TABLA INTEGRALES ∫ 1 ∫ 3 ∫ 6 ∫ xm dx = af (x) dx = a ∫ 11 ∫ 14 ∫ 17 ∫ 20 ∫ 23 ∫ 26 ∫ 29 ∫ 32 ∫ 33 ∫ 35 ∫ 36 ∫ 38 f (x) dx, ex dx = ex , si ∫ m ̸= −1 dx = ln(x), x > 0 ∫ x ∫ f (y) dy 7 f (y) dx = dy/dx 4 UTP, Pereira ∫ f m+1 (x) 2 f m (x)f ′ (x) dx = m+1 ∫ ′ f (x) dx 5 = ln[f (x)], f (x) > 0 f (x) ∫ 8 x ∫ 0 dx = c af (x) a>0 10 af (x) f ′ (x) dx = ln(a) ∫ ∫ sen(x) dx = − cos(x), 12 cos(x) dx = sen(x), 13 tan(x) dx = − ln[cos(x)] ∫ ∫ cot(x) dx = ln[sen(x)], 15 df (x) = f (x), 16 sec(x) dx = ln | sec(x) + tan(x)| ∫ ∫ sec2 (x) dx = tan(x), 18 sec(x) tan(x) dx = sec(x), 19 sec2 [f (x)]f ′ (x) dx = tan[f (x)] ∫ ∫ csc2 (x) dx = − cot(x), 21 ln(x) dx = x ln (x) − x 22 csc(x) dx = − ln | csc (x) + cot (x) | ∫ ∫ x − sen(x) cos(x) sen2 (x) dx = 24 csc(x) cot(x) dx = − csc(x) 25 tan2 (x) dx = tan(x) − x 2 ∫ ∫ ( ) √ x + sin (x) cos (x) dx 1 dx −1 x 2 + x2 √ cos2 (x) dx = 27 = tan , 28 = ln + a x 2 2 2 a a a2 + x2 ∫ a +x ∫ (x) √ dx dx 1 dx x − a 2 − a2 √ √ = sen−1 = ln + x , 30 = ln 31 x 2 − a2 a x2 − a2 2a [ x + a a2 − x2 x( )] [ ( )] √ √ √ 1 x 1 x a2 − x2 dx = x a2 − x2 + a2 sen−1 = x a2 − x2 + a2 arctan √ 2 a∫ 2 a2 − x2 ∫ (x) n−1 cos (ax) sen(ax) n − 1 dx 1 √ cosn (ax) dx = + cosn−2 (ax) dx 34 = sec−1 na n a a x x2 − a2 ∫ senn−1 (ax) cos(ax) n − 1 n n−2 sen (ax) dx = − + sen (ax) dx na ∫ n ∫ tann−1 (ax) eax tann (ax) dx = − tann−2 (ax) dx 37 eax cos(bx) dx = 2 [a cos(bx) + b sen(bx)] a(n − 1) a + b2 ax e eax sen(bx) dx = 2 [a sen(bx) − b cos(bx)] NOTA: Agregar la respectiva constante de integración a + b2 ax dx = 9 xm+1 , m +∫1 Por: Fernando Valdés M ©, a , ln(a) si TRIGONOMETRÍA CIRCULAR 5 6 sen2 (x) + cos2 (x) = 1 sen(x + π/2) = cos(x) cos(x + π/2) = sen(x) 2 tan(x) tan(2x) = 1 − tan2 (x) sen(−x) = − sen(x), csc(x) = 1/ sen(x), 7 tan(x) = 8 a sen(x) + b cos(x) = R sen(x + α) 9 a sen(x) + b cos(x) = R cos(x − α) 10 sen−1 (x) + cos−1 (x) = π/2 1 2 3 4 1 + tan2 (x) = sec2 (x) sin(π − x) = sen(x), sen(2x) = 2 sen(x) cos(x) 1 − cos(2x) sen2 (x) = 2 cos(−x) = cos(x) sec(x) = 1/ cos(x) sen(x) cos(x) cos(x) cot(x) = sen(x) √ R = a2 + b2 =⇒ √ R = a2 + b2 =⇒ =⇒ =⇒ tan−1 (x) + cot−1 (x) = π/2 1 1 + cot2 (x) = csc2 (x) sen(π/2 − x) = cos(x) cos(2x) = cos2 (x) − sen2 (x) 1 + cos(2x) cos2 (x) = 2 tan(−x) = − tan(x) cot(x) = 1/ tan(x) b a a tan(α) = b tan−1 (x) + tan−1 (1/x) = π/2 tan(α) = TRIGONOMETRÍA HIPERBÓLICA 3 ex + e−x 2 cosh2 (x) − senh2 (x) = 1 √ senh−1 (x) = ln(x + x2 + 1) 4 senh2 (x) = 1 2 cosh(x) = −1 + cosh(2x) 2 ex − e−x 2 1 − tanh2 (x) = sech2 (x) √ cosh−1 (x) = ln(x + x2 − 1) senh(x) = cosh2 (x) = 1 + cosh(2x) 2 2 senh(x) cosh(x) coth2 (x) − 1 = csch2 (x) ( ) 1 1+x tanh−1 (x) = ln 2 1−x tanh(x) = cosh(2x) = cosh2 (x) + senh2 (x)