Polinomios

Anuncio
3
Objetivos
En esta quincena aprenderás a:
• Hallar la expresión en
coeficientes de un polinomio y
operar con ellos.
• Calcular el valor numérico de
un polinomio.
• Reconocer algunas identidades
notables, el cuadrado y el cubo
de un binomio.
• Aplicar la Regla de Ruffini y el
Teorema del Resto.
• Hallar la descomposición
factorial de algunos polinomios.
Polinomios
Antes de empezar
1.Polinomios ...................………………. pág. 38
Grado. Expresión en coeficientes
Valor numérico de un polinomio
2.Operaciones con polinomios .......... pág. 40
Suma, diferencia, producto
División
3.Identidades notables ........…………… pág. 42
(a+b)2
(a-b)2
(a+b)·(a-b)
Potencia de un binomio
4.División por x-a .....................……. pág. 44
Regla de Ruffini
Teorema del Resto
5.Descomposición factorial........……. pág. 46
Factor común xn
Raíces de un polinomio
Ejercicios para practicar
Para saber más
Resumen
Autoevaluación
Actividades para enviar al tutor
MATEMÁTICAS B „
35
36
„ MATEMÁTICAS B
Polinomios
Antes de empezar
Utilidad de los polinomios
Los polinomios no solo están en la base de la informática, en economía los
cálculos de intereses y duración de las hipotecas se realizan con expresiones
polinómicas, así, el capital C a un porcentaje x en 3 años se convierte en
C·(1+x)3 que es el cubo de un binomio.
La medicina y otras ramas de la ciencia avanzan ayudadas de esta herramienta
algebraica. Investiga en la web las utilidades de los polinomios.
MATEMÁTICAS B „
37
Polinomios
1. Polinomios
Grado y coeficientes
El polinomio x3+4x+2 está formado por la suma de
tres monomios: x3, 4x y 2; su grado, o máximo
exponente de x, es 3 y los coeficientes de este
polinomio son 1 0 4 2.
1
0
4
2
es
es
es
es
el
el
el
el
coeficiente
coeficiente
coeficiente
coeficiente
de
de
de
de
grado
grado
grado
grado
3
2
1
0
Se pretende que se identifique
x3+4x+2
con su expresión en coeficientes
1042
Pide a un compañero que memorice una
de estas figuras pero que no diga cuál. Tu
por telepatía la adivinarás.
Pregúntale si la figura escogida está en
cada una de las siguientes tarjetas
SI =1
Valor numérico
Al sustituir la variable x de un polinomio por un
número se obtiene el valor numérico del polinomio.
Así el valor numérico en 3 del polinomio
P(x)=2x3-x+4
NO =0
es P(3)= 2·33-3+4=55
Puedes utilizar la calculadora para
hallar el valor numérico de un
polinomio. Recuerda que para realizar
la potencia 74 se utiliza la tecla xy ,
7 xy 4=
Æ2041
El valor numérico en 10 del polinomio de coeficientes
2 4 6 es 246 esta coincidencia del valor en 10 con
los coeficientes se debe a que nuestro sistema es de
base 10 y 246 es igual a 2·102+4·10+6.
NO =0
SI =1
Si el número 347 está expresado en base 8, su
expresión en nuestro sistema usual, el decimal, es
3·82+4·8+7=231 que es el valor en 8 del polinomio
de coeficientes 3 4 7.
En el sistema binario las cifras empleadas son 0 y 1
aquí el valor decimal de 1000110 en binario es
1·2 +1·2 +1·2=70
6
2
La cantidad de color se suele expresar en sistema
hexadecimal o de base 16, este sistema tiene 16 cifras
0 1 2 3 4 5 6 7 8 9, a=10, b=11, c=12, d=13, e=14, f=15 y
en este sistema la cantidad 38 de color azul equivale a
3·16+8=56 en decimal.
38
„ MATEMÁTICAS B
NO =0
Con cada respuesta afirmativa escribe 1,
con la negativa un 0, para el resultado
10010, la figura es la 1·24+1·2=18, el
círculo verde. Solo hay que calcular el
valor
en
2
del
polinomio
cuyos
coeficientes se obtienen con 1 o 0, con Sí
o No.
Polinomios
EJERCICIOS resueltos
1.
Halla la expresión en coeficientes de los polinomios P(x)=5x2+2x+1; Q(x)=x3-3x;
R(x)=0,5x2 –4
Las respectivas expresiones en coeficientes son
P(x)Æ 5 2 1;
2.
Q(x)Æ 1 0 -3 0;
Escribe las expresiones polinómicas de los polinomios cuya expresión en coeficientes
es:
P(x)Æ 2 1 3 -1; Q(x)Æ 1 3 0 0; R(x)Æ 3/4 -1 0 2
P(x)=2x3+x2+3x-1;
3.
R(x)Æ 0,5 0 -4
Q(x)=x3+3x2;
R(x)=3/4 x3-x2+2
Completa la tabla:
EXPRESIÓN POLINÓMICA
3
5
-2x +x -3x
EXPRESIÓN EN COEFICIENTES
GRADO
2
x2/3-1
-2 π 0 0
-2 1,3 0 -1/7
3- 2 x2
Estos polinomios son polinomios en una variable, x, con coeficientes en el cuerpo de los
números reales. El conjunto de estos polinomios se designa por lR[x].
POLINÓMICA
COEFICIENTES
GRADO
-2x3+x5-3x2
1 0 -2 -3 0 0
5
x2/3-1
1/3 0 -1
2
π x2 - 2x3
3
2
-2x +1,3x -1/7
3- 2 x
4.
2
-2
π
3
0 0
-2 1,3 0 -1/7
3
- 2 0 3
2
Halla el valor numérico en 1, 0 y –2 de los polinomios del ejercicio anterior
POLINOMIO
Valor en 1
Valor en 0
Valor en -2
-4
0
-28
-2/3
-1
1/3
-2+π
0
16+4
-2x +1,3x -1/7
-59/70
-1/7
737/35
- 2 x2+3
- 2 +3
3
-4 2 +3
5
3
2
x -2x -3x
2
x /3-1
- 2x +π x
3
3
2
2
π
MATEMÁTICAS B „
39
Polinomios
2. Operaciones
Para operar con polinomios puede resultar cómodo
pasar a sus expresiones en coeficientes, operar con
estas y dar el resultado en forma polinómica.
Diferencia
Suma
P(x)=3x3+x2+5x+4
Q(x)=3x3+3x+2
P(x)=8x4+x2-5x-4
Q(x)=3x3+x2-3x-2
Se suman los coeficientes de igual grado:
P(x)Æ
8
Q(x)Æ
P(x)+Q(x)Æ 8
0
3
3
1
1
2
-5
-3
-8
-4
-2
-6
P(x)+Q(x)=8x4+3x3+2x2-8x-6
Se restan los
igual grado:
coeficientes
P(x)Æ
3
1
Q(x)Æ
3
0
P(x)-Q(x)Æ
1
P(x)-Q(x)=x2+2x+2
5
3
2
de
4
2
2
Observa el grado del resultado:
gr(P ± Q) ≤ max(gr(P), gr(Q))
Multiplicación
3
P(x)=3x +5x-4
Q(x)=x2-x+2
Se multiplican coeficiente a coeficiente:
P(x)Æ
Q(x)Æ
0
5 -4
1 -1 2
6 0 10 -8
-3 0 -5
4
3 0 5 -4
P(x)·Q(x)Æ3 -3 11 -9 14 -8
P(x)·Q(x)=3x5-3x4+11x3-9x2+14x-8
gr(P·Q)=gr(P)+gr(Q)
3
Dividir dos polinomios D(x),
dividendo, entre d(x), divisor, es
encontrar un cociente c(x) y un
resto r(x) que cumplan
•
•
División
gr(c)=gr(D)-gr(d)
P(x)=3x3-x2+5x-4
Q(x)=x2-3x+2
3 -1 5 -4
| 1 -3
-3 9 -6
3 8
8 -1 -4
-8 24 -16
23 -20
Cociente=3x+8 Resto=23x-20
P(x)=12x3+6x-5
Q(x)=4x2+3
12 0 6 -5
| 4
-12 0 -9
3
0 -3 -5
0
0
-3 -5
Cociente=3x
Resto=-3x-5
40
„ MATEMÁTICAS B
0
0
Dividendo=divisor·cociente +resto
grado de r(x)<grado de d(x)
2 .
Un ejemplo operando con la variable,
comenzamos dividiendo las potencias de
mayor grado
continuamos
3
.
Polinomios
EJERCICIOS resueltos
5.
Halla P(x)+Q(x) y 2·P(x)-Q(x)
P(x)=x4+x3+3x
P(x)Æ
Q(x)Æ
P(x)+Q(x)Æ
1
1
Q(x)=2x3+x2-4x+5
1
2
3
0 3
1 -4
1 -1
0
5
5
P(x)+Q(x)=x4+3x3+x2-x+5
2·P(x)Æ
Q(x)Æ
2·P(x)-Q(x) Æ
2
2
2
2
0
0 6 0
1 -4 5
-1 10 -5
2·P(x)-Q(x)=2x4-x2+10x-5
6.
¿Cuál es el grado del cociente al dividir un polinomio de grado 5 entre otro de grado
2?
El grado del cociente es el grado del dividendo, 5, menos el del divisor, 2, luego 3.
7.
Multiplica P(x)=x3+6x2+4x-6 por Q(x)= x3+3x2+5x-2
P(x)·(Q(x)=x6+9x5+27x4+34x3-10x2-38x+12
8.
Haz en cada caso la división de P(x) entre Q(x)
7
65
X−
8
64
MATEMÁTICAS B „
41
Polinomios
3. Identidades notables
Suma al cuadrado
Diferencia al cuadrado
(a+b)2=a2+2·a·b+b2
(a-b)2=a2-2·a·b+b2
Demostración
a
b
x a
b
ab b2
a2 ab
a2+2ab+ b2
Demostración
a -b
x a -b
-ab b2
2
a -ab
a2-2ab+ b2
La suma al cuadrado es
igual a
cuadrado del 10
+doble del 10 por el 20
+cuadrado del 20
La diferencia al cuadrado
es igual a
cuadrado del 10
+doble del 10 por el 20
+cuadrado del 20
Suma por diferencia
(a+b)· (a-b)= a2 - b2
Demostración
a b
La suma por diferencia
x a -b
es igual a la diferencia
-ab -b2
2
a ab
de cuadrados.
a2
-b2
El cubo de un binomio
(a+b)3=a3+3· a 2· b +3· a · b 2+ b 3
Esta igualdad se deduce fácilmente al observar en la
figura las 8 piezas en que descompone el cubo de
lado (a+b)
r
42
„ MATEMÁTICAS B
Cada término de este triángulo se obtiene
sumando los dos superiores.
Las filas de este triángulo son los
coeficientes de las potencias de (x+1)
Así la tercera fila 1 3 3 1 son los
coeficientes de (x+1)3
Polinomios
EJERCICIOS resueltos
9.
Observa cómo se aplican las identidades notables
Para desarrollar (x+3)2
Cuadrado del 10Æx2 Doble del 10 por el 20Æ2·x·3=6x Cuadrado del 20Æ32=9
por tanto (x+3)2=x2+6x+9
Para descomponer el polinomio x2-10x+25,
se intenta ver uno de los miembros de una identidad notable,
al ser los signos de los coeficientes alternativos, + - +, se compara con la
diferencia al cuadrado.
25=52 y 10x=doble de x por 5Æ x2-10x+25=(x-5)2
Para descomponer el polinomio 4x2-25
se intenta ver si es una identidad notable, al ser 0 el coeficiente de grado uno se
compara con la diferencia de cuadrados
4x2=(2x)2; 25=52 Æ 4x2-25=(2x+5)·(2x-5)
10.
11.
Desarrolla las siguientes expresiones
Expresión
(x+4)2
Solución
x2+8x+16
Expresión
(x-2)2
Solución
x2-4x+4
(4x+3)2
16x2+24x+9
(3-2x)2
4 x2-12x+9
(2x/3+5)2
4x2/9+20x/3+25
(x/2-3)2
x2/4-3x+9
( 2 x+1)2
2x2+2 2 x+1
(x- 3 )2
x2-2 3 x+3
Halla la expresión en coeficientes de los siguientes productos
Productos
(x+4)·(x-4)
(2x+5)· (2x-5)
12.
Solución
x2-16; 1 0 -16
4 0 -25
Productos
(x-1/2)·(x+1/2)
(3+ 2 x)·(3- 2 x)
Solución
1 0 -1/4
-2 0 9
Resuelve aplicando las identidades notables la ecuación x2+10x+16=0
Se compara la primera parte, x2+10x, con una identidad notable, con (x+5)2
Pues (x+5)2= x2+10x+25, por tanto, x2+10x=(x+5)2-25
y el primer miembro de la ecuación es x2+10x+16=(x+5)2-25+16,
(x+5)2-9=0Æ
13.
(x+5)2-32=0Æ
Calcula el cubo de un binomio
Binomio al cubo
(x+2)3
(2x-3)3
14.
(x+5+3)·(x+5-3)=0 Æ Soluciones x=-8 y x=-2
Solución
x3+6x2+12x+8
8x3-36x2+18x-27
Binomio al cubo
(x-1)3
(3+x/3)3
Solución
x3-3x2+3x-1
x3/27+x2+9x+27
Halla la fila 5 del triángulo de Pascal, y calcula (x+1)5
La fila 5 del triángulo es 1 5 10 10 5
por
tanto, (x+1)5=x5+5x4+10x3+10x2+5x+1
1, que son los coeficientes de (x+1)5,
MATEMÁTICAS B „
43
Polinomios
4. División por x-a
Regla de Ruffini
La regla de Ruffini es útil para dividir polinomios entre
x-a.
Observa la división y como se realiza la
Regla de Ruffini paso a paso
En el ejemplo de la derecha se divide 3x3-5x2+1 entre
x-2, obteniendo de cociente 3x2+x+2 y de resto 5.
La regla explicada para a=2, vale también cuando a
es un número racional o real, en el siguiente ejemplo
se toma a=-3/2 y representa la división de
4x2+5x+2 entre x+3/2
-3/2
4
5
2
-6
3/2
4
-1 7/2 resto
cociente
4x-1
Teorema del resto
Ejemplo
Dividendo=x4-2; divisor=x-4
Haz la división en tu cuaderno
Resulta, cociente=x3+4x2+16x+64 y resto=254
Escribe la igualdad Dividendo = divisor·cociente+resto
x4-2=(x-4)·( x3+4x2+16x+64)+254
Sustituye la x por 4
44-2=(4-4)·( 43+4·42+16·4+64)+254
44-2=0·( 43+4·42+16·4+64)+254
44-2=0·(_______________)+254
44-2=0+254
Conclusión, al sustituir la x por 4 en el dividendo
nos da el resto de la división entre x-4
Se vuelve
obteniendo
a
multiplicar
y
a
sumar
Teorema del resto. Para calcular el resto de la
división de un polinomio P(x) entre x-a basta sustituir
en P(x) la x por a.
Recuerda
P(x) es divisible entre x-a <=> P(a)=0
A menudo, para hallar el resto de una división entre
x-a, resulta más cómodo aplicar la regla de Ruffini
que sustituir la x. El teorema del resto nos sirve para
resolver problemas como el siguiente, hallar m para
que el polinomio
P(x)=x3+mx-4
sea divisible por x-2, que se resuelve sustituyendo la
x por 2, igualando a 0 y despejando m, así m=-2.
44
„ MATEMÁTICAS B
Con la calculadora
Para calcular el valor numérico de un
polinomio con la calculadora, valor de
P(x)= 3x3-5x2+1 en x=2
Podemos aplicar la regla de Ruffini,
para
ello
teclea
la
siguiente
secuencia:
2 M in x 3
→3
-5 =
→1
x MR + 0=
→2
x MR + 1 =5
Obtenemos: 5 que es el resto de
dividir P(x) para x-2 y el valor
numérico en x=2.
De paso han ido saliendo los
coeficientes del cociente cada vez
que se pulsaba =.
Polinomios
EJERCICIOS resueltos
Aplica la regla de Ruffini para dividir P(x)=x3+5x2-2x+1, Q(x)=2x4-5 y
R(x)=x3-4x+3x2 entre x-3
15.
1
3)
5
-2
1
2
3 24 66
1
3)
16.
2
-5
1
18 54 162
6
Resto 157
-4
0
3 18 42
1
2
Resto 67
3
3)
18 54 157
3
Cociente 2x +6x +18x+54
6 14 42
Cociente x2+6x+14
Resto 42
Aplica la regla de Ruffini para dividir P(x)=x3+3x2-2x+1, Q(x)=x4-2 y
R(x)=x3-4x2-x entre x+1
-1)
1
3
-2
1
-1 -2
4
2
5
-4
1
-1)
1
2
0
0
0
-2
-1
1
-1
1
-1
1
-1
-1
3
1
-1)
1
2
-4 -1
0
-1
5
-4
-5
4
-4
2
Cociente x +2x-4
Cociente x -x +x-1
Cociente x -5x+4
Resto 5
Resto -1
Resto -4
Aplica la regla de Ruffini para dividir P(x)=3x3+5x2-2x+1 y Q(x)=6x4-2 y
entre x+2/3
3 5 -2
-2/3)
1
-2 -2
3 3 -4
8/3
11/3
Cociente 3x2+3x-4
Resto 11/3
18.
0
Cociente x +8x+22
1
17.
0
6
8 22 67
2
0
6 0
-2/3)
0
0
-2
-4 8/3 -16/9
32/27
6 -4 8/3 -16/9
-22/27
Cociente 6x3-4x2+
8 16
x3
9
Resto –22/27
Si el valor numérico de un polinomio en 2 es igual a 3 y el cociente de su división de
entre x-2 es x ¿Sabes de que polinomio se trata?
Dividendo = divisor·cociente +resto, el divisor es x-2, el cociente x y el resto 3, por
tanto el polinomio es x2-2x+3
19.
Halla m para que mx2+2x-3 sea divisible entre x+1
El polinomio será divisible entre x+1 si su valor en -1 es 0, luego ha de ser
m-2-3=0, es decir, m=5
20.
¿Existe algún valor de m para que el polinomio x3+mx2-2mx+5 sea divisible por
x-2?
Por el teorema del resto basta resolver la ecuación 23+m·22-2m·2+5=0, lo que da
una igualdad imposible 13=0, por tanto no hay ningún valor de m para el cual el
polinomio sea divisible por x-2
MATEMÁTICAS B „
45
Polinomios
5. Descomposición factorial
Sacar factor común una potencia de x
Se llaman divisores impropios de un polinomio P(x),
con coeficientes en IR, a los números reales y a los
polinomios obtenidos al multiplicar P(x) por un
número real.
Los primos de IR[x] son los polinomios de
grado uno y los polinomios de grado dos,
ax2+bx+c, con b2-4ac<0
Un polinomio es primo si no tiene divisores propios y
su grado es mayor que cero (los polinomios de grado
cero se llaman unidades o invertibles porque tienen
inverso).
El primer paso para descomponer un polinomio en
factores primos es sacar factor común una potencia
de x, cuando sea posible, esto se explica en la
animación de la derecha.
Ejemplos de descomposición factorial
x5-5x4+6x3=x3·(x2-5x+6)=x3·(x-2)·(x-3)
Se ha sacado factor común x3 de todos los sumandos o
monomios, para el segundo paso se ha resuelto la
ecuación de segundo grado x2-5x+6=0, pues según el
teorema del resto, x2-5x+6 es divisible por (x-a) si
a2-5a+6 vale cero, luego a es solución de la ecuación
x2-5x+6=0
x2-6x+9=(x-3)2 Se ha aplicado una identidad notable
para descomponerlo.
x3-1=(x-1)·(x2+x+1) La ecuación x2+x+1=0 no tiene
solución real, luego el polinomio es primo.
2x2+3x+1=2·(x+1)·(x+1/2) Las soluciones de la
ecuación 2x2+3x+1=0 son -1 y -1/2. Hay que tener
cuidado, en factorizaciones de este tipo, de no olvidar
el factor de x2.
Raíces de un polinomio
Si x-a es un divisor del polinomio P(x), se dice que a
es raíz de P(x), por el teorema del resto sabemos
que esto equivale a decir que P(a)=0.
P(x)=pnxn+pn-1xn-1+...+p1x+p0 y a raíz de P(x),
pnan+pn-1an-1+...+p1a+p0=0,
y despejando p0
p0=-pnan-pn-1an-1-...-p1a
Por tanto, si los coeficientes de P(x) son números
enteros y a también, p0 es múltiplo de a.
Las raíces no nulas de un polinomio con
coeficientes enteros, son divisores del
coeficiente de menor grado del polinomio.
La descomposición de un polinomio de tercer grado
con raíces 4, 1 y -2 será a·(x-4)·(x-1)·(x+2).
Se llama multiplicidad de una raíz al número de
veces que aparece en la descomposición.
46
„ MATEMÁTICAS B
Descomposición factorial de
x4-15x2+10x+24
Las posibles raíces racionales de este
polinomio son los divisores de 24
Con la regla de Ruffini vamos viendo qué
divisores son raíces
1 0 -15 10 24
-1)
-1
1
14 -24
_______________________
1 -1 -14
24
0
2)
2
2 -24
_______________________
1 1 -12
0
3
12
3)
_______________________
1 4
0
x4-15x2+10x+24=
(x+1)·(x-2)·(x-3)·(x+4)
Polinomios
EJERCICIOS resueltos
21.
Saca factor común una potencia de x en cada uno de los siguientes polinomios:
P(x)=2x3+3x
Q(x)= x4+2x6-3x5
R(x)=2x6+6x5+8x3
Solución: P(x)=x·(2x2+3)
Q(x)=x4·(2x2-3x+1)
R(x)=2x3·(x3+3x2+4), en
este último caso se ha podido sacar factor común también un número.
22.
Halla la descomposición factorial de x7-x6-4x4
x7-x6-4x4=x4·(x3-x2-4). Se ha sacado factor común x4.
Las posibles raíces enteras de x3-x2-4 son los divisores de -4:
1,-1, 2,-2, 4,-4
.
Veamos por la Regla de
Ruffini si 1 es raíz de P
1 -1 0 -4
1)
1 0 0
________________
1 0 0 -4 ≠ 0,
1 no es raíz de P
Veamos por la Regla de
Ruffini si -1 es raíz de P
1 -1 0 -4
-1)
-1 2 -2
________________
1 -2 2 -6 ≠ 0
-1 no es raíz de P
Veamos por la Regla de
Ruffini si 2 es raíz de P
1 -1 0 -4
2)
2 2 4
_______________
1 1 2 0
2 es raíz de P
1 1 2 = x2+x+2 La ecuación x2+x+2=0 no tiene soluciones reales,
por tanto es primo
x7-x6-4x4=x4·(x-2)·(x2+x+2)
23.
Halla la descomposición factorial de x4+x3-x2-2x-2
Las posibles raíces enteras de x4+x3-x2-2x-2 son los divisores de -2:
1,-1, 2,-2
Veamos por la Regla de Ruffini si 1 es
raíz de P
1 -1 -1 -2 -2
1)
1 0 -1 -3
_____________________
1 0 -1 -3 -5 distinto de 0,
1 no es raíz de P
Veamos por la Regla de Ruffini si -1 es
raíz de P
1 -1 -1 -2 -2
-1)
-1
2 -1 3
_____________________
1 -2
1 -3 1 distinto de 0,
-1 no es raíz de P
Veamos por la Regla de Ruffini si 2 es
raíz de P
1 -1 -1 -2 -2
2)
2
2 2 0
___________________
1 1 1
0 -2 distinto de 0,
2 no es raíz de P
Veamos por la Regla de Ruffini si 1 es
raíz de P
1 -1 -1 -2 -2
-2)
-2
6 -10 24
_____________________
1 -3 5 -12 22 distinto de 0,
-2 no es raíz de P
x4+x3-x2-2x-2 No tiene raíces enteras
No podemos hallar la descomposición factorial de este polinomio.
MATEMÁTICAS B „
47
Polinomios
EJERCICIOS resueltos
25.
Si los coeficientes de P(x)=pnxn+pn-1xn-1+...+p1x+p0 son números enteros, las
posibles raíces racionales de P(x) son de la forma
Halla la descomposición factorial de 12x3+4x2-17x+6
Las posibles raíces en Q de 12x3+4x2-17x+6 son los cocientes de los divisores
de 6 entre los divisores de 12,
Veamos por la Regla de Ruffini si 1/2 es
Es fácil ver con la
raíz de P
regla de Ruffini que
12 4 -17 6
ni 1, ni-1 son raíces 1/2)
6
5 -6
de P.
__________________
12 10 -12 0 1/2 es raíz de P.
Al resolver la
ecuación
12x2+10x-12=0, se
obtiene que -3/2 y
2/3 son raíces de P.
.
12x3+4x2-17x+6=12·(x-1/2)·(x+3/2)·(x-2/3)
26.
Halla la descomposición factorial de x4-4
Busquemos las raíces racionales de x4-4. Las posibles raíces en Q son los
cocientes de los divisores de -4 (coeficiente de menor grado) entre los divisores
de 1 (coeficiente de mayor grado),
Es fácil ver con la
regla de Ruffini que
ninguno de los
posibles valores
son raíces de x4-4.
El polinomio no
tiene raíces
racionales.
Si se reconoce x4-4 como una diferencia de cuadrados, (x2)222 resultará fácil la descomposición factorial:
x4-4=(x2+2)·(x2-2)
El primer factor es primo, pero el segundo vuelve a ser una
diferencia de cuadrados x2-2= (x + 2) ⋅ (x − 2)
.
x4-4=(x2+2)· (x + 2) ⋅ (x − 2)
48
„ MATEMÁTICAS B
Polinomios
EJERCICIOS resueltos
27.
Halla la descomposición factorial de x3-7x2+4x+12
Las posibles raíces racionales de este polinomio son los divisores de 12
±1 ± 2 ± 3 ± 4 ± 6 ± 12
Con la regla de Ruffini miramos que divisores son raíces del polinomio
1 -7 4 12
-1)
-1 8 -12
________________
1 -8 12 0
2)
2 -12
________________
1 -6
0
x3-7x2+4x+12=(x+1)·(x-2)·(x-6)
28.
Halla la descomposición factorial de (2x3+x+3/2)2-(x3+5x-3/2)2
Se aplican las identidades notables:
diferencia de cuadrados=suma por diferencia
(2x3+x+3/2)2-(x3+5x-3/2)2 =(3x3+6x)·(x3-4x+3)
El primer factor
(3x3+6x)
descompone sacando
factor común 3x,
(3x3+6x)=3x·(x2+2);
x2+2 es primo pues
la ecuación de
segundo grado
x2+2=0 no tiene
raíces reales.
Para (x3-4x+3) se
buscan sus raíces
racionales
1
-1
3
-3
Vemos que 1 es raíz
1 0 -4 3
1)
1
1 -3
________________
1
1 -3 0
(x3-4x+3)=(x-1)·(x2+x-3)
Para descomponer x2+x-3
se resuelve la ecuación de
segundo grado
x2+x-3=0 que tiene por
soluciones
3
3
−1 + 13
1 + 13
(2x3 + x + )2 - (x 3 + 5x - )2 = 3x ⋅ (x2 + 2) ⋅ (x − 1) ⋅ (x −
) ⋅ (x +
)
2
2
2
2
MATEMÁTICAS B „
49
Polinomios
Para practicar
1. El número 5352 está en base 7 ¿Cuál
es su valor en el sistema decimal? Se
debe hallar el valor numérico en 7 del
polinomio de coeficientes 5 3 5 2.
10. Resuelve
las siguientes ecuaciones
aplicando las identidades notables:
a) x2+4x-21=0
b) x2-10x+9=0
2. La cantidad de color se suele expresar en
sistema hexadecimal o de base 16, este
sistema tiene 16 cifras:0 1 2 3 4 5 6 7 8
9, a=10, b=11, c=12, d=13, e=14, f=15 y
en este sistema la cantidad 38 de color
azul
equivale
a
3·16+8=56
en
decimal
11. Halla la fila 4ª del triángulo de Pascal
¿Cuál es el coeficiente de grado 2 de
(x+1)4?
12. Simplifica
algebraicas
Expresa en decimal las cantidades
hexadecimales 62 y 5d de color azul.
2
3. Halla P(x)-5·Q(x) siendo P(x)=4x +4x
2
y Q(x)=6x +2x.
las
a)
x2 + 8x + 16
3x + 12
b)
3x2 − 12
x2 − 4x + 4
c)
4x2 + 4x + 1
12x2 − 3
siguientes
fracciones
13. Halla la descomposición en factores
primos de los siguientes polinomios
a) 4x7+12x6-4x5-12x4
4. Multiplica los polinomios
P(x)=4x2-7x+3 y Q(x)=-x2+5.
5. Halla el cociente y el resto de la
división de –4x3+7x2-x-5 entre
–2x2-5x-2.
b) 3x8+9x7-12x5
c) 12x3-16x2-7x+6
d) 8x3-20x2+22x-7
e) 2x3-9x2+5x+5
3
6. Haz la división de 3x +x-4 entre x+2
con la regla de Ruffini.
7. Aplica
el teorema del resto para
calcular el resto de la división de
3x3-5x2+7 entre x-5.
3
2
8. a) Halla m para que x +mx -3mx+3
sea divisible por x+5
b) Halla m para que x3+mx2-5mx+6
sea divisible por x-5.
9. Efectúa las potencias
a) (2x+3)2
b) (2x-1)3
c) (x-3)2
d) (x+2)3
50
„ MATEMÁTICAS B
14. Aplica las identidades notables para
descomponer
polinomios
los
siguientes
a) x4-64
b) x4-x2-24x-122
c) x4-98x2+492
15. Un polinomio de grado 3 tiene por
raíces –1, 4 y 1. Halla
su
descomposición factorial sabiendo que
su valor en 2 es -24.
Polinomios
Para saber más
Los polinomios en otras ciencias
Si investigaste en la web, es probable que encontraras muchos polinomios con nombre propio: Polinomios
de Lagrange, Hermite, Newton, Chevichev... copiamos aquí un extracto de un blog que habla de los
polinomios de Zernike y su aplicación en óptica para corregir defectos visuales.
...Las matemáticas, con los polinomios de
Zernike, nos ofrecen un método para
descomponer superfices complejas en sus
componentes más simples. Así, con este
procedimiento matemático podemos
jerarquizar
y
definir
todas
las
aberraciones visuales. Un esquema que
está presente con mucha frecuencia en las
consultas de cirugía refractiva es el de las
diferentes
aberraciones
agrupadas
y
jerarquizadas:
Lo de la jerarquía es fundamental, porque
según cuál sea el grupo de la aberración,
tendrá más o menos importancia, será más
o menos fácil de corregir, etc. Por ejemplo,
el número 4 corresponde a la miopía (y su
inverso, la hipermetropía), y el 3 y 5
corresponden al astigmatismo...
Extracto de la página
http://ocularis.es/blog/?p=29
Algoritmo de Euclides
La descomposición factorial de números o de polinomios sirve
para simplificar fracciones.
Numéricas
Polinómicas
18
2 ⋅ 32
3
=
=
30 2 ⋅ 3 ⋅ 5 5
x2 − x
x ⋅ (x − 1)
x
=
=
x + x − 2 (x + 2) ⋅ (x − 1) x + 2
2
Pero no resulta fácil con este método simplificar cualquier
fracción, ya que la descomposición factorial puede resultar
difícil de calcular. El algoritmo de Euclides, es un método
seguro para hallar el m.c.d. y poder así simplificar cualquier
fracción, se basa en que el m.c.d. del Dividendo y del divisor
es el m.c.d. del divisor y del resto.
MATEMÁTICAS B „
51
Polinomios
Recuerda
lo más importante
Operaciones con polinomios
Regla de Ruffini y Teorema del
resto
El resto de la división por x-a es el valor
numérico del dividendo en a
Raíces de un polinomio
P(2)=0
52
„ MATEMÁTICAS B
P(-2)=0
Polinomios
Autoevaluación
1. Halla los coeficientes de P(x)·Q(x)+ P(x)·R(x) siendo
P(x)=2x+1, Q(x)=5x2-5 y R(x)=x2+11x.
2. Calcula el cociente y el resto de la división de 6x3-5x2+4
entre x2+3.
3. ¿Cuáles son los coeficientes de (x+4)3?
4. ¿Es cierta la igualdad 4x2+10x+25=(2x+5)2?
5. Calcula m para que el resto de la división de 8x2+mx+3
entre x+2 sea 3.
6. Si P(x)=ax2+bx+5 y a·62+b·6=4, ¿cuál es el resto de la
división de P(x) entre x-6?
7. Halla una raíz entera del polinomio x3+5x2+6x+8
8. Halla una raíz racional de 4x3+5x2+25x+6
9. El polinomio 5x3+7x2-28x-12 tiene por raíces 2 y –3 ¿Cuál es
la otra raíz?
10. Las raíces de un polinomio de grado 3 son –5, 0 y 6. Calcula
el valor numérico del polinomio en 7 sabiendo que su
coeficiente de mayor grado es 3.
MATEMÁTICAS B „
53
Polinomios
Soluciones de los ejercicios para practicar
1. 1899
11. 1 4 6 4 1
2. 98, 93
12. a)
3. –26x -6x
2
4. –4x5+7x4-17x2-35x+15
5. Cociente=2x-17/2,
−79
x − 22
resto=
2
6. Cociente 3 -6 13 resto -30
x+4
3
b)
3x + 6
x−2
c)
2x + 1
6x − 3
13. a) 4x4·(x+3)·(x+1)·(x-1)
7. 3·53-5·52+7=257
b) 3x5·(x+2)2·(x-1)
8. a) m=61/20,
c) 12·(x+2/3)·(x-3/2)·(x-1/2)
b) No puede ser divivisible entre x-5
9. a) 4x2+12x+9
b) 8x3-12x2+6x-1
c) x2-6x+9
d) (x-1/2)·(8x2-16x+14)
e) (x +
1
5− 5
5+ 5
)·2·(x −
)·(x −
)
2
2
2
14. a) (x2+36)·(x+6)·(x-6)
d) x3+6x2+12x+8
10. a) (x+2)2-52=(x+2+5)·(x+2-5);
-7 y 3
b) (x2+x+12)·(x-4)·(x+3)
c) (x+7)2·(x-7)2
15. 4·(x+1)·(x-1)·(x-4)
2
2
b) (x-5) -4 =(x-5+4)·(x-5-4);1 y 9
Soluciones
AUTOEVALUACIÓN
1. 12 28 1 -5
2. Cociente 6x-5, resto –18x+19
3. 1 12 48 64
4. No, (2x+5)2=4x2+20x+25
5. m=16
6. 9
7. –4
8. –1/4
9. –2/5
10. 252
54
„ MATEMÁTICAS B
No olvides enviar las actividades al tutor
f
Centro para la Innovación y Desarrollo
de la Educación a Distancia
ACTIVIDADES DE ESO
4º
3
Matemáticas B
1. La ecuación x3 – 2x2 – 5x + 6 =0, tiene tres raíces enteras, utiliza la regla de Ruffini
para calcularlas.
2. Calcula el valor de m para que el polinomio x4 + x3 + mx +2 sea divisible por x+2.
3. Efectúa la división (4x3 – 8x2 – 9x +7):(x-3)
4. Factoriza el numerador y el denominador y simplifica la fracción:
cidead@mec.es
http://cidead.cnice.mec.es
x2 − 5x + 6
x3 − 4x
Descargar