MÉTODO SIMPLEX PROFESORA: LILIANA DELGADO HIDALGO Liliana.delgado@correounivalle.edu.co 2. Método de Enumeración De Soluciones Básicas Ya se ha afirmado que la solución óptima (en general) de un modelo de Programación Lineal está en uno de los vértices de la región factible. Esto se puede ver geométricamente de una forma clara. Pero, es más adecuado establecer la transición de la Geometría al Álgebra, para tratar de manejar problemas de un mayor número de variables. Para esto, inicialmente se estudian modelos de Programación Lineal en su forma estándar. 1 2. MÉTODO ENUMERACIÓN DE SOLUCIONES BÁSICAS 2.1 Forma Estándar de los Modelos de P.L. Características: 1. La función objetivo debe ser de maximización (aunque no siempre es necesaria esta condición) 2. El sistema de restricciones debe estar conformado por un conjunto de igualdades restrictivas, donde los términos independientes bi (lado derecho de la restricción) deben ser mayores a iguales que cero (0). 3. Todas las variables de decisión deben tener la condición de Nonegatividad. Por lo tanto, un modelo de P.L. en su forma estándar tendrá la forma siguiente: Z = C1X MAX + C2X 1 2 + C3X 3 + ... + C n X n Sujeto a: A 11 X 1 + A 12 X A 1 + A X 21 . . . A . . . m 1 X j X 1 . . . + A 22 + ... + A 1 n X 2 X + ... + A 2 . . . m 2 X 2 n . . . 2 + ... + A = b1 n X = b n . . . . . . mn X n 2 . . . = b m ≥ 0 ; j = 1 , 2 , 3 ,..., n 2 m = número de restricciones n = número de variables de decisión • Por lo general, se cumple que m < n y, por lo tanto, el sistema de igualdades tiene infinitas soluciones (las infinitas soluciones de la región factible). • Para llevar cualquier modelo de Programación Lineal a la forma estándar puede hacerse uso (de ser necesario) de las siguientes transformaciones: 2. Transformaciones Para Llegar A La Forma Estándar 1. 2. 3. 4. Si la función objetivo es de minimización, analíticamente MIN (Z), puede definirse Z* = –Z y cambiar la función objetivo a MAX (–Z), ó, equivalente, MAX (Z*). Si alguno de los términos bi del lado derecho de las restricciones es menor que cero (0), entonces se multiplica por (-1) a ambos lados de la desigualdad (o igualdad) Si se tiene restricciones de desigualdad ( ≤ ), se puede sumar una variable a la restricción, denominada “variable de holgura”, para establecer la igualdad. Si la restricción es del tipo ( ≥ ), entonces se resta una variable a la restricción, denominada “variable de exceso” para establecer la igualdad. Si existe alguna variable que NO tiene restricción de no-negatividad, entonces se le reemplaza por la diferencia de dos variables positivas. Xj es variable libre (Xj puede ser mayor, igual ó menor que cero) Entonces donde aparece Xj, cambiarla por: 3 2. Transformaciones Para Llegar A La Forma Estándar Ejemplo: Convertir a la forma estándar el siguiente modelo de Programación Lineal: MIN Z = 3X1 + 4X 2 − 3X 3 + 8X 4 Sujeto a: + 2+ 3 3 ≤7 1 2 2 2 + 8 3 − 3 4 = −8 3 1 + 4 2 + 7 4 ≥ −7 3 4 1 + 2+ 3 ≥5 + 2 = 10 5 3 4 ( 1 , 2 , 3 ) ≥ 0; 4 libre 1 2. Transformaciones Para Llegar A La Forma Estándar Las transformaciones a realizar son: a. La función objetivo se cambia a maximización. MIN Z = 3X1 + 4X 2 − 3X3 + 8X4 MAX Z´ = −Z = −3X1 − 4X 2 + 3X 3 − 8X 4 b. En la restricción R1 debe sumarse una variable de holgura. 1 1 + + 2 2 + 3 3 ≤7 1 + 3 3 + "1 = 7 c. En la restricción R2 debe multiplicarse a ambos lados de la igualdad por (-1), pero no deben adicionarse variables de holgura ó exceso. 2 + 8 3 − 3 4 = −8 2 −2 2 − 8 3 + 3X 4 = 8 2 4 2. Transformaciones Para Llegar A La Forma Estándar d. En la restricción R3 debe multiplicarse primero por (-1) a ambos lados de la desigualdad, y luego adicionar la variable de holgura correspondiente. 3 1 −3 −3 1 + 4 −4 1 −4 +7 2 2 2 4 −7 −7 4 ≥ −7 3 ≤ 7 3 + "2 = 7 4 3 e. En la restricción R4 debe restarse una variable de exceso. 1 + 1 f. + + 2 2 3 + 3 ≥5 4 − "3 = 5 La restricción R5 no necesita ninguna transformación. 3 + 2 4 = 10 5 2. Transformaciones Para Llegar A La Forma Estándar MAX Z´ = −Z = −3X1 − 4X2 + 3X3 − 8X 4 Sujeto a: 1 + 2 + 3 3 + "1 = 7 −2 2 − 8 3 + 3X4 = 8 −3 1 − 4 2 − 7 4 + "2 = 7 1 + 2 + 3 − "3 = 5 3 + 2 4 = 10 ( 1 , 2 , 3 ) ≥ 0; 4 libre g. Si existe alguna variable que no tiene restricción de nonegatividad (variable libre), entonces se le reemplaza por la diferencia de dos variables positivas. x4= x’4 - x’’4 − MAX Z´ = −Z = −3X1 − 4X2 + 3X 3 − 8(X + 4 − X4 ) Sujeto a: 1 + 2 +3 3 + 5 =7 − −2 2 − 8 3 + 3(X+ 4 − X4 ) = 8 −3 1 − 4 2 − 7(X4+ − X4− ) + 6 = 7 1 + 2 + 3 − 7 =5 + − 3 + 2(X 4 − X 4 ) = 10 5 , 6 , 7 son las variables de holgura + − 1 , 2 , 3, X 4 , X4 , 5 , 6 , 7 ≥ 0 5 2. Transformaciones Para Llegar A La Forma Estándar EJEMPLO: Maximizar Z = 2x1 + 3x2 + x3 Sujeto a: x1 + x2 + x3 = 10 -2x1 + 3x2 + 2x3 ≤ -5 7x1 - 4x2 + 5x3 ≤ 6 x1 + 4x2 + 3x3 ≥ 8 x1 no restringida, x2 ≤ 0, x3 ≥0 2. Transformaciones Para Llegar A La Forma Estándar Maximizar Z = 2x1 + 3x2 + x3 Sujeto a: x1 + x2 + x3 = 10 -2x1 + 3x2 + 2x3 ≤ -5 Maximizar Z = 2x1 + 3x2 + x3 1 7x1 - 4x2 + 5x3 ≤ 6 x1 + 4x2 + 3x3 ≥ 8 x1 no restringida, x2 ≤ 0, x3 ≥0 Sujeto a: x1 + x2 + x3 = 10 2x1 - 3x2 - 2x3 ≥ 5 7x1 - 4x2 + 5x3 ≤ 6 2 x1 + 4x2 + 3x3 ≥ 8 x1 no restringida, x2 ≤ 0, x3 ≥0 3 Maximizar Z = 2x1 – 3x’2 + x3 4a Sujeto a: x1 + x2 + x3 = 10 Sujeto a: x1 – x’2 + x3 = 10 2x1 - 3x2 - 2x3 – S1 = 5 2x1 + 3x’2 - 2x3 – S1 = 5 7x1 + 4x’2 + 5x3 + S2 = 6 x1 - 4x’2 + 3x3 – S3 = 8 x1 no restringida, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0, S3≥0 Maximizar Z = 2x1 + 3x2 + x3 x2=-x’2 7x1 - 4x2 + 5x3 + S2 = 6 x1 + 4x2 + 3x3 – S3 = 8 x1 no restringida, x2 ≤ 0, x3 ≥0, S1≥0, S2≥0, S3≥0 6 2. Transformaciones Para Llegar A La Forma Estándar Maximizar Z = 2x1 – 3x’2 + x3 Sujeto a: x1 – x’2 + x3 = 10 4b 2x1 + 3x’2 - 2x3 – S1 = 5 7x1 + 4x’2 + 5x3 + S2 = 6 x1 - 4x’2 + 3x3 – S3 = 8 x1= x’1 - x’’1 x1 no restringida, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0, S3≥0 Maximizar Z = 2x’1 – 2x’’1 - 3x’2 + x3 Forma Estándar donde: S1 y S3 S2 Sujeto a: x’1 – x’’1 – x’2 + x3 = 10 2x’1 – 2x’’1 + 3x’2 - 2x3 – S1 = 5 Variables de Exceso 7x’1 – 7x’’1 + 4x’2 + 5x3 + S2 = 6 Variable de Holgura x’1 – x’’1 - 4x’2 + 3x3 – S3 = 8 x’1≥ 0, x’’1 ≥ 0, x’2 ≥ 0, x3 ≥ 0, S1≥0, S2≥0, S3≥0 FUENTES: 1. Vidal, Carlos Julio (2005). Introducción A La Modelación Matemática Y Optimización. 2. Bravo, Juan José. Notas de Clase: Método Simplex. 3. Ramírez, Luis Felipe (2009). Notas de Clase: Método Simplex. 4. Toro, Héctor Hernán. Notas de Clase. Método Simplex 7