CL936, ICTA – CL947, ICTA – MICTLAN e ICTA –
RC) también poseen la característica de almacenar la mayor parte de los azúcares
producidos durante el proceso fotosintético en el tallo, pero debido a su genética, la
capacidad productora de azúcares es mucho menor que la de lo sorgos de tipo
azucareros o sorgos dulces; no obstante la mayor concentración de estos azúcares se
alcanza en la etapa de bota (ver cuadro 9).
Cuadro 10. Volúmenes de etanol en l/ha producidos por sorgo dulce y caña de azúcar.
Producción etanol
Etapa Fenológica
Genotipo
Masoso-lechoso
81E
2794
Rolz, 2011
Masoso-lechoso
Top 26-6
2851
Rolz, 2011
Masoso-lechoso
Umbrella
1322
Rolz, 2011
Masoso-lechoso
Sugar Drip
2024
Rolz, 2011
Masoso-lechoso
Dale
2952.5
Rolz, 2011
Masoso-lechoso
Della
1807
Rolz, 2011
-----------
Caña de azúcar
2967
Rolz, 2011
l/ha
Fuente
Rolz (2013)
7.2
ANÁLISIS ECONÓMICO
Los costos de producción del sorgo para cada genotipo y cada etapa fenológica
aunado al costo de procesamiento del etanol resultaron mucho más altos que los
ingresos obtenidos por la venta del material vegetativo obtenido como residuo en el
procesamiento para obtención del jugo fermentable para etanol y el ingreso por venta
de etanol en el mercado actual (valor del mercado internacional), el mejor rendimiento
promedio (etapa fenológica de bota) presentó pérdida del 58.43% de la inversión total;
en las etapas de macollamiento y masoso lechoso las pérdidas fueron 79.81% y
80.37% respectivamente (ver figura 11 y anexos cuadro 13).
44
0.00%
-10.00%
ICTA MICTLAN
ICTA RC
ICTA CL936
ICTA 929
ICTA 947
SUGAR DRIP
-20.00%
-30.00%
-40.00%
-50.00%
-60.00%
-70.00%
-80.00%
-90.00%
Macollamiento
Bota
Masoso lechoso
Figura 11. Rentabilidad en la producción de etanol en l/ha por etapa fenológica y
genotipo.
Partiendo del análisis económico aplicado a la producción de etanol en cada etapa
fenológica para los seis genotipos evaluados, se determinó que ninguno de los
tratamientos presentó una relación beneficio/costo igual o mayor a uno, indicando que
económicamente no se generó ganancia alguna utilizando procedimiento rudimentarios
de extracción de jugo (ver figura 12 y anexos cuadros 10, 11 y 12).
45
Q0.60
Q0.50
Q0.40
Macollamiento
Q0.30
Bota
Q0.20
Masoso lechoso
Q0.10
Q0.00
ICTA
MICTLAN
ICTA RC
ICTA CL936
ICTA 929
ICTA 947 SUGAR DRIP
Figura 12. Relación beneficio/costo en la producción de etanol en l/ha por etapa
fenológica y genotipo.
46
8.
CONCLUSIONES
De acuerdo a los resultados de este estudio, los seis genotipos de sorgo de forraje y
grano únicamente producen jugos fermentables capaces de producir etanol en
las
etapas de bota y masoso lechoso no así en la de macollamiento.
La mayor concentración de azúcares fermentables en los sorgos de ciclo corto de
forraje y grano se obtuvo en la etapa fenológica de bota y los mejores tratamientos en
dicha etapa fueron ICTA-CL936 con 406 l/ha e ICTA MICTLAN con 383 l/ha.
Bajo la condiciones específicas de este estudio, no existe rentabilidad alguna en la
producción de etanol a partir de los genotipos y etapas evaluadas utilizando
procedimientos rudimentarios (trapiches rurales) para la extracción del jugo, ya que se
reflejó una pérdida promedio en etapas fenológicas de macollamiento 79.81%, 58.43%
en bota y 80.37% en masoso-lechoso sobre el costo total de producción.
47
9.
RECOMENDACIONES
Con base en los resultados obtenidos en esta investigación se considera pertinente
proponer la evaluación de los genotipos ICTA-CL936 e ICTA-MICTLAN en etapa de
bota y considerar incluir los mejores genotipos en producción de etanol evaluados por
Rolz sometiendo estos genotipos a otras metodologías en el proceso de extracción de
jugos fermentables y destilación de los mismos.
48
10.
REFERENCIAS BIBLIOGRÁFICAS
ACR (2010). Etanol (en línea). Guatemala. Consulta 06 de julio de 2011. Disponible en
http://www.acrguatemala.com/etanol.shtml
Aguirre, J. (1995). Análisis financieros y estadísticos. México. 134p.
Alvarado, A. (2008). Estudio de prefactibilidad para el establecimiento de una planta de
producción de bioetanol, a partir de los tallos de sorgo dulce en el municipio de
Camotán, departamento de Chiquimula. Tesis Ing. Químico, Chiquimula,
Guatemala USAC. 159p.
Beña, J. (2009). Aplicaciones de los alcoholes (en línea). Consulta 23 de octubre de
2011. Disponible en http://knol.google.com/k/aplicaciones-de-los-alcoholes#
Cargil, J. (1999). Insumos Agropecuarios (en línea). Cargil, Argentina. Consulta 07 de
julio de 2010. Disponible en http://www.viarural.com.ar/viarural.com.ar
Cargil, J. (2010). Agricultura, Origen del Cultivo del Sorgo (en línea). Argentina.
Consulta
10
de
septiembre
2011.
Disponible
en
http://www.agrobit.com/Info_tecnica/agricultura/sorgo/AG_000009sg.htm
Compton, P. (1990). Instituto Internacional para la Investigación en Cultivos para los
Trópicos semi-áridos, India. pp 3-90.
Di Rienzo, J.A.; Guzmán A.W.; Casanoves F. (2002). A Multiple Comparisons Method
based on the Distribution of the Root Node Distance of a Binary Tree. Journal of
Agricultural, Biological, and Environment Statistics, 7(2): 1-14.
Escuelapedia (2013). Destilación Fraccionada (en línea). Consultados 06 de febrero
2013. Disponible en http://www.escuelapedia.com/
49
FAO (2006). Costo y precio para etanol combustible en América Central (en línea).
Consulta 06 de diciembre 2011. Disponible en
http://www.eclac.org/publicaciones/xml/9/24459/L716.pdf
FAO (2007). La economía del sorgo y del mijo en el mundo: hechos, tendencias y
perspectivas (en línea). Consulta 16 de octubre 2011. Disponible en
http://www.fao.org/docrep/w1808s/w1808s04.htm#TopOfPage
FENALCE (2011). Sorgo (en línea). Consulta 16 de octubre 2011. Disponible
http://www.fenalce.org/pagina.php?p_a=47
Gómez, F. (1991). Comportamiento de sorgos graníferos. Reporte Técnico.
Escuela Agrícola Panamericana, El Zamorano, Honduras. pp 123
ICRISAT, (2008). Develops sweet sorghum for ethanol production (en línea). Consulta
23 de agosto 2011. Disponible en http://www.ibercib.es/info_noticia/icrisat-sweetsorghum-could-be-the-miracle-biofuel-crop.aspx
INE (2008). Censo Agropecuario Nacional (en línea), actualización 28/03/2011.
Consulta 19 de octubre 2011. Disponible en
http://www.ine.gob.gt/np/biblioteca/index.htm
La Agence France-Presse (AFP, 2008). Sorgo, un cultivo milagroso para alimentación y
biocombustibles (en línea). Consulta 21 de octubre 2011. Disponible en
http://biodiesel.com.ar/809/sorgo-un-cultivo-milagroso-para-alimentacion-ybiocombustibles.
MAG, RUTA, DFID, Fortalece, IICA, IFAD, IFPRI (2004). Estrategias de crecimiento
rural y reducción de la pobreza. IICA, El Salvador, 45, 46p.
50
Manual del Sorgo (2001). Requerimientos nutricionales del sorgo (en línea). Consulta
23 de octubre 2011. Disponible en http://www.sorgoenelsur.com/#!libros-ymanuales/c1hf5
Ministerio de Agricultura y Ganadería (MAGA, 2008). Potencial para la expansión del
cultivo de sorgo. MAGA, Guatemala, 55, 56p.
Nájera, L (2002). Evaluación de cuatro variedades de sorgo fotosensitivos en el sistema
maíz-sorgo (Zea mays + SORGHUM BICOLOR) región seca de Sacapulas,
Quiché. Tesis Ing. Agrónomo, Guatemala, Guatemala URL. 15, 16, 33, 34 p.
Negrillo, G (2011). Proyecto etanol (en línea). Consulta 15 de octubre 2011. Disponible
en http://www.monografias.com/trabajos59/proyecto-etanol/proyecto-etanol.shtml
ONU (2010). El incremento mundial en la demanda de etanol y la pobreza en Brasil (en
línea). CEPAL. Consulta 06 de julio 2011. Disponible en
http://www.eclac.cl/cgibin/getProd.asp?xml=/publicaciones/xml/4/42114/P42114.x
ml&xsl=/comercio/tpl/p9f.xsl&base=/comercio/tpl/top-bottom.xsl
Ramírez, J (2011). Validación de sorgos forrajeros “BMR” en el suroriente del país.
ICTA, Guatemala. 1p.
Renewable Fuel Association (2006). Industry Statistics Annual World Ethanol
Production by Country (en línea). Consulta 15 de octubre 2011. Disponible en
http://www.ethanolrfa.org/industry/statistics/#E
Rolz, C. (2011). Evaluación de variedades de sorgo dulce (Sorghum bicolor L. Moench)
para la producción de etanol. Guatemala, Universidad del Valle de Guatemala.
39, 40, 42 y 50 p.
Rolz, C. (2013). Características fenológicas y genéticas del sorgo dulce y el sorgo
doble propósito (entrevista). Guatemala, Universidad del Valle de Guatemala.
51
Sitún, M (2005). Investigación Agrícola, Editorial ENCA, Segunda impresión,
Guatemala, Guatemala. 25,26,30 y 31p.
Tsakiridou, I. (2010). La línea de producción de azúcares fermentados a los efectos de
la producción de bio-etanol mediante el procesamiento de sorgo dulce (en línea).
Consulta 23 de octubre 2011.Disponible en http://esse
community.eu/es/articles/the-production-line-of-fermented-sugars-for-the
purposes-of-bio-ethanol-production-by-processing-sweet-sorghum/
Zambrana, A. (2008). Lugares turísticos de Jutiapa y Guatemala (en línea). Consulta 16
de octubre de 2011. Disponible enhttp://lugaresturisticosdejutiapa.blogspot.com/
52
11.
ANEXOS
Figura 14. Mecanización de área para
establecimiento de ensayo.
Figura 13. Establecimiento de ensayo.
Figura 15. Emergencia de genotipos de sorgo forraje y grano.
53
Figura 16. Etapa fenológica de macollamiento.
Figura 17. Colecta de muestras en etapa de macollamiento.
54
Figura 19. Molienda para extracción de jugo.
Figura 18. Bagazo residual de caña de
sorgo.
Figura 21. Fermentación de jugo de caña Figura 20. Proceso de destilación fraccionada.
de sorgo.
55
Figura 22. Etapa fenológica de Bota.
Figura 23. Etapa fenológica masoso-lechoso.
56
Cuadro 11. Datos de rendimiento neto de etanol en l/ha obtenidos en cada etapa
fenológica, bloque y genotipo.
Etanol en l/ha
Bloque
Etapa fenológica
Genotipo
0,00
I
Macollamiento
ICTA-CL929
0,00
I
Macollamiento
ICTA-CL936
0,00
I
Macollamiento
ICTA-CL 947
0,00
I
Macollamiento
ICTA - MICTLAN
0,00
I
Macollamiento
ICTA-RC
0,00
I
Macollamiento
SUGAR DRIP
178,34
I
Bota
ICTA-CL929
422,61
I
Bota
ICTA-CL936
146,96
I
Bota
ICTA-CL 947
328,70
I
Bota
ICTA - MICTLAN
315,22
I
Bota
ICTA-RC
332,88
I
Bota
SUGAR DRIP
65,57
I
Masoso - Lechoso
ICTA-CL929
307,00
I
Masoso - Lechoso
ICTA-CL936
170,43
I
Masoso - Lechoso
ICTA-CL 947
332,74
I
Masoso - Lechoso
ICTA - MICTLAN
272,17
I
Masoso - Lechoso
ICTA-RC
220,42
I
Masoso - Lechoso
SUGAR DRIP
0,00
II
Macollamiento
ICTA-CL929
0,00
II
Macollamiento
ICTA-CL936
0,00
II
Macollamiento
ICTA-CL 947
0,00
II
Macollamiento
ICTA - MICTLAN
0,00
II
Macollamiento
ICTA-RC
0,00
II
Macollamiento
SUGAR DRIP
193,48
II
Bota
ICTA-CL929
408,26
II
Bota
ICTA-CL936
196,20
II
Bota
ICTA-CL 947
330,65
II
Bota
ICTA - MICTLAN
383,48
II
Bota
ICTA-RC
312,20
II
Bota
SUGAR DRIP
62,83
II
Masoso - Lechoso
ICTA-CL929
253,91
II
Masoso - Lechoso
ICTA-CL936
222,28
II
Masoso - Lechoso
ICTA-CL 947
316,75
II
Masoso - Lechoso
ICTA - MICTLAN
279,35
II
Masoso - Lechoso
ICTA-RC
295,92
II
Masoso - Lechoso
SUGAR DRIP
0,00
III
Macollamiento
ICTA-CL929
0,00
III
Macollamiento
ICTA-CL936
0,00
III
Macollamiento
ICTA-CL 947
57
0,00
0,00
0,00
163,91
405,30
208,37
334,81
260,87
273,91
73,08
220,11
242,80
283,04
244,57
219,57
0,00
0,00
0,00
0,00
0,00
0,00
178,29
387,39
156,74
537,31
380,43
274,67
83,87
316,75
235,60
332,04
220,11
244,57
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
IV
Macollamiento
Macollamiento
Macollamiento
Bota
Bota
Bota
Bota
Bota
Bota
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Macollamiento
Macollamiento
Macollamiento
Macollamiento
Macollamiento
Macollamiento
Bota
Bota
Bota
Bota
Bota
Bota
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
Masoso - Lechoso
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
ICTA-CL929
ICTA-CL936
ICTA-CL 947
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
ICTA-CL929
ICTA-CL936
ICTA-CL 947
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
ICTA-CL929
ICTA-CL936
ICTA-CL 947
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
ICTA-CL929
ICTA-CL936
ICTA-CL 947
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
ICTA-CL929
ICTA-CL936
ICTA-CL 947
ICTA - MICTLAN
ICTA-RC
SUGAR DRIP
58
Cuadro 12. Relación beneficio/costo en etapa fenológica de macollamiento.
ETAPA
ICTA
FENOLÓGICA
MICTLAN
Total
Q1,951.63
Ingresos
Total
Q10,545.18
Egresos
Q0.19
ICTA RC
ICTA CL936
ICTA 929
ICTA 947
SUGAR DRIP
Q1,889.13
Q1,943.48
Q2,360.58
Q2,133.70
Q2,025.00
Q10,996.30
Q10,604.11
Q9,827.46
Q9,231.44
Q10,138.94
Q0.17
Q0.18
Q0.24
Q0.23
Q0.20
Cuadro 13. Relación beneficio/costo en etapa fenológica de bota.
ETAPA
FENOLÓGICA
ICTA
MICTLAN
ICTA RC
ICTA CL936
ICTA 929
ICTA 947
SUGAR DRIP
Total Ingresos
Q5,267.16
Q4,632.18
Q5,321.34
Q3,542.86
Q3,397.40
Q4,057.48
Total Egresos
Q10,408.02
Q0.51
Q10,612.57
Q0.44
Q10,540.23
Q0.50
Q10,375.59
Q0.34
Q10,497.82
Q0.32
Q10,623.43
Q0.38
Cuadro 14. Relación beneficio/costo en etapa fenológica de masoso lechoso.
ETAPA
FENOLÓGICA
ICTA
MICTLAN
ICTA RC
ICTA CL936
ICTA 929
ICTA 947
SUGAR DRIP
Total Ingresos
Q3,760.37
Q3,069.37
Q3,474.93
Q2,149.44
Q3,042.29
Q3,870.77
Total Egresos
Q17,137.52
Q18,266.00
Q16,605.86
Q13,551.41
Q16,207.64
Q16,463.14
Q0.22
Q0.17
Q0.21
Q0.16
Q0.19
Q0.24
Cuadro 15. Rentabilidad por etapa fenológica.
ETAPA
FENOLÓGICA
ICTA MICTLAN
ICTA RC
ICTA CL936
ICTA 929
ICTA 947
SUGAR DRIP
Macollamiento
-81.49%
-82.82%
-81.67%
-75.98%
-76.89%
-80.03%
Bota
-49.39%
-56.35%
-49.51%
-65.85%
-67.64%
-61.81%
Masoso lechoso
-78.06%
-83.20%
-79.07%
-84.14%
-81.23%
-76.49%
59
Descargar