INTEGRALES INMEDIATAS x n +1 +k n +1 n dx ∫x= 1 dx ∫= x ∫e x ( n ≠ −1) dx ∫ cos x= dx ∫ cos2 x = 2 ⋅ u ′ ( x ) dx =+ e() k u x a() ⋅ u ′ ( x ) dx = + k ln a u x − cos u ( x ) + k ∫ sen u ( x ) ⋅ u ′ ( x ) dx = ∫ cos u ( x ) ⋅ u ′ ( x ) dx =tg u ( x ) + k ∫ sec u ( x ) ⋅ u ′ ( x ) dx =tg u ( x ) + k x= dx tg x + k x − cotg x + k ∫ cosec x dx = 2 − cotg x + k ∫ (1 + cotg x ) dx = 2 1 2 2 ∫ (1 + tg u ( x ) ) ⋅ u ′ ( x ) dx =tg u ( x ) + k 2 1 − cotg u ( x ) + k ∫ sen u ( x ) ⋅ u ′ ( x ) dx = − cotg u ( x ) + k ∫ cosec u ( x ) ⋅ u ′ ( x ) dx = 2 2 − cotg u ( x ) + k ∫ (1 + cotg u ( x ) ) ⋅ u ′ ( x ) dx = 2 u′ ( x ) dx ∫ 1 + u= 2 ( x ) 1 dx arctg x + k ∫ 1+ = x2 ∫ ln | u ( x) | + k tg x + k dx = − cotg x + k 2 u( x) n +1 ∫ cos u ( x ) ⋅ u ′ ( x ) dx = sen u ( x ) + k 2 1 ∫a u( x) [u ( x)]n +1 + k sen x + k tg x k ∫ (1 + tg x ) dx =+ ∫ sen ∫e ax +k ln a − cos x + k ∫ sen x dx = ∫ sec u ′( x) ⋅ dx ∫ u ( x)= ln | x | + k dx= e x + k x dx ∫a= 1 n ∫ [u ( x)] ⋅ u ′( x) dx = 1 dx arcsen x + k = 1 − x2 ∫ arctg u ( x ) + k u′ ( x ) = dx arcsen u ( x ) + k 2 1 − u ( x ) I.E.S. “Miguel de Cervantes” (Granada) – Departamento de Matemáticas – GBG