EJERCICIO DE ECONOMETRÍA II Especificación e identificabilidad de un modelo multiecuacional GRUPO 3A2 Prof. Rafael de Arce Dado el siguiente modelo multiecuacional: y1i = α 0 + α1 x1i + α 2 x2i + α 3 y3i + u1i y2i = β 0 + β1 x3i + β2 y3i + β 3 x4i + β4 y1i + u2i y 3i = γ 0 + γ 1 x 4i + γ 2 y1i + γ 3 y 2i + γ 4 x1i + γ 5 x2i + γ 6 x3i + u 3i Determine: 1. Qué tipo de modelo multiecuacional tenemos (recursivo, simultáneo o bloque recursivo). 2. La forma matricial de cada una de las ecuaciones para la observación “i” (ecuación h-ésima, donde h=1, h=2 ó h=3). 3. La forma matricial del modelo conjunto para la observación “i”. 4. Identificabilidad de cada una de estas ecuaciones independientemente y del modelo en su conjunto. NOTA: cuando en la matriz A generada para comprobar la identificabilidad de las ecuaciones figura un parámetro alpha, beta o gamma, se entiende que ese valor es distinto de cero.