Derivadas c 2007-2010 MathCon Contenido 1. Derivadas 1.1. Derivadas directas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Derivadas implı́citas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 1 Derivadas 1.1. Derivadas directas 1. f (x) = x2 + x + 1 2. f (x) = xa + x 3. f (x) = (x2 + x)(x) 4. f (x) = (x + 1)(x + 2) 5. f (x) = (x2 − 1)(x3 + 2) 6. f (x) = (x2 + x + 1)(x3 − 2x + 3) 7. f (x) = sin2 (x) 8. f (x) = x cos(x) √ 9. f (x) = ( x)(x2 + 3) 10. f (x) = √ 3 x2 + a √ 11. f (x) = a x + a R. f ′ (x) = 2x + 1. R. f ′ (x) = axa−1 + 1. R. f ′ (x) = 3x2 + 2x. R. f ′ (x) = 2x + 3. R. f ′ (x) = 5x4 − 3x2 + 4x. R. f ′ (x) = 5x4 + 4x3 − 3x2 + 2x + 1. R. f ′ (x) = sin(2x). R. f ′ (x) = cos x − x sin x. R. f ′ (x) = R. f ′ (x) = 3 + 5x2 √ . 2 x 2x . 3(a + x2 )( 2/3) a . R. f ′ (x) = √ 2 a+x √ 12. f (x) = (a2 − x2 ) x2 + a2 x(a2 + 3x2 ) . R. f ′ (x) = − √ a2 + x2 √ √ x2 + b2 x2 + a2 x(a2 + b2 + 2x2 ) √ R. f ′ (x) = √ . a2 + x2 b2 + x2 √ √ 14. f (x) = ( x + 1)( x − 2) 1 R. f ′ (x) = 1 − √ . 2 x √ √ 15. f (x) = ( x + x)( x − x) R. f ′ (x) = 1 − 2x. 13. f (x) = 1.1. DERIVADAS DIRECTAS √ √ 16. f (x) = ( x + x)/( x − x) √ 17. f (x) = 1/( x + 1) √ 18. f (x) = ( x + 1)/(x2 − x) 19. f (x) = x/ sin x 20. f (x) = sin x 1 − cos x 21. f (x) = sin x(sin x + cos x) 1 √ . R. f ′ (x) = √ ( x − 1)2 x 1 √ √ . 2( x + 1)2 x √ 2−3 x ′ . R. f (x) = √ 2( x − 1)2 x2 R. f ′ (x) = R. f ′ (x) = (1 − x cot x)(csc(x)). 1 . cos x − 1 R. f ′ (x) = R. f ′ (x) = cos 2x + sin 2x. 22. f (x) = sec x x R. f ′ (x) = sec x(x tan x − 1) . x2 23. f (x) = x 1 − sin x R. f ′ (x) = 1 + x cos x − sin x . (sin x − 1)2 24. f (x) = x a + bx2 √ 25. f (x) = 1/ x R. f ′ (x) = R. f ′ (x) = − √ 26. f (x) = x/ x √ 27. f (x) = 1/ x + 1 a − bx2 . (a + bx2 )2 1 √ . 2x x 1 R. f ′ (x) = √ . 2 x R. f ′ (x) = − 1 . 2(1 + x)3/2 √ 28. f (x) = x/ x2 + 1 R. f ′ (x) = 1 . (1 + x2 )3/2 29. f (x) = x2 /(x3 + 1) R. f ′ (x) = − 30. f (x) = (a − x)/(a + x) R. f ′ (x) = − 1 33. f (x) = sin( ) x 34. f (x) = 1/ sin x 35. f (x) = 1/ sin(1/x) 2a . (a + x)2 R. f ′ (x) = cos(2x). 31. f (x) = sin x cos x 32. f (x) = ex (sin x + cos x) x(x3 − 1) . (1 + x3 )2 R. f ′ (x) = 2ex cos x. R. f ′ (x) = − cos(1/x) . x2 R. f ′ (x) = − cot x csc x. R. f ′ (x) = cot(1/x) csc(1/x) . x2 36. f (x) = 1/ ln x R. f ′ (x) = − 1 . x ln2 (x) 37. f (x) = x/ ln x R. f ′ (x) = ln x − 1 . ln2 (x) 1.1. DERIVADAS DIRECTAS R. f ′ (x) = 38. f (x) = ln x/x 39. f (x) = x/(sin2 (x) + x) R. f ′ (x) = sin(x)(sin(x) − 2x cos(x)) . (sin(x)2 + x)2 R. f ′ (x) = tan2 x. 40. f (x) = tan x − x 41. f (x) = (sin(x) − cos(x))/x 42. f (x) = 43. f (x) = xm xp − am √ x2 + a2 p √ 44. f (x) = x + x 45. f (x) = r 46. f (x) = √ a ax + √ ax x+1 x R. f ′ (x) = (x + 1) cos(x) + (x − 1) sin(x) . x2 R. f ′ (x) = xp−1 (p − m)xm − pam . (xm − am )2 R. f ′ (x) = 1 R. f ′ (x) = − p . 2 1 + 1/xx a a R. f ′ (x) = √ − √ . 2 ax 2x ax R. f ′ (x) = ln x + 1. √ 48. f (x) = ln( x) √ 49. f (x) = ln(1/ x) r x+1 x−1 R. f ′ (x) = − r a−x a+x R. f ′ (x) = − 53. f (x) = r a2 + x2 a2 − x2 R. f ′ (x) = 54. f (x) = s sin(x) cos(x) 55. f (x) = sin(x2 ) cos2 (x) √ 56. f (x) = sin( x)/x R. f ′ (x) = 1 . 2x R. f ′ (x) = − 1 . 2x R. f ′ (x) = 50. f (x) = ln(ln x) 52. f (x) = x . x2 + a2 1 1+ √ 2 x R. f ′ (x) = p√ . 2 x+x 47. f (x) = x ln x 51. f (x) = 1 − ln x . x2 (x − 1 r 1)2 a r (a + x)2 1 . x ln x x+1 x−1 a−x a+x . . 2a2 x √ . (a2 − x2 ) a4 − x4 sec2 (x) R. f ′ (x) = p . 2 tan(x) R. f ′ (x) = 2 cos2x (x) cos(x2 ). √ √ √ x cos( x) − 2 sin( x) . R. f ′ (x) = 2x2 1.1. DERIVADAS DIRECTAS √ 57. f (x) = e 58. f (x) = √ e x R. f (x) = √ . 2 x x ′ ex − e−x 2 R. f ′ (x) = ex + e−x . 2 59. f (x) = ln(1/x) R. f ′ (x) = −1/x. 60. f (x) = ln x ln x R. f ′ (x) = 61. f (x) = ln(ln(ln(1/x))) R. f ′ (x) = − 63. f (x) = ee 1 . − x2 x +x . R. f ′ (x) = xx (1 + ln x) . 65. f (x) = xx x 66. f (x) = 23 x 67. f (x) = 23 5x 68. f (x) = ex ln x R. f ′ (x) = xx x +x−1 (1 + x ln x + x ln2 (x)) . R. f ′ (x) = 23 3x ln 2 ln 3 . x 5x R. f ′ (x) = 23 35 5x ln 2 ln 3 ln 5 . 70. f (x) = e1/x ex a + bx 71. f (x) = e a − bx 72. f (x) = esin x 73. f (x) = ex sin x 74. f (x) = atan nx 75. f (x) = x1/x x 77. f (x) = sinx x x R. f ′ (x) = 69. f (x) = e1/x √ a2 R. f ′ (x) = ee x 64. f (x) = xx 76. f (x) = x 1 . x ln(1/x) ln(ln(1/x)) R. f ′ (x) = √ 62. f (x) = arcsin(x/a) 2 ln x . x ex (1 + x ln x) . x R. f ′ (x) = − e1/x . x2 R. f ′ (x) = e1/x+x (1 − 1 ). x2 a + bx 2abe a − bx R. f ′ (x) = (a − bx)2 . R. f ′ (x) = esin x cos x . R. f ′ (x) = ex (cos x + sin x) . R. f ′ (x) = natan nx ln(a) sec2 (nx) . R. f ′ (x) = x1/x (1 − ln x)/x2 . √ ′ R. f (x) = x x (2 + ln x) √ . 2 x R. f ′ (x) = sinx x(x cot x + ln(sin x)) . 78. f (x) = sintan x x R. f ′ (x) = sintan x x(1 + x sec2 x ln(sin x)) . 79. f (x) = sintan x x q sin x+1 80. f (x) = sin x−1 R. f ′ (x) = sintan x x(1 + x sec2 x ln(sin x)) . R. f ′ (x) = − cos x q . sin x+1 (sin x − 1)2 sin x−1 1.1. DERIVADAS DIRECTAS √ 81. f (x) = arcsin sin x cos x . R. f ′ (x) = p 2 sin x − sin2 x 82. f (x) = earctan x R. f ′ (x) = 2 . ex + e−x p √ x + 1 + x2 ′ √ . R. f (x) = 2 1 + x2 83. f (x) = arctan ((ex − e−x )/2) 84. f (x) = 85. f (x) = p s x+ 86. f (x) = sinm x cosn x 87. f (x) = cot2 (sin x) 88. f (x) = R. f ′ (x) = √ 1 + x2 √ 1− x √ 1+ x p √ x x R. f ′ (x) = − 91. f (x) = √ x2 + 1 − x ) 92. f (x) = ln( √ x2 + 1 + x 93. f (x) = xn (a + bx)m p √ 94. f (x) = sin( x) + sin(x) 1 p . x)( x(1 − x)) R. f ′ (x) = − cos x cot(sin x) csc2 (sin x) . √ 3 x3/2 R. f ′ (x) = . 4x 1 −2 − p 1/x . R. f ′ (x) = qp 4 1/x + 1/xx2 1 1+ √ 2 x 1+ p √ 2 x+ x R. f ′ (x) = q p √ . 2 x+ x+ x q p √ x+ x+ x q p √ 2+ 2+ x 2(1 + √ R. f ′ (x) = sinm−1 x cosn−1 x(m cos2 x − n sin2 x) . q p 89. f (x) = 1/x + 1/x 90. f (x) = earctan x . 1 + x2 1 R. f ′ (x) = q p √ p √ √ . 8 2+ 2+ x 2+ x x −2 R. f ′ (x) = √ . x2 + 1 R. f ′ (x) = (xn (a + bx)m )( mb n + ). x a + bx √ cos(x) cos( x) +p R. f (x) = 1/2( √ ). x sin(x) ′ 95. f (x) = sin(nx) cos(mx) R. f ′ (x) = n cos(mx) cos(nx) − m sin(mx) sin(nx) . 96. f (x) = tan(nx) cot(mx) R. f ′ (x) = n cot(mx) sec2 (nx) − m csc2 (mx) tan(nx) . 97. f (x) = enx ln(mx) R. f ′ (x) = 98. f (x) = 2x 3x 5x √ 99. f (x) = 3 x √ 5 x enx (1 + nx ln(mx)) . x R. f ′ (x) = 30x ln(30) . √ ′ R. f (x) = − (3/5) x ln(5/3) √ . 2 x 1.2. DERIVADAS IMPLÍCITAS 100. f (x) = s sin(e2x ) √ ln( x) 1.2. Derivadas implı́citas R. f ′ (x) = 2e2x cos(e2x ) ln(x) − sin(e2x ) r . √ sin(e2x ) 2 2x ln x ln x