Grundintegrale ˆ ˆ 0 dx = c ˆ xn dx = ˆ ˆ sinh x dx = cosh x dx ˆ xn+1 + c, n ∈ R\{−1} n+1 cosh x dx = sinh x + c ˆ 1 dx = ln |x| + c x x tanh2 x dx = x − tanh x + c ˆ x coth2 x dx = x − coth x + c e dx = e + c ˆ ˆ ax +c a dx = ln a 1 2 dx = − coth x + c ˆ sinh x 1 2 dx = tanh x + c cosh x ˆ 1 1 2 dx = − x + a + c (x + a) ˆ 1 dx = ln |x + a| + c x+a ˆ ln x dx = x · ln x − x + c ˆ ln x 1 2 x · ln x dx = x · − +c 2 4 ˆ 1 1 sin2 ax dx = x − sin ·2ax + c 2 4a ˆ 1 1 sin ·2ax + c cos2 ax dx = x + 2 4a ˆ 1 1 dx = · ln |tan ax| + c sin ax · cos ax a x ˆ sin x dx = − cos x + c ˆ cos x dx = sin x + c ˆ 1 dx = tan x + c cos2 x ˆ 1 dx = − cot x + c sin2 x ˆ tan2 x dx = tan x − x + c ˆ cot2 x dx = − cot x − x + c ˆ 1 dx = arcsin x + c = − arccos x + c 2 1 − x ˆ 1 √ dx = arsinh x + c x2 + 1 √ 1